-
Notifications
You must be signed in to change notification settings - Fork 53
/
main.py
517 lines (451 loc) · 19.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import argparse
import numpy
import os
import shutil
import time
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
# Load all model arch available on Pytorch
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', default='/input', metavar='DIR',
help='path to dataset')
parser.add_argument('--outf', default='/output',
help='folder to output model checkpoints')
parser.add_argument('--evalf', default="/eval" ,help='path to evaluate sample')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--test', action='store_true',
help='test a [pre]trained model on new images')
parser.add_argument('-t', '--fine-tuning', action='store_true',
help='transfer learning + fine tuning - train only the last FC layer.')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
best_prec1 = torch.FloatTensor([0])
def get_images_name(folder):
"""Create a generator to list images name at evaluation time"""
onlyfiles = [f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f))]
for f in onlyfiles:
yield f
def pil_loader(path):
"""Load images from /eval/ subfolder and resized it as squared"""
with open(path, 'rb') as f:
with Image.open(f) as img:
sqrWidth = numpy.ceil(numpy.sqrt(img.size[0]*img.size[1])).astype(int)
return img.resize((sqrWidth, sqrWidth))
def main():
global args, best_prec1, cuda, labels
args = parser.parse_args()
try:
os.makedirs(args.outf)
# os.makedirs(opt.outf+"/model")
except OSError:
pass
# can we use CUDA?
cuda = False #torch.cuda.is_available()
print ("=> using cuda: {cuda}".format(cuda=cuda))
# Not working on FloydHub
# if torch.cuda.device_count() is not None:
# print ("=> available cuda devices: {dev}").format(dev=torch.cuda.device_count())
# Distributed Training?
args.distributed = args.world_size > 1
print ("=> distributed training: {dist}".format(dist=args.distributed))
############ DATA PREPROCESSING ############
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
testdir = args.evalf
# Normalize on RGB Value
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# Size on model
if args.arch.startswith('inception'):
size = (299, 299)
else:
size = (224, 256)
# Train -> Preprocessing -> Tensor
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomSizedCrop(size[0]), #224 , 299
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
#print (train_dataset.classes)
# Get number of labels
labels = len(train_dataset.classes)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
# Pin memory
if cuda:
pin_memory = True
else:
pin_memory = False
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=pin_memory, sampler=train_sampler)
# Validate -> Preprocessing -> Tensor
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Scale(size[1]), # 256
transforms.CenterCrop(size[0]), # 224 , 299
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=pin_memory)
if args.test:
# Testing -> Preprocessing -> Tensor
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(testdir, transforms.Compose([
transforms.Scale(size[1]), # 256
transforms.CenterCrop(size[0]), # 224 , 299
transforms.ToTensor(),
normalize,
]), loader=pil_loader),
batch_size=1, shuffle=False,
num_workers=args.workers, pin_memory=pin_memory)
############ BUILD MODEL ############
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)
# Create model from scratch or use a pretrained one
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
# print(model)
# quit()
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch](num_classes=labels)
# print(model)
# Freeze model, train only the last FC layer for the transfered task
if args.fine_tuning:
print("=> transfer-learning mode + fine-tuning (train only the last FC layer)")
# Freeze Previous Layers(now we are using them as features extractor)
for param in model.parameters():
param.requires_grad = False
# Fine Tuning the last Layer For the new task
# RESNET
if args.arch == 'resnet18':
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, labels)
parameters = model.fc.parameters()
# print(model)
# quit()
# ALEXNET & VGG
elif args.arch == 'alexnet' or args.arch == 'vgg19':
model.classifier._modules['6'] = nn.Linear(4096, labels)
parameters = model.classifier._modules['6'].parameters()
# print(model)
# quit()
elif args.arch == 'densenet121': # DENSENET
model.classifier = nn.Linear(1024, labels)
parameters = model.classifier.parameters()
# print(model)
# quit()
# INCEPTION
elif args.arch == 'inception_v3':
# Auxiliary Fc layer
num_ftrs = model.AuxLogits.fc.in_features
model.AuxLogits.fc = nn.Linear(num_ftrs, labels)
# parameters = model.AuxLogits.fc.parameters()
# print (parameters)
# Last layer
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, labels)
parameters = model.fc.parameters()
# print(model)
# quit()
else:
print("Error: Fine-tuning is not supported on this architecture.")
