-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathMlabGridData.py
122 lines (110 loc) · 5 KB
/
MlabGridData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import matplotlib.cbook as cbook
import numpy as np
@cbook.deprecated("2.2", alternative="scipy.interpolate.griddata")
def griddata(x, y, z, xi, yi, interp="nn"):
"""
Interpolates from a nonuniformly spaced grid to some other grid.
Fits a surface of the form z = f(`x`, `y`) to the data in the
(usually) nonuniformly spaced vectors (`x`, `y`, `z`), then
interpolates this surface at the points specified by
(`xi`, `yi`) to produce `zi`.
Parameters
----------
x, y, z : 1d array_like
Coordinates of grid points to interpolate from.
xi, yi : 1d or 2d array_like
Coordinates of grid points to interpolate to.
interp : string key from {'nn', 'linear'}
Interpolation algorithm, either 'nn' for natural neighbor, or
'linear' for linear interpolation.
Returns
-------
2d float array
Array of values interpolated at (`xi`, `yi`) points. Array
will be masked is any of (`xi`, `yi`) are outside the convex
hull of (`x`, `y`).
Notes
-----
If `interp` is 'nn' (the default), uses natural neighbor
interpolation based on Delaunay triangulation. This option is
only available if the mpl_toolkits.natgrid module is installed.
This can be downloaded from https://github.com/matplotlib/natgrid.
The (`xi`, `yi`) grid must be regular and monotonically increasing
in this case.
If `interp` is 'linear', linear interpolation is used via
matplotlib.tri.LinearTriInterpolator.
Instead of using `griddata`, more flexible functionality and other
interpolation options are available using a
matplotlib.tri.Triangulation and a matplotlib.tri.TriInterpolator.
"""
# Check input arguments.
x = np.asanyarray(x, dtype=np.float64)
y = np.asanyarray(y, dtype=np.float64)
z = np.asanyarray(z, dtype=np.float64)
if x.shape != y.shape or x.shape != z.shape or x.ndim != 1:
raise ValueError("x, y and z must be equal-length 1-D arrays")
xi = np.asanyarray(xi, dtype=np.float64)
yi = np.asanyarray(yi, dtype=np.float64)
if xi.ndim != yi.ndim:
raise ValueError("xi and yi must be arrays with the same number of "
"dimensions (1 or 2)")
if xi.ndim == 2 and xi.shape != yi.shape:
raise ValueError("if xi and yi are 2D arrays, they must have the same "
"shape")
if xi.ndim == 1:
xi, yi = np.meshgrid(xi, yi)
if interp == "nn":
use_nn_interpolation = True
elif interp == "linear":
use_nn_interpolation = False
else:
raise ValueError("interp keyword must be one of 'linear' (for linear "
"interpolation) or 'nn' (for natural neighbor "
"interpolation). Default is 'nn'.")
# Remove masked points.
mask = np.ma.getmask(z)
if mask is not np.ma.nomask:
x = x.compress(~mask)
y = y.compress(~mask)
z = z.compressed()
if use_nn_interpolation:
try:
from mpl_toolkits.natgrid import _natgrid
except ImportError:
raise RuntimeError(
"To use interp='nn' (Natural Neighbor interpolation) in "
"griddata, natgrid must be installed. Either install it "
"from http://github.com/matplotlib/natgrid or use "
"interp='linear' instead.")
if xi.ndim == 2:
# natgrid expects 1D xi and yi arrays.
xi = xi[0, :]
yi = yi[:, 0]
# Override default natgrid internal parameters.
_natgrid.seti(b"ext", 0)
_natgrid.setr(b"nul", np.nan)
if np.min(np.diff(xi)) < 0 or np.min(np.diff(yi)) < 0:
raise ValueError("Output grid defined by xi,yi must be monotone "
"increasing")
# Allocate array for output (buffer will be overwritten by natgridd)
zi = np.empty((yi.shape[0], xi.shape[0]), np.float64)
# Natgrid requires each array to be contiguous rather than e.g. a view
# that is a non-contiguous slice of another array. Use numpy.require
# to deal with this, which will copy if necessary.
x = np.require(x, requirements=["C"])
y = np.require(y, requirements=["C"])
z = np.require(z, requirements=["C"])
xi = np.require(xi, requirements=["C"])
yi = np.require(yi, requirements=["C"])
_natgrid.natgridd(x, y, z, xi, yi, zi)
# Mask points on grid outside convex hull of input data.
if np.any(np.isnan(zi)):
zi = np.ma.masked_where(np.isnan(zi), zi)
return zi
else:
# Linear interpolation performed using a matplotlib.tri.Triangulation
# and a matplotlib.tri.LinearTriInterpolator.
from matplotlib.tri import Triangulation, LinearTriInterpolator
triang = Triangulation(x, y)
interpolator = LinearTriInterpolator(triang, z)
return interpolator(xi, yi)