forked from Nilau1998/SAC-Agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
252 lines (225 loc) · 9.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from rendering.boat_env_render import BoatEnvironmentRenderer
from postprocessing.recorder import Recorder
from environment.boat_env import BoatEnv
from utils.config_reader import get_config, get_experiment_config
from utils.build_experiment import Experiment
from utils.color_selector import ColorSelector
from agent.continuous_agent import ContinuousAgent
from multiprocessing import Process
import time
import csv
import os
import numpy as np
import argparse
from progress_table import ProgressTable
import warnings
# Complains about tensors being transformed wrong and it being slow, it can be ignored after profiling showed it how insignificant it is
warnings.filterwarnings('ignore')
class ControlCenter:
def __init__(self, cc_id=0, color='\x1b[37m', subdir=None):
self.cc_id = cc_id
self.color = color
self.config = get_config('original_config.yaml')
self.experiment_overview_file = os.path.join(
'experiments', subdir, 'overview.csv')
self.terminations_file = None
self.info = None
self.experiment = None
self.subdir = subdir
def train_model(self, tuner=False):
self.experiment = Experiment(subdir=self.subdir)
self.experiment.save_configs()
self.terminations_file = os.path.join(
self.experiment.experiment_dir, 'terminations.csv')
if tuner:
self.config = get_experiment_config(
self.experiment.experiment_dir, 'tuned_configs.yaml')
env = BoatEnv(self.config, self.experiment)
recorder = Recorder(env)
agent = ContinuousAgent(
config=self.config,
experiment_dir=self.experiment.experiment_dir,
input_dims=env.observation_space.shape,
env=env
)
columns = ['CCID Episode', 'Termination', 'Score',
'Best Score', 'Average Score', 'RA', 'Action RA']
table_training = ProgressTable(
columns=columns,
num_decimal_places=2,
default_column_width=14,
reprint_header_every_n_rows=0,
)
for column in table_training.columns:
table_training._colors[column] = self.color
best_score = float('-inf')
score_history = []
load_checkpoint = False
if load_checkpoint:
agent.load_models()
for i in range(self.config.base_settings.n_games):
table_training['CCID Episode'] = (self.cc_id, i)
observation = env.reset()
done = False
score = 0
recorder.create_csvs(i)
table_training(self.config.boat.fuel)
while not done:
recorder.write_data_to_csv()
action = agent.choose_action(observation)
observation_, reward, done, self.info = env.step(action)
score += reward
if self.info['termination'] == 'reached_goal':
agent.remember(observation, action,
reward, observation_, True)
else:
agent.remember(observation, action,
reward, observation_, False)
if not load_checkpoint:
agent.learn()
observation = observation_
table_training.update('Score', score, weight=1)
table_training.update(
'RA', f"{env.boat.rudder_angle:.2f}")
table_training.update(
'Action RA', f"{env.action[0]:.2f}")
recorder.write_info_to_csv()
recorder.write_winds_to_csv()
score_history.append(score)
avg_score = np.mean(
score_history[-self.config.base_settings.avg_lookback:])
if score > best_score:
best_score = score
if score > avg_score:
if not load_checkpoint:
agent.save_models()
table_training['Termination'] = f"{self.info['termination']}-{self.info[self.info['termination']]}"
table_training['Score'] = score
table_training['Best Score'] = best_score
table_training['Average Score'] = avg_score
table_training.next_row()
table_training.close()
with open(os.path.join(self.experiment.experiment_dir, 'console.csv'), 'x') as csv_file:
writer = csv.writer(csv_file, delimiter=';')
writer.writerow(columns)
writer.writerows(table_training.to_list())
if not os.path.exists(self.experiment_overview_file):
with open(self.experiment_overview_file, 'x') as csv_file:
writer = csv.writer(csv_file, delimiter=';')
writer.writerow([self.experiment.experiment_name, best_score])
else:
with open(self.experiment_overview_file, 'a') as csv_file:
writer = csv.writer(csv_file, delimiter=';')
writer.writerow([self.experiment.experiment_name, best_score])
with open(self.terminations_file, 'x') as csv_file:
writer = csv.writer(csv_file, delimiter=';')
writer.writerow(self.info.keys())
writer.writerow(self.info.values())
print(f"Process {self.cc_id} finished the training!")
def render_model(self, experiment_dir):
if args['train']:
experiment_dir = self.experiment.experiment_dir
else:
experiment_dir = experiment_dir
print(f"Starting rendering...")
table_rendering = ProgressTable(
columns=['Episode', 'Episodes left to render'],
num_decimal_places=2,
default_column_width=8,
reprint_header_every_n_rows=0,
)
renderer = BoatEnvironmentRenderer(experiment_dir)
# to_render = [50, 65, 250]
relevant_episodes, best_episodes = renderer.replayer.analyse_experiment()
episode_left = len(relevant_episodes) - 1
for episode_index in relevant_episodes:
table_rendering['Episode'] = episode_index
table_rendering['Episodes left to render'] = episode_left
renderer.replayer.read_data_csv(episode_index)
if episode_index in best_episodes:
renderer.previous_best_tmp = episode_index
else:
renderer.previous_best_tmp = -1
for dt in table_rendering(range(1)):
table_rendering.next_row()
if dt % self.config.base_settings.render_skip_size == 0 or dt == renderer.replayer.total_dt:
renderer.update_objects_on_image(episode_index, dt)
renderer.draw_image_to_buffer()
renderer.create_gif_from_buffer(episode_index)
renderer.reset_renderer()
episode_left -= 1
table_rendering.next_row()
table_rendering.close()
def creates_avg_plots(self, directory):
list_experiment_dirs = [
f.path for f in os.scandir(directory) if f.is_dir()]
for experiment_dir in list_experiment_dirs:
BoatEnvironmentRenderer(experiment_dir)
if __name__ == '__main__':
subdir = 'setting_' + \
str(get_config('original_config.yaml').base_settings.experiment)
parser = argparse.ArgumentParser()
parser.add_argument(
'-t', '--train',
nargs='?',
const='original_config.yaml',
type=str,
help='train new model with default or parsed config file'
)
parser.add_argument(
'-r', '--render',
nargs='?',
const='',
type=str,
help='render trained model or parsed previous experiment dir'
)
parser.add_argument(
'-p', '--paramstune',
nargs='?',
const=1,
type=int,
help='use hp tuner for model_generation'
)
parser.add_argument(
'-a', '--avgplot',
nargs='?',
const='',
type=str,
help='Iterate through given experiment parent directory and create avg plots in each experiment'
)
args = vars(parser.parse_args())
if args['paramstune']:
processes = []
start = time.time()
model_batch_size = 3
num_models = list(range(int(args['paramstune'])))
model_batches = np.array_split(
num_models, np.arange(model_batch_size, len(num_models), model_batch_size))
color_selector = ColorSelector()
for batch in model_batches:
for model_index in batch:
control_center = ControlCenter(
cc_id=model_index, color=color_selector.get_color(), subdir=subdir)
proc = Process(
target=control_center.train_model, args=(True,))
time.sleep(1)
proc.start()
processes.append(proc)
for p in processes:
p.join()
end = time.time()
print(f"Tuning took {end - start} seconds.")
if args['train']:
control_center = ControlCenter(
subdir=subdir)
control_center.train_model()
if args['render']:
control_center.render_model(
control_center.experiment.experiment_dir)
args['render'] = False
if args['render']:
control_center = ControlCenter(subdir=subdir)
control_center.render_model(args['render'])
if args['avgplot']:
control_center = ControlCenter(subdir=subdir)
control_center.creates_avg_plots(args['avgplot'])