-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_module.py
365 lines (311 loc) · 11.9 KB
/
data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import os
import sentencepiece
import torch
from torch.utils.data import (Dataset, DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
import numpy as np
class InputFeatures(object):
def __init__(self, token_ids = None, label_ids = None, valid_ids = None, token_masks = None, label_masks = None, label_len = None):
self.token_ids = token_ids
self.label_ids = label_ids
self.valid_ids = valid_ids
self.token_masks = token_masks
self.label_masks = label_masks
self.label_len = label_len
class TextDataset(Dataset):
def __init__(self, text_path, label_path):
self.text_path = text_path
self.label_path = label_path
self.text_lines = []
self.label_lines = [[], []]
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
if isinstance(idx, slice):
print(f"idx:{idx}, idx.start:{idx.start}, idx.stop:{idx.stop}, idx.step:{idx.step}")
print(self.features[idx])
for i in range(*idx.indices(len(self))):
print(i)
return [self.__getitem__(i) for i in range(*idx.indices(len(self)))]
else:
token_ids = self.features[idx].token_ids
label_ids = self.features[idx].label_ids
valid_ids = self.features[idx].valid_ids
label_len = self.features[idx].label_len
label_masks = self.features[idx].label_masks
# print(f"getitem, token_ids:{token_ids}")
# print(f"getitem {idx}")
return np.array(token_ids), np.array(label_ids), np.array(valid_ids), label_len, np.array(label_masks)
def readLines(self):
with open(self.text_path, "r") as hand:
for line in hand:
self.text_lines.append(line)
print("Reading examples...")
with open(self.label_path, "r") as hand:
lines = hand.readlines()
for i, line in enumerate(tqdm(lines)):
# covert string line "1 2 3 4 5" to int list [1, 2, 3, 4, 5]
numbers = line.split()
label_list = [int(n) for n in numbers]
if i % 2 == 0:
self.label_lines[0].append(label_list) # case labels
else:
self.label_lines[1].append(label_list) # punctuation labels
assert(len(self.text_lines) == len(self.label_lines[0]) and len(self.text_lines) == len(self.label_lines[1]))
def getTokensNum(self, words, tokenizer):
num = 0
for word in words:
word_tokens = tokenizer.encode(word, out_type=int)
num += len(word_tokens)
return num
def convert_examples_to_features_bos_eos(self, max_seq_length, tokenizer):
self.readLines()
# all examples:
self.features = []
self.max_seq_length = max_seq_length
# one example:
tokens = [tokenizer.piece_to_id('<s>')]
labels = [[0], [0]]
valid = [1]
token_masks = []
label_masks = []
label_len = 0
self.last_part_sentence = InputFeatures()
print(f"Converting examples to features... bos_id:{tokenizer.piece_to_id('<s>')}, eos_id:{tokenizer.piece_to_id('</s>')}")
for il, line in enumerate(tqdm(self.text_lines)):
words = line.split()
tokens_num = self.getTokensNum(words, tokenizer)
if tokens_num < max_seq_length - 10:
for iw, word in enumerate(words):
word_tokens = tokenizer.encode(word, out_type=int)
if len(tokens) + len(word_tokens) > max_seq_length - 1:
tokens.append(tokenizer.piece_to_id('</s>'))
labels[0].append(0)
labels[1].append(0)
valid.append(1)
token_masks = [1] * len(tokens)
label_masks = [1] * len(labels[0])
label_len = len(labels[0])
while len(tokens) < max_seq_length:
tokens.append(0)
token_masks.append(0)
valid.append(0)
while len(labels[0]) < max_seq_length:
labels[0].append(0)
labels[1].append(0)
label_masks.append(0)
assert len(tokens) == max_seq_length
assert len(token_masks) == max_seq_length
assert len(valid) == max_seq_length
assert len(labels[0]) == max_seq_length
assert len(labels[1]) == max_seq_length
assert len(label_masks) == max_seq_length
