-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path240.search-a-2d-matrix-ii.cpp
61 lines (55 loc) · 1.48 KB
/
240.search-a-2d-matrix-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// Tag: Array, Binary Search, Divide and Conquer, Matrix
// Time: O(M + N)
// Space: O(1)
// Ref: -
// Note: Matrix
// Write an efficient algorithm that searches for a value target in an m x n integer matrix matrix. This matrix has the following properties:
//
// Integers in each row are sorted in ascending from left to right.
// Integers in each column are sorted in ascending from top to bottom.
//
//
// Example 1:
//
//
// Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
// Output: true
//
// Example 2:
//
//
// Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
// Output: false
//
//
// Constraints:
//
// m == matrix.length
// n == matrix[i].length
// 1 <= n, m <= 300
// -109 <= matrix[i][j] <= 109
// All the integers in each row are sorted in ascending order.
// All the integers in each column are sorted in ascending order.
// -109 <= target <= 109
//
//
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size();
int n = matrix[0].size();
int i = 0;
int j = n - 1;
while (i < m && j >= 0) {
if (target == matrix[i][j]) {
return true;
}
if (target > matrix[i][j]) {
i++;
} else {
j--;
}
}
return false;
}
};