\n",
" \n",
" \n",
@@ -549,7 +549,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes-cloud
(time, lat, lon)
uint8
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
title : flag for CHL-gapfree and CHL-level3. 0 is land; 1 is cloud; 0 is water CHL_cmes-cloud
(time, lat, lon)
uint8
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
title : flag for CHL-gapfree and CHL-level3. 0 is land; 1 is cloud; 0 is water \n",
" \n",
" \n",
" \n",
@@ -635,7 +635,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.02/VIIRSJ1 R2022.0NRT/OLCIB 07.02 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.02/VIIRSJ1 R2022.0NRT/OLCIB 07.02 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -721,7 +721,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes-land
(lat, lon)
uint8
dask.array<chunksize=(149, 181), meta=np.ndarray>
CHL_cmes-land
(lat, lon)
uint8
dask.array<chunksize=(149, 181), meta=np.ndarray>
\n",
" \n",
" \n",
" \n",
@@ -776,7 +776,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.04/VIIRSJ1 R2022.0NRT/OLCIB 07.04 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.04/VIIRSJ1 R2022.0NRT/OLCIB 07.04 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -862,7 +862,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes_flags-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : [1, 2] flag_meanings : LAND INTERPOLATED geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D valid_max : 3 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes_flags-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : [1, 2] flag_meanings : LAND INTERPOLATED geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D valid_max : 3 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -948,7 +948,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes_flags-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : 1 flag_meanings : LAND geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D valid_max : 1 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes_flags-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : 1 flag_meanings : LAND geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D valid_max : 1 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -1034,7 +1034,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes_uncertainty-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes_uncertainty-gapfree
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -1120,7 +1120,7 @@
"\n",
" \n",
" \n",
- "
CHL_cmes_uncertainty-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 CHL_cmes_uncertainty-level3
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 \n",
" \n",
" \n",
" \n",
@@ -1206,7 +1206,7 @@
"\n",
" \n",
" \n",
- "
CHL_uncertainty
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 256, 256] coverage_content_type : qualityInformation long_name : Chlorophyll-a concentration - Uncertainty estimation units : % valid_max : 32767 valid_min : 0 CHL_uncertainty
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 256, 256] coverage_content_type : qualityInformation long_name : Chlorophyll-a concentration - Uncertainty estimation units : % valid_max : 32767 valid_min : 0 \n",
" \n",
" \n",
" \n",
@@ -1292,7 +1292,7 @@
"\n",
" \n",
" \n",
- "
adt
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : The absolute dynamic topography is the sea surface height above geoid; the adt is obtained as follows: adt=sla+mdt where mdt is the mean dynamic topography; see the product user manual for details grid_mapping : crs long_name : Absolute dynamic topography standard_name : sea_surface_height_above_geoid units : m adt
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : The absolute dynamic topography is the sea surface height above geoid; the adt is obtained as follows: adt=sla+mdt where mdt is the mean dynamic topography; see the product user manual for details grid_mapping : crs long_name : Absolute dynamic topography standard_name : sea_surface_height_above_geoid units : m \n",
