-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCalcCrossMeans.cpp
141 lines (122 loc) · 4.04 KB
/
CalcCrossMeans.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
* Functions for calculating genomic estimates of
* mean cross performance based on a GS model fitting
* additive and dominance (digenic) effects. Effects
* are modeled using AlphaSimR's coding scheme.
*/
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
/*
* Calculate cross means for different ploidy levels
* Input:
* geno, genotypes (0,1,..,ploidy)
* rows for indiviuals
* columns for SNPs
* a, additive effects for each SNP
* d, dominance effects for each SNP
* ploidy, can be 2, 4, or 6
* Output:
* A matrix for all half-diallel crosses
* Columns 1 and 2 are the parents of the cross
* Column 3 is the expected mean of the cross
*/
// [[Rcpp::export]]
arma::mat calcCrossMean(arma::mat& geno,
arma::vec& a,
arma::vec& d,
arma::uword ploidy){
// Determine numbers and allocate output matrix
arma::uword nInd = geno.n_rows;
arma::uword nSnp = geno.n_cols;
arma::uword nCrosses = nInd * (nInd-1) / 2;
arma::mat output(nCrosses, 3, arma::fill::zeros);
// Convert genotype data to a more convient type and layout
arma::umat genoT = arma::conv_to<arma::umat>::from(geno.t());
// Create additive and dominance genotype effects vectors
// Uses AlphaSimR coding scheme
arma::vec x = arma::regspace(0, ploidy); // Raw genotype
x /= double(ploidy); // Proportional genotype
arma::vec xa = 2.0*x - 1.0; // Additive effect
arma::vec xd = -4.0*(x%x) + 4.0*x; // Digenic dominance effect
// Calculate gamete probabilities
// Probabilities determined by considering all possible combinations
arma::mat gam;
if(ploidy==2){
gam = {
{2, 0}, // 0 genotype (0, 1 gametes)
{1, 1}, // 1
{0, 2} // 2
};
gam /= 2.0; // 2 choose 1
}else if(ploidy==4){
/*
* A matrix of tetraploid gamete probabilities
* Assumes independent assortment of chromosomes
* e.g. bivalent pairing only
* The probabilities don't change too much with
* quadrivalents, so these seem to be reasonable
* values even when the assumption of independent
* assortment of chromosomes is violated.
*/
gam = {
{6, 0, 0}, // 0 genotype (0, 1, 2 gametes)
{3, 3, 0}, // 1
{1, 4, 1}, // 2
{0, 3, 3}, // 3
{0, 0, 6} // 4
};
gam /= 6.0; // 4 choose 2
}else if(ploidy==6){
gam = {
{20, 0, 0, 0}, // 0 genotype (0, 1, 2, 3 gametes)
{10, 10, 0, 0}, // 1
{ 4, 12, 4, 0}, // 2
{ 1, 9, 9, 1}, // 3
{ 0, 4, 12, 4}, // 4
{ 0, 0, 10, 10}, // 5
{ 0, 0, 0, 20} // 6
};
gam /= 20.0; // 6 choose 3
}else{
Rcpp::stop("No gamete probabilities for this ploidy");
}
// Map parental genotypes to mean additive and dominance effects of progeny
arma::mat mapA(ploidy+1, ploidy+1, arma::fill::zeros);
arma::mat mapD(ploidy+1, ploidy+1, arma::fill::zeros);
// Loop over parental genotypes to
// compute means for each pair
for(arma::uword i=0; i<=ploidy; i++){
for(arma::uword j=0; j<=ploidy; j++){
// Determine frequency of gamete pairs
arma::mat F = gam.row(i).t() * gam.row(j);
// Loop over gamete pairs
for(arma::uword k=0; k<=(ploidy/2); k++){
for(arma::uword l=0; l<=(ploidy/2); l++){
// Multiply frequency by effect
mapA(i,j) += F(k,l) * xa(k+l);
mapD(i,j) += F(k,l) * xd(k+l);
}
}
}
}
// Calculate cross means for partial diallel
arma::uword k=0; // Cross identifier
for(arma::uword i=0; i<(nInd-1); i++){
for(arma::uword j=i+1; j<nInd; j++){
// Record parents
output(k,0) = i;
output(k,1) = j;
// Sum effects for all loci
for(arma::uword m=0; m<nSnp; m++){
output(k,2) +=
mapA(genoT(m,i), genoT(m,j)) * a(m) +
mapD(genoT(m,i), genoT(m,j)) * d(m);
}
k++;
}
}
// C++ to R indexing
output.col(0) += 1.0;
output.col(1) += 1.0;
return output;
}