-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path312.burst-balloons.py
70 lines (59 loc) · 2.06 KB
/
312.burst-balloons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Tag: Array, Dynamic Programming
# Time: O(N^3)
# Space: O(N^2)
# Ref: -
# Note: -
# You are given n balloons, indexed from 0 to n - 1. Each balloon is painted with a number on it represented by an array nums. You are asked to burst all the balloons.
# If you burst the ith balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it.
# Return the maximum coins you can collect by bursting the balloons wisely.
#
# Example 1:
#
# Input: nums = [3,1,5,8]
# Output: 167
# Explanation:
# nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
# coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
# Example 2:
#
# Input: nums = [1,5]
# Output: 10
#
#
# Constraints:
#
# n == nums.length
# 1 <= n <= 300
# 0 <= nums[i] <= 100
#
#
from collections import defaultdict
class Solution:
def maxCoins(self, nums: List[int]) -> int:
balloons = [1] + nums + [1]
cache = defaultdict(dict)
return self.burst(balloons, 1, len(nums), cache)
def burst(self, nums: List[int], left: int, right:int, cache: dict) -> int:
if left > right:
return 0
if right in cache[left]:
return cache[left][right]
res = 0
for i in range(left, right + 1):
p = nums[left - 1] * nums[i] * nums[right + 1] + self.burst(nums, left, i - 1, cache) + self.burst(nums, i + 1, right, cache)
if p > res:
res = p
cache[left][right] = res
return res
class Solution:
def maxCoins(self, nums: List[int]) -> int:
nums = [1] + nums + [1]
n = len(nums)
dp = [[0] * n for i in range(n)]
# how to init l = 1 if do it seperately?
for l in range(1, n - 1):
for i in range(1, n - l):
j = i + l - 1
for k in range(i, j + 1):
dp[i][j] = max(dp[i][j], dp[i][k - 1] + dp[k + 1][j] + nums[k] * nums[i - 1] * nums[j + 1])
return dp[1][n - 2]