" \n",
" \n",
" \n",
@@ -1378,7 +1378,7 @@
"\n",
" \n",
" \n",
- "
air_temp
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 2 metre temperature nameCDM : 2_metre_temperature_surface nameECMWF : 2 metre temperature product_type : analysis shortNameECMWF : 2t standard_name : air_temperature units : K air_temp
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 2 metre temperature nameCDM : 2_metre_temperature_surface nameECMWF : 2 metre temperature product_type : analysis shortNameECMWF : 2t standard_name : air_temperature units : K \n",
" \n",
" \n",
" \n",
@@ -1464,7 +1464,7 @@
"\n",
" \n",
" \n",
- "
curr_dir
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comments : Computed from total surface current velocity elements. Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average direction of total surface currents units : degrees curr_dir
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comments : Computed from total surface current velocity elements. Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average direction of total surface currents units : degrees \n",
" \n",
" \n",
" \n",
@@ -1550,7 +1550,7 @@
"\n",
" \n",
" \n",
- "
curr_speed
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comments : Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average total surface current speed units : m s**-1 curr_speed
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comments : Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average total surface current speed units : m s**-1 \n",
" \n",
" \n",
" \n",
@@ -1636,7 +1636,7 @@
"\n",
" \n",
" \n",
- "
mlotst
(time, lat, lon)
float32
dask.array<chunksize=(116, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 681, 1440] cell_methods : area: mean long_name : Density ocean mixed layer thickness standard_name : ocean_mixed_layer_thickness_defined_by_sigma_theta unit_long : Meters units : m mlotst
(time, lat, lon)
float32
dask.array<chunksize=(116, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 681, 1440] cell_methods : area: mean long_name : Density ocean mixed layer thickness standard_name : ocean_mixed_layer_thickness_defined_by_sigma_theta unit_long : Meters units : m \n",
" \n",
" \n",
" \n",
@@ -1716,7 +1716,7 @@
"\n",
" \n",
" \n",
- "
sla
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
ancillary_variables : err_sla comment : The sea level anomaly is the sea surface height above mean sea surface; it is referenced to the [1993, 2012] period; see the product user manual for details grid_mapping : crs long_name : Sea level anomaly standard_name : sea_surface_height_above_sea_level units : m sla
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
ancillary_variables : err_sla comment : The sea level anomaly is the sea surface height above mean sea surface; it is referenced to the [1993, 2012] period; see the product user manual for details grid_mapping : crs long_name : Sea level anomaly standard_name : sea_surface_height_above_sea_level units : m \n",
" \n",
" \n",
" \n",
@@ -1802,7 +1802,7 @@
"\n",
" \n",
" \n",
- "
so
(time, lat, lon)
float32
dask.array<chunksize=(116, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 7, 341, 720] cell_methods : area: mean long_name : mean sea water salinity at 0.49 metres below ocean surface standard_name : sea_water_salinity unit_long : Practical Salinity Unit units : 1e-3 valid_max : 28336 valid_min : 1 so
(time, lat, lon)
float32
dask.array<chunksize=(116, 149, 181), meta=np.ndarray>
_ChunkSizes : [1, 7, 341, 720] cell_methods : area: mean long_name : mean sea water salinity at 0.49 metres below ocean surface standard_name : sea_water_salinity unit_long : Practical Salinity Unit units : 1e-3 valid_max : 28336 valid_min : 1 \n",
" \n",
" \n",
" \n",
@@ -1882,7 +1882,7 @@
"\n",
" \n",
" \n",
- "
sst
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : Sea surface temperature nameCDM : Sea_surface_temperature_surface nameECMWF : Sea surface temperature product_type : analysis shortNameECMWF : sst standard_name : sea_surface_temperature units : K sst
