-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathSolution.py
90 lines (67 loc) · 2.15 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
Given a binary tree, write a function to get the maximum width of the given tree. The maximum width of a tree is the maximum width among all levels.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
It is guaranteed that the answer will in the range of 32-bit signed integer.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Constraints:
The given binary tree will have between 1 and 3000 nodes.
"""
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def widthOfBinaryTree(self, root: TreeNode) -> int:
def fill_levels(node, levels, ci, cl):
if node is None:
return
if len(levels) == cl:
levels.append([ci, ci])
else:
levels[cl][0] = min(ci, levels[cl][0])
levels[cl][1] = max(ci, levels[cl][1])
fill_levels(node.left, levels, ci * 2 - 1, cl + 1)
fill_levels(node.right, levels, ci * 2, cl + 1)
levels = []
fill_levels(root, levels, 1, 0)
return max([l[1] - l[0] + 1 for l in levels])