-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·211 lines (184 loc) · 5.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
The train and predict script.
This script uses datasets, omegaconf and transformers libraries.
Please install them in order to run this script.
Usage:
$python train.py --train ./configs/train/quad/default.yaml \
--dataset ./configs/datasets/squad/default.yaml
"""
import os
import argparse
import json
import pickle as pkl
from datasets import load_metric
import numpy as np
from omegaconf import OmegaConf
import torch
from transformers import (
AutoModelForQuestionAnswering,
AutoTokenizer,
default_data_collator,
TrainingArguments,
Trainer,
)
from src.utils.postprocess import postprocess_qa_predictions
from src.datasets import SQuAD, DuoRC, DuoRCModified, XQuAD
from src.utils.mapper import configmapper
from src.utils.misc import seed
class MyEncoder(json.JSONEncoder):
"""Class to convert NumPy stuff to JSON-writeable."""
def default(self, obj):
"""Convert NumPy stuff to regular Python stuff.
Args:
obj (object): Object to be converted.
Returns:
object: Converted object.
"""
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
dirname = os.path.dirname(__file__)
## Config
parser = argparse.ArgumentParser(
prog="train.py", description="Train a model and predict."
)
parser.add_argument(
"--dataset",
type=str,
action="store",
help="The configuration for dataset",
default=os.path.join(dirname, "./configs/datasets/squad/default.yaml"),
)
parser.add_argument(
"--train",
type=str,
action="store",
help="The configuration for trainer",
default=os.path.join(dirname, "./configs/train/squad/default.yaml"),
)
parser.add_argument(
"--only_predict",
action="store_true",
help="Whether to just predict, or also train",
default=False,
)
parser.add_argument(
"--load_predictions",
action="store_true",
help="Whether to load_predictions from raw_predictions_file or predict from scratch",
default=False,
)
args = parser.parse_args()
train_config = OmegaConf.load(args.train)
dataset_config = OmegaConf.load(args.dataset)
seed(train_config.args.seed)
# Load datasets
print("### Loading Datasets ###")
datasets = configmapper.get("datasets", dataset_config.dataset_name)(dataset_config)
training_datasets, validation_dataset = datasets.get_datasets()
print("Training Datasets")
print(training_datasets)
print("Validation Dataset")
print(validation_dataset)
# Train
if not args.only_predict:
print("### Getting Training Args ###")
train_args = TrainingArguments(**train_config.args)
else:
print("### Getting Training Args from PreTrained###")
train_args = torch.load(
os.path.join(train_config.trainer.save_model_name, "training_args.bin")
)
print(train_args)
if not args.only_predict:
print("### Loading Tokenizer for Trainer ###")
tokenizer = AutoTokenizer.from_pretrained(
train_config.trainer.pretrained_tokenizer_name
)
else:
print("### Loading Tokenizer for Trainer from PreTrained ")
tokenizer = AutoTokenizer.from_pretrained(train_config.trainer.save_model_name)
if not args.only_predict:
print("### Loading Model ###")
model = AutoModelForQuestionAnswering.from_pretrained(
train_config.model.pretrained_model_name
)
else:
print("### Loading Model From PreTrained ###")
model = AutoModelForQuestionAnswering.from_pretrained(
train_config.trainer.save_model_name
)
print("### Loading Trainer ###")
trainer = Trainer(
model,
train_args,
default_data_collator,
training_datasets["train"],
training_datasets["validation"],
tokenizer,
)
if not args.only_predict:
print("### Training ###")
trainer.train()
trainer.save_model(train_config.trainer.save_model_name)
# Predict
if not args.load_predictions:
print("### Predicting ###")
raw_predictions = trainer.predict(validation_dataset) ## has predictions,label_ids,
with open(train_config.misc.raw_predictions_file, "wb") as f:
pkl.dump(raw_predictions, f)
else:
print("### Loading Predictions ###")
with open(train_config.misc.raw_predictions_file, "rb") as f:
raw_predictions = pkl.load(f)
# Set back features hidden by trainer during prediction.
validation_dataset.set_format(
type=validation_dataset.format["type"],
columns=list(validation_dataset.features.keys()),
)
# Process the predictions
print("### Processing Predictions ###")
final_predictions = postprocess_qa_predictions(
datasets.datasets["validation"],
validation_dataset,
training_datasets["validation"],
raw_predictions.predictions,
tokenizer,
squad_v2=train_config.misc.squad_v2,
)
with open(train_config.misc.final_predictions_file, "w") as f:
f.write("[")
for i, item in enumerate(list(final_predictions.values())):
json.dump(item, f, cls=MyEncoder)
if i != len(list(final_predictions.values())) - 1:
f.write(",")
f.write("]")
# pkl.dump(final_predictions, f)
# Metric Calculation
print("### Calculating Metrics ###")
if train_config.misc.squad_v2:
metric = load_metric("squad_v2")
else:
metric = load_metric("squad")
if train_config.misc.squad_v2:
formatted_predictions = [
{"id": k, "prediction_text": v["text"], "no_answer_probability": 0.0}
for k, v in final_predictions.items()
]
else:
formatted_predictions = [
{"id": k, "prediction_text": v["text"]} for k, v in final_predictions.items()
]
references = [
{"id": ex["id"], "answers": ex["answers"]} for ex in datasets.datasets["validation"]
]
metrics = metric.compute(predictions=formatted_predictions, references=references)
print("### Saving Metrics ###")
with open(train_config.misc.metric_file, "w") as f:
json.dump(metrics, f)
print("### Finished ###")