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : Sea surface temperature nameCDM : Sea_surface_temperature_surface nameECMWF : Sea surface temperature product_type : analysis shortNameECMWF : sst standard_name : sea_surface_temperature units : K \n",
" \n",
" \n",
" \n",
@@ -1968,7 +1968,7 @@
"\n",
" \n",
" \n",
- "
topo
(lat, lon)
float64
dask.array<chunksize=(149, 181), meta=np.ndarray>
colorBarMaximum : 8000.0 colorBarMinimum : -8000.0 colorBarPalette : Topography grid_mapping : GDAL_Geographics ioos_category : Location long_name : Topography standard_name : altitude units : meters topo
(lat, lon)
float64
dask.array<chunksize=(149, 181), meta=np.ndarray>
colorBarMaximum : 8000.0 colorBarMinimum : -8000.0 colorBarPalette : Topography grid_mapping : GDAL_Geographics ioos_category : Location long_name : Topography standard_name : altitude units : meters \n",
" \n",
" \n",
" \n",
@@ -2023,7 +2023,7 @@
"\n",
" \n",
" \n",
- "
u_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : zonal total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 u_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : zonal total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 \n",
" \n",
" \n",
" \n",
@@ -2109,7 +2109,7 @@
"\n",
" \n",
" \n",
- "
u_wind
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre U wind component nameCDM : 10_metre_U_wind_component_surface nameECMWF : 10 metre U wind component product_type : analysis shortNameECMWF : 10u standard_name : eastward_wind units : m s**-1 u_wind
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre U wind component nameCDM : 10_metre_U_wind_component_surface nameECMWF : 10 metre U wind component product_type : analysis shortNameECMWF : 10u standard_name : eastward_wind units : m s**-1 \n",
" \n",
" \n",
" \n",
@@ -2195,7 +2195,7 @@
"\n",
" \n",
" \n",
- "
ug_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : zonal geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 ug_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : zonal geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 \n",
" \n",
" \n",
" \n",
@@ -2281,7 +2281,7 @@
"\n",
" \n",
" \n",
- "
v_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : meridional total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 v_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : meridional total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 \n",
" \n",
" \n",
" \n",
@@ -2367,7 +2367,7 @@
"\n",
" \n",
" \n",
- "
v_wind
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre V wind component nameCDM : 10_metre_V_wind_component_surface nameECMWF : 10 metre V wind component product_type : analysis shortNameECMWF : 10v standard_name : northward_wind units : m s**-1 v_wind
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre V wind component nameCDM : 10_metre_V_wind_component_surface nameECMWF : 10 metre V wind component product_type : analysis shortNameECMWF : 10v standard_name : northward_wind units : m s**-1 \n",
" \n",
" \n",
" \n",
@@ -2453,7 +2453,7 @@
"\n",
" \n",
" \n",
- "
vg_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : meridional geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 vg_curr
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : meridional geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 \n",
" \n",
" \n",
" \n",
@@ -2539,7 +2539,7 @@
"\n",
" \n",
" \n",
- "
wind_dir
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre wind direction units : degrees wind_dir
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre wind direction units : degrees \n",
" \n",
" \n",
" \n",
@@ -2625,7 +2625,7 @@
"\n",
" \n",
" \n",
- "
wind_speed
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre absolute speed units : m s**-1 wind_speed
(time, lat, lon)
float32
dask.array<chunksize=(39, 149, 181), meta=np.ndarray>
