-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprint_predictions.py
32 lines (22 loc) · 960 Bytes
/
print_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
""" Script to print test_predictions"""
test_file = "./data/tsd_test.csv"
predictions_file = "./spans-pred_spanbert_qa_gs.txt"
output_file = "./output_spans-pred_spanbert_qa_gs.txt"
from evaluation.fix_spans import _contiguous_ranges
from baselines.spacy_tagging import read_datafile
import pandas as pd
import numpy as np
texts = read_datafile(test_file, test=True)
with open(predictions_file, "r") as f:
all_preds = f.readlines()
preds = [sorted(np.unique(eval(pred.split("\t")[1]))) for pred in all_preds]
def get_text_from_preds(text, pred):
text_spans = []
ranges = _contiguous_ranges(pred)
for _range in ranges:
text_spans.append(text[_range[0] : _range[1] + 1])
return text_spans
text_spans = [get_text_from_preds(text, pred) for text, pred in zip(texts, preds)]
with open(output_file, "w") as f:
for i in range(len(texts)):
f.write("Text:\n" + str(texts[i]) + "\nSpans:\n" + str(text_spans[i]) + "\n")