-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_stylize.py
283 lines (241 loc) · 9.75 KB
/
train_stylize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import random
import argparse
import yaml
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from lib.config import load_config
from lib.data import make_dataset, collate_fn, cycle
from lib.trainer import make_stylization_trainer
from lib.util import *
def main(config):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
# torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
set_log_path(ckpt_path)
writer = SummaryWriter(os.path.join(ckpt_path, 'tensorboard'))
###########################################################################
""" dataset """
# content
train_set = make_dataset(
config['data'], args.data_dir, split='train', nvs=config['3d']
)
train_loader = DataLoader(
train_set, batch_size=config['train']['batch_size'],
collate_fn=collate_fn, num_workers=8, shuffle=True, drop_last=True
)
train_iterator = cycle(train_loader)
print('train data size: {:d}'.format(len(train_set)))
val_set = make_dataset(
config['data'], args.data_dir, split='val', nvs=config['3d']
)
val_loader = DataLoader(
val_set, batch_size=config['train']['batch_size'],
collate_fn=collate_fn, num_workers=8, shuffle=False, drop_last=True
)
print('val data size: {:d}'.format(len(val_set)))
# style
train_style = make_dataset(config['style'], args.style_dir, split='train')
train_style_loader = DataLoader(
train_style, batch_size=config['train']['batch_size'],
num_workers=8, shuffle=True, drop_last=True
)
train_style_iterator = cycle(train_style_loader)
print('train style size: {:d}'.format(len(train_style)))
val_style = make_dataset(config['style'], args.style_dir, split='val')
val_style_loader = DataLoader(
val_style, batch_size=config['train']['batch_size'],
num_workers=8, shuffle=False, drop_last=True
)
val_style_iterator = cycle(val_style_loader)
print('val style size: {:d}'.format(len(val_style)))
###########################################################################
""" trainer """
n_itrs = config['train']['n_itrs']
itr0 = 0
if config.get('_resume'):
ckpt_name = os.path.join(ckpt_path, 'stylize-last.pth')
try:
check_file(ckpt_name)
ckpt = torch.load(ckpt_name)
trainer = make_stylization_trainer(ckpt['config'])
trainer.load(ckpt)
itr0 = ckpt['itr']
print(
'stylization checkpoint loaded, '
'train from itr {:d}'.format(itr0)
)
except:
config.pop('_resume')
ckpt_name = os.path.join(ckpt_path, 'inpaint-last.pth')
try:
check_file(ckpt_name)
ckpt = torch.load(ckpt_name)
config['encoder'] = ckpt['config']['encoder']
config['decoder'] = ckpt['config']['decoder']
trainer = make_stylization_trainer(config)
trainer.load(ckpt)
itr0 = 0
print(
'WARNING: stylization checkpoint loading failed, '
'use the latest inpainting checkpoint instead'
)
except:
trainer = make_stylization_trainer(config)
itr0 = 0
print('WARNING: no checkpoint exists, train from scratch')
else:
ckpt_name = os.path.join(ckpt_path, 'inpaint-last.pth')
try:
check_file(ckpt_name)
ckpt = torch.load(ckpt_name)
config['encoder'] = ckpt['config']['encoder']
config['decoder'] = ckpt['config']['decoder']
trainer = make_stylization_trainer(config)
trainer.load(ckpt)
print('trainer initialized using the latest inpainting checkpoint')
except:
trainer = make_stylization_trainer(config)
print('trainer initialized, train from scratch')
yaml.dump(
config, open(os.path.join(ckpt_path, 'stylize-config.yaml'), 'w')
)
if itr0 == 0:
ckpt = trainer.save(config, 0)
torch.save(ckpt, os.path.join(ckpt_path, 'stylize-init.pth'))
print('initial stylization model saved')
###########################################################################
