-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path173.binary-search-tree-iterator.cpp
93 lines (87 loc) · 3.03 KB
/
173.binary-search-tree-iterator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Tag: Stack, Tree, Design, Binary Search Tree, Binary Tree, Iterator
// Time: O(1)
// Space: O(H)
// Ref: -
// Note: InOrder
// Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):
//
// BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
// boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
// int next() Moves the pointer to the right, then returns the number at the pointer.
//
// Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.
// You may assume that next() calls will always be valid. That is, there will be at least a next number in the in-order traversal when next() is called.
//
// Example 1:
//
//
// Input
// ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
// [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
// Output
// [null, 3, 7, true, 9, true, 15, true, 20, false]
//
// Explanation
// BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
// bSTIterator.next(); // return 3
// bSTIterator.next(); // return 7
// bSTIterator.hasNext(); // return True
// bSTIterator.next(); // return 9
// bSTIterator.hasNext(); // return True
// bSTIterator.next(); // return 15
// bSTIterator.hasNext(); // return True
// bSTIterator.next(); // return 20
// bSTIterator.hasNext(); // return False
//
//
// Constraints:
//
// The number of nodes in the tree is in the range [1, 105].
// 0 <= Node.val <= 106
// At most 105 calls will be made to hasNext, and next.
//
//
// Follow up:
//
// Could you implement next() and hasNext() to run in average O(1) time and use O(h) memory, where h is the height of the tree?
//
//
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class BSTIterator {
public:
TreeNode *cur;
stack<TreeNode *> st;
BSTIterator(TreeNode* root) {
cur = root;
}
int next() {
while (cur) {
st.push(cur);
cur = cur->left;
}
cur = st.top();
st.pop();
int res = cur->val;
cur = cur->right;
return res;
}
bool hasNext() {
return (cur || !st.empty());
}
};
/**
* Your BSTIterator object will be instantiated and called as such:
* BSTIterator* obj = new BSTIterator(root);
* int param_1 = obj->next();
* bool param_2 = obj->hasNext();
*/