-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path1534.convert-binary-search-tree-to-sorted-doubly-linked-list.cpp
119 lines (111 loc) · 3.34 KB
/
1534.convert-binary-search-tree-to-sorted-doubly-linked-list.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Tag: Binary Search Tree, Linked List, Binary Tree, Divide and Conquer
// Time: O(N)
// Space: O(H)
// Ref: -
// Note: BST | Leetcode-426
// Convert a BST to a sorted circular doubly-linked list in-place.
// Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list.
//
// Let's take the following BST as an example, it may help you understand the problem better:
//
// ![bstdlloriginalbst](<https://assets.leetcode.com/uploads/2018/10/12/bstdlloriginalbst.png>)
//
// We want to transform this BST into a circular doubly linked list.
// Each node in a doubly linked list has a predecessor and successor.
// For a circular doubly linked list, the predecessor of the first element is the last element, and the successor of the last element is the first element.
//
// The figure below shows the circular doubly linked list for the BST above.
// The "head" symbol means the node it points to is the smallest element of the linked list.
//
// ![bstdllreturndll](<https://assets.leetcode.com/uploads/2018/10/12/bstdllreturndll.png>)
//
// Specifically, we want to do the transformation in place.
// After the transformation, the left pointer of the tree node should point to its predecessor, and the right pointer should point to its successor.
// We should return the pointer to the first element of the linked list.
//
// The figure below shows the transformed BST.
// The solid line indicates the successor relationship, while the dashed line means the predecessor relationship.
//
// ![bstdllreturnbst](<https://assets.leetcode.com/uploads/2018/10/12/bstdllreturnbst.png>)
//
// **Example 1:**
// ```
// Input: {4,2,5,1,3}
// 4
// / \
// 2 5
// / \
// 1 3
// Output: "left:1->5->4->3->2 right:1->2->3->4->5"
// Explanation:
// Left: reverse output
// Right: positive sequence output
// ```
// **Example 2:**
// ```
// Input: {2,1,3}
// 2
// / \
// 1 3
// Output: "left:1->3->2 right:1->2->3"
// ```
//
//
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: root of a tree
* @return: head node of a doubly linked list
*/
TreeNode * treeToDoublyList(TreeNode * root) {
// Write your code here.
TreeNode *head = nullptr;
TreeNode *last = nullptr;
TreeNode *node = root;
stack<TreeNode *> st;
while (st.size() > 0 || node) {
while (node) {
st.push(node);
node = node->left;
}
node = st.top();
st.pop();
if (head == nullptr) {
head = node;
}
if (last) {
last->right = node;
node->left = last;
}
last = node;
node = node->right;
}
head->left = last;
last->right = head;
return head;
}
};