self.features.append( InputFeatures(token_ids = tokens,
label_ids = labels,
valid_ids = valid,
token_masks = token_masks,
label_masks = label_masks,
label_len = label_len) )
tokens = [tokenizer.piece_to_id('<s>')]
labels = [[0], [0]]
valid = [1]
token_masks = []
label_masks = []
label_len = 0
### iw = 0 means this word is the start of a new sentence, no need to insert last part sentence
if iw > 0:
tokens.extend(self.last_part_sentence.tokens)
labels[0].extend(self.last_part_sentence.labels[0])
labels[1].extend(self.last_part_sentence.labels[1])
valid.extend(self.last_part_sentence.valid)
if iw == 0:
self.last_part_sentence.tokens = []
self.last_part_sentence.labels = [[], []]
self.last_part_sentence.valid = []
tokens.extend(word_tokens)
self.last_part_sentence.tokens.extend(word_tokens)
for m in range(len(word_tokens)):
if m == 0:
labels[0].append(self.label_lines[0][il][iw])
labels[1].append(self.label_lines[1][il][iw])
valid.append(1)
self.last_part_sentence.labels[0].append(self.label_lines[0][il][iw])
self.last_part_sentence.labels[1].append(self.label_lines[1][il][iw])
self.last_part_sentence.valid.append(1)
else:
valid.append(0)
self.last_part_sentence.valid.append(0)
else:
print(f"tokens num:[{tokens_num}] ----> {line}")
def save_features(self, filename):
with open(filename, "w") as fp:
for f in tqdm(self.features):
for i in range(self.max_seq_length):
fp.write(str(f.token_ids[i]) + " ")
fp.write("\n")
for i in range(self.max_seq_length):
fp.write(str(f.label_ids[0][i]) + " ")
fp.write("\n")
for i in range(self.max_seq_length):
fp.write(str(f.label_ids[1][i]) + " ")
fp.write("\n")
for i in range(self.max_seq_length):
fp.write(str(f.valid_ids[i]) + " ")
fp.write("\n")
for i in range(self.max_seq_length):
fp.write(str(f.token_masks[i]) + " ")
fp.write("\n")
for i in range(self.max_seq_length):
fp.write(str(f.label_masks[i]) + " ")
fp.write("\n")
fp.write(str(f.label_len))
fp.write("\n")
def load_features(self, filename, max_seq_length):
self.features = []
with open(filename, "r") as fp:
lines = fp.readlines()
indx = 0
tokens = []
labels = [[], []]
valid = []
token_masks = []
label_masks = []
label_len = 0
for i, line in enumerate(tqdm(lines)):
numbers = line.split()
n_list = [int(n) for n in numbers]
if indx == 0:
tokens = n_list
elif indx == 1:
labels[0] = n_list
elif indx == 2:
labels[1] = n_list
elif indx == 3:
valid = n_list
elif indx == 4:
token_masks = n_list
elif indx == 5:
label_masks = n_list
elif indx == 6:
assert len(n_list) == 1
label_len = n_list[0]
# print(f"len(tokens):{len(tokens)}, len(token_masks):{len(token_masks)}")
indx += 1
if indx == 7:
assert len(tokens) == max_seq_length
assert len(token_masks) == max_seq_length
assert len(valid) == max_seq_length
assert len(labels[0]) == max_seq_length
assert len(labels[1]) == max_seq_length
assert len(label_masks) == max_seq_length
assert (label_len > 0 & label_len <= 200)
self.features.append( InputFeatures(token_ids = tokens,
label_ids = labels,
valid_ids = valid,
token_masks = token_masks,
label_masks = label_masks,
label_len = label_len) )
indx = 0
tokens = []
labels = [[], []]
valid = []
token_masks = []
label_masks = []
label_len = 0
class DataModule(object):
def __init__(self, args:argparse.Namespace, sp:sentencepiece):
self.args = args
self.sp = sp
self.data_dir = self.args.data_dir
train_text = f"{self.data_dir}/train_text.txt"
train_label = f"{self.data_dir}/train_label.txt"
valid_text = f"{self.data_dir}/valid_text.txt"
valid_label = f"{self.data_dir}/valid_label.txt"
self.test_text = f"{self.data_dir}/0_IWSLT2011_asr_test_text.txt"
test_label = f"{self.data_dir}/0_IWSLT2011_asr_test_label.txt"