exit(-1)
else:
parameters = model.parameters()
# Not working on FloydHub
# if torch.cuda.device_count() is not None:
# # Set [Distributed]DataParallel only on more than 1 cuda(GPUs) devices
# if cuda and torch.cuda.device_count() > 1:
# # Local or Distributed Enviroment
# if not args.distributed:
# print("=> load model on '{}' cuda devices".format(torch.cuda.device_count()))
# if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
# model.features = torch.nn.DataParallel(model.features)
# else:
# model = torch.nn.DataParallel(model)
# else:
# print("=> load model on on distributed enviroment".format(torch.cuda.device_count()))
# model = torch.nn.parallel.DistributedDataParallel(model)
# Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
if cuda:
criterion.cuda()
# Set SGD + Momentum
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if cuda:
checkpoint = torch.load(args.resume)
else:
# Load GPU model on CPU
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Load model on GPU or CPU
if cuda:
model.cuda()
else:
model.cpu()
############ TRAIN/EVAL/TEST ############
cudnn.benchmark = True
# Evaluate?
if args.evaluate:
print("=> evaluating...")
validate(val_loader, model, criterion)
return
# Testing?
if args.test:
print("=> testing...")
# Name generator
names = get_images_name(os.path.join(testdir, 'images'))
test(test_loader, model, names, train_dataset.classes)
return
# Training
if args.train:
print("=> training...")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch)
# Train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# Evaluate on validation set
prec1 = validate(val_loader, model, criterion)
# print (prec1)
# Remember best prec@1 and save checkpoint
if cuda:
prec1 = prec1.cpu() # Load on CPU if CUDA
# Get bool not ByteTensor
is_best = bool(prec1.numpy() > best_prec1.numpy())
# Get greater Tensor
best_prec1 = torch.FloatTensor(max(prec1.numpy(), best_prec1.numpy()))
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch):
"""Train the model on Training Set"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if cuda:
input, target = input.cuda(async=True), target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
#topk = (1,5) if labels >= 100 else (1,) # TO FIX
# For nets that have multiple outputs such as Inception
if isinstance(output, tuple):
loss = sum((criterion(o,target_var) for o in output))
# print (output)
for o in output:
prec1 = accuracy(o.data, target, topk=(1,))
top1.update(prec1[0], input.size(0))
losses.update(loss.data[0], input.size(0)*len(output))
else:
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))
top1.update(prec1[0], input.size(0))
losses.update(loss.data[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Info log every args.print_freq
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1_val} ({top1_avg})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses,
top1_val=numpy.asscalar(top1.val.cpu().numpy()),
top1_avg=numpy.asscalar(top1.avg.cpu().numpy())))
def validate(val_loader, model, criterion):
"""Validate the model on Validation Set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
# Evaluate all the validation set
for i, (input, target) in enumerate(val_loader):
if cuda:
input, target = input.cuda(async=True), target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
# print ("Output: ", output)
#topk = (1,5) if labels >= 100 else (1,) # TODO: add more topk evaluation
# For nets that have multiple outputs such as Inception
if isinstance(output, tuple):
loss = sum((criterion(o,target_var) for o in output))
# print (output)
for o in output:
prec1 = accuracy(o.data, target, topk=(1,))
top1.update(prec1[0], input.size(0))
losses.update(loss.data[0], input.size(0)*len(output))
else:
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))
top1.update(prec1[0], input.size(0))
losses.update(loss.data[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Info log every args.print_freq
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1_val} ({top1_avg})'.format(
i, len(val_loader), batch_time=batch_time,
loss=losses,
top1_val=numpy.asscalar(top1.val.cpu().numpy()),
top1_avg=numpy.asscalar(top1.avg.cpu().numpy())))
print(' * Prec@1 {top1}'
.format(top1=numpy.asscalar(top1.avg.cpu().numpy())))
return top1.avg
def test(test_loader, model, names, classes):
"""Test the model on the Evaluation Folder
Args:
- classes: is a list with the class name
- names: is a generator to retrieve the filename that is classified
"""
# switch to evaluate mode
model.eval()
# Evaluate all the validation set
for i, (input, _) in enumerate(test_loader):
if cuda:
input = input.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
# compute output
output = model(input_var)
# Take last layer output
if isinstance(output, tuple):
output = output[len(output)-1]
# print (output.data.max(1, keepdim=True)[1])
lab = classes[numpy.asscalar(output.data.max(1, keepdim=True)[1].cpu().numpy())]
print ("Images: " + next(names) + ", Classified as: " + lab)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(args.outf, filename))
if is_best:
shutil.copyfile(os.path.join(args.outf, filename), os.path.join(args.outf,'model_best.pth.tar'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()