""" train & val """
loss_list = ['content', 'style', 'match']
train_losses = {k: AverageMeter() for k in loss_list}
val_losses = {k: AverageMeter() for k in loss_list}
timer = Timer()
for itr in range(itr0 + 1, n_itrs + 1):
trainer.train()
input_dict = next(train_iterator)
input_dict['style'] = next(train_style_iterator)
out_dict, loss_dict = trainer.run(
input_dict=input_dict,
h=config['train']['h'],
w=config['train'].get('w'),
mode='train',
nvs=config['3d'],
ndc=config.get('ndc', True),
pcd_size=config['train'].get('pcd_size')
)
for k in loss_dict.keys():
train_losses[k].update(loss_dict[k].item())
writer.add_scalars(
k, {'train_stylize': train_losses[k].item()}, itr
)
if itr % args.print_freq == 0 or itr == 1:
t_elapsed = time_str(timer.end())
log_str = '[{:04d}/{:04d}] '.format(
itr // args.print_freq, n_itrs // args.print_freq
)
for k in loss_dict.keys():
log_str += '{:s} {:.3f} | '.format(k, train_losses[k].item())
log_str += t_elapsed
log(log_str, 'stylize-log.txt')
for k in out_dict.keys():
writer.add_images(
tag='train/style/{:04d}/{:s}'.format(
itr // args.print_freq, k
),
img_tensor=out_dict[k],
global_step=itr // args.print_freq
)
writer.flush()
for k in loss_list:
train_losses[k].reset()
ckpt = trainer.save(config, itr)
torch.save(ckpt, os.path.join(ckpt_path, 'stylize-last.pth'))
timer.start()
if itr % args.val_freq == 0:
trainer.eval()
for input_dict in val_loader:
input_dict['style'] = next(val_style_iterator)
with torch.no_grad():
out_dict, loss_dict = trainer.run(
input_dict=input_dict,
h=config['train']['h'],
w=config['train'].get('w'),
mode='val',
nvs=config['3d'],
ndc=config.get('ndc', True),
pcd_size=config['train'].get('pcd_size')
)
for k in loss_dict.keys():
val_losses[k].update(loss_dict[k].item())
for k in loss_dict.keys():
writer.add_scalars(
k, {'val_stylize': val_losses[k].item()}, itr
)
t_elapsed = time_str(timer.end())
log_str = '[{:04d}/{:04d} val] '.format(
itr // args.print_freq, n_itrs // args.print_freq
)
for k in loss_dict.keys():
log_str += '{:s} {:.3f} | '.format(k, val_losses[k].item())
log_str += t_elapsed + '\n'
log(log_str, 'stylize-log.txt')
for k in out_dict.keys():
writer.add_images(
tag='val/style/{:04d}/{:s}'.format(
itr // args.print_freq, k
),
img_tensor=out_dict[k],
global_step=itr // args.print_freq
)
writer.flush()
for k in loss_list:
val_losses[k].reset()
timer.start()
###########################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data_dir', type=str,
help='data directory')
parser.add_argument('-s', '--style_dir', type=str,
help='style directory')
parser.add_argument('-c', '--config', type=str,
help='config file path')
parser.add_argument('-n', '--name', type=str, default='stylize',
help='job name')
parser.add_argument('-g', '--gpu', type=str, default='0',
help='GPU device IDs')
parser.add_argument('-pf', '--print_freq', type=int, default=1,
help='print frequency (x100 itrs)')
parser.add_argument('-vf', '--val_freq', type=int, default=100,
help='validation frequency (x100 itrs)')
args = parser.parse_args()
args.print_freq *= 100
args.val_freq *= 100
# set up checkpoint folder
if not os.path.exists('log'):
os.makedirs('log')
ckpt_path = os.path.join('log', args.name)
ensure_path(ckpt_path, False)
# load config
try:
config_path = os.path.join(ckpt_path, 'stylize-last.pth')
check_file(config_path)
config = load_config(config_path, mode='stylize')
print('config loaded from checkpoint folder')
config['_resume'] = True
except:
check_file(args.config)
config = load_config(args.config, mode='stylize')
print('config loaded from command line')
# configure GPUs
if len(args.gpu.split(',')) > 1:
config['_parallel'] = True
config['_gpu'] = args.gpu
set_gpu(args.gpu)
main(config)