# print("Reading train examples...")
self.train_dataset = TextDataset(train_text, train_label)
# print("Reading valid examples...")
self.valid_dataset = TextDataset(valid_text, valid_label)
### test set
self.test_dataset = TextDataset(self.test_text, test_label)
self.train_features_file = f"{self.data_dir}/train_features.txt"
self.valid_features_file = f"{self.data_dir}/valid_features.txt"
self.test_features_file = f"{self.data_dir}/test_features.txt"
def train_dataloader(self) -> DataLoader:
if not os.path.isfile(self.train_features_file):
print("Extracting train features:")
self.train_dataset.convert_examples_to_features_bos_eos(self.args.max_seq_length, self.sp)
print("First time to extract features, save features to local file for next time quick load...")
self.train_dataset.save_features(self.train_features_file)
else:
print("Train feature file already exists, loading...")
self.train_dataset.load_features(self.train_features_file, self.args.max_seq_length)
# print(f"print first 2 example in train dataset:\n{self.train_dataset[:2]}")
if self.args.world_size > 1:
train_sampler = DistributedSampler(self.train_dataset)
# shuffle = False
else:
train_sampler = RandomSampler(self.train_dataset)
# shuffle = True
train_dataloader = DataLoader(
dataset=self.train_dataset,
sampler=train_sampler,
batch_size=self.args.batch_size,
# shuffle=shuffle,
)
return train_dataloader
def valid_dataloader(self) -> DataLoader:
if not os.path.isfile(self.valid_features_file):
print("Extracting valid features:")
self.valid_dataset.convert_examples_to_features_bos_eos(self.args.max_seq_length, self.sp)
print("First time to extract features, save features to local file for next time quick load...")
self.valid_dataset.save_features(self.valid_features_file)
else:
print("Valid feature file already exists, loading...")
self.valid_dataset.load_features(self.valid_features_file, self.args.max_seq_length)
# print(f"print first 2 example in valid dataset:\n{self.valid_dataset[:2]}")
if self.args.world_size > 1:
valid_sampler = DistributedSampler(self.valid_dataset)
else:
valid_sampler = RandomSampler(self.valid_dataset)
valid_dataloader = DataLoader(
dataset=self.valid_dataset,
sampler=valid_sampler,
batch_size=self.args.batch_size
)
return valid_dataloader
def test_dataloader(self) -> DataLoader:
if not os.path.isfile(self.test_features_file):
print("Extracting test features:")
self.test_dataset.convert_examples_to_features_bos_eos(self.args.max_seq_length, self.sp)
print("First time to extract features, save features to local file for next time quick load...")
self.test_dataset.save_features(self.test_features_file)
else:
print("Test feature file already exists, loading...")
self.test_dataset.load_features(self.test_features_file, self.args.max_seq_length)
# print(f"print first 2 example in test dataset:\n{self.test_dataset[:2]}")
if self.args.world_size > 1:
test_sampler = DistributedSampler(self.test_dataset)
else:
test_sampler = RandomSampler(self.test_dataset)
test_dataloader = DataLoader(
dataset=self.test_dataset,
sampler=test_sampler,
batch_size=self.args.batch_size
)
return test_dataloader, self.test_text
def sort_batch(label_lens, valid_output, labels, label_masks, valid_ids = None):
# print(f"before, label_lens:{label_lens}")
label_lens, indx = label_lens.sort(dim=0, descending=True)
valid_output = valid_output[indx]
if labels is not None:
labels = labels[indx]
label_masks = label_masks[indx]
if valid_ids is not None:
valid_ids = valid_ids[indx]
return label_lens, valid_output, labels, label_masks, valid_ids
else:
return label_lens, valid_output, labels, label_masks