long_name : 10 metre absolute speed units : m s**-1 \n",
" \n",
" \n",
" \n",
@@ -2711,20 +2711,20 @@
"\n",
" \n",
" \n",
- "
Indexes: (3)
PandasIndex
PandasIndex(Index([ 32.0, 31.75, 31.5, 31.25, 31.0, 30.75, 30.5, 30.25, 30.0, 29.75,\n",
+ "
Indexes: (3)
PandasIndex
PandasIndex(Index([ 32.0, 31.75, 31.5, 31.25, 31.0, 30.75, 30.5, 30.25, 30.0, 29.75,\n",
" ...\n",
" -2.75, -3.0, -3.25, -3.5, -3.75, -4.0, -4.25, -4.5, -4.75, -5.0],\n",
- " dtype='float32', name='lat', length=149)) PandasIndex
PandasIndex(Index([ 45.0, 45.25, 45.5, 45.75, 46.0, 46.25, 46.5, 46.75, 47.0, 47.25,\n",
+ " dtype='float32', name='lat', length=149)) PandasIndex
PandasIndex(Index([ 45.0, 45.25, 45.5, 45.75, 46.0, 46.25, 46.5, 46.75, 47.0, 47.25,\n",
" ...\n",
" 87.75, 88.0, 88.25, 88.5, 88.75, 89.0, 89.25, 89.5, 89.75, 90.0],\n",
- " dtype='float32', name='lon', length=181)) PandasIndex
PandasIndex(DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',\n",
+ " dtype='float32', name='lon', length=181)) PandasIndex
PandasIndex(DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',\n",
" '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',\n",
" '2020-01-09', '2020-01-10',\n",
" ...\n",
" '2020-12-22', '2020-12-23', '2020-12-24', '2020-12-25',\n",
" '2020-12-26', '2020-12-27', '2020-12-28', '2020-12-29',\n",
" '2020-12-30', '2020-12-31'],\n",
- " dtype='datetime64[ns]', name='time', length=366, freq=None)) Attributes: (92)
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 "
+ " dtype='datetime64[ns]', name='time', length=366, freq=None))Attributes: (92)
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 "
],
"text/plain": [
" Size: 958MB\n",
@@ -2763,7 +2763,7 @@
" westernmost_valid_longitude: -180.0"
]
},
- "execution_count": 2,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -2798,6 +2798,26 @@
"p = zarr_CHL.sel(time='2020-09-02').CHL.plot(y='lat', x='lon')"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADXLklEQVR4nOydd5wURfr/Pz1x8+KSV5YFJSjpTgERVEDJhwjonZx6JMHwFVBE5OQ4ZFWCoiKeHpgQMXuICPc7JaiAoqKCoCQRkaSyICgsaXdnZ/r3R3f1dFdX93TPzAbY5/16DbPTXVVdHWaoep6nPo8ky7IMgiAIgiCIaoqnsjtAEARBEARRmdBgiCAIgiCIag0NhgiCIAiCqNbQYIggCIIgiGoNDYYIgiAIgqjW0GCIIAiCIIhqDQ2GCIIgCIKo1tBgiCAIgiCIag0NhgiCIAiCqNbQYIg4q/jss89QUFCAo0ePmvZ17doVXbt2rfA+VQTff/89xo8fj7Zt26JGjRrIycnBZZddhrfffltY/tChQxg2bBhq1aqFtLQ0dOzYER9++KGhTFFREaZNm4auXbuiXr16yMjIQOvWrfHII4+guLjY1GYoFMIDDzyARo0aIRgM4oILLsBTTz3l6jyc9GvPnj2QJMny1bt3b8fHe+qpp3DBBRcgGAyicePGeOCBBxAKhQxl3nnnHdxwww1o0qQJUlNT0ahRI9x0003YuXOnq3MjCKIKIxPEWcSjjz4qA5B3795t2rd161Z569atFd+pCuCpp56SL7jgAnnatGnyihUr5Pfee08eOnSoDEB+4IEHDGWLi4vlVq1ayQ0aNJBfffVVecWKFXL//v1ln88nr169Wiu3efNmuVatWvLdd98tL1myRP7www/lgoICOSUlRe7WrZsciUQM7Y4cOVIOBoPyzJkz5VWrVsn33XefLEmSPG3aNEfn4LRfxcXF8ueff256/f3vf5cByM8884yj402dOlWWJEmeOHGivGrVKnnmzJlyIBCQb7nlFkO5Sy65RL7mmmvkF198UV69erX8yiuvyBdeeKGckZEhb9myxdGxCIKo2tBgiDirsBsMnc38+uuvpsGJLMty37595bS0NLm4uFjb9u9//1sGIH/22WfatlAoJLdo0UK+5JJLtG0nTpyQT5w4YWqTXeNPPvlE27ZlyxZZkiR5+vTphrK33HKLnJqaKh85ciTmOTjtlxVdu3aV09LS5GPHjsUse/jwYTklJUW+9dZbDdunTZsmS5JkGDQfPHjQVP/nn3+W/X6/PGLEiJjHIgii6kNuMuKsoaCgAPfeey8AoHHjxprbZPXq1QDMbjLmbnn00UfxyCOPoFGjRkhNTUXXrl3x/fffIxQK4b777kNubi6ys7MxcOBAHDp0yHTct956Cx07dkR6ejoyMjLQq1cvbNy4sSJOWaNWrVqQJMm0/ZJLLsGpU6fw22+/adsWL16M5s2bo2PHjto2n8+Hv/3tb/jyyy/x888/AwDS09ORnp4ubBMA9u/fr2179913Icsyhg8fbig7fPhwnD59GsuWLYt5Dk77JWLXrl1Ys2YNrr/+emRlZcU81rJly1BcXCzsryzLePfdd7VtderUMdXPzc1FgwYNDNeAIIgzFxoMEWcNI0eOxJgxYwAocR6ff/45Pv/8c1x88cW29f7973/j008/xb///W+88MIL+O6779CvXz+MGDECv/76K1588UXMnDkTH3zwAUaOHGmoO336dNxwww1o0aIF/vOf/+CVV17B8ePHccUVV2Dbtm0x+1xWVuboJctyXNdk1apVqF27tuE/9C1btqBNmzamsmzb1q1bbdv86KOPAAAtW7Y0tFm7dm3Uq1dP2OaWLVti9jWRfr344ouQZdl0f+yOBQCtW7c2bK9fvz5q1aoVs78//vgj9u7da7gGBEGcufgquwMEkSwaNGiAhg0bAgAuuugiNGrUyFG9GjVq4N1334XHo8wNDh8+jLFjx+KCCy7AkiVLtHLfffcdZs+ejaKiImRlZWH//v2YMmUKRo8ejX/9619auR49eqBp06Z44IEH8NZbb1ked8+ePWjcuLGjPq5atcp18PcLL7yA1atX48knn4TX69W2HzlyBDk5OabybNuRI0cs2/z2228xc+ZMDBw40DBwsWozPT0dgUDAts1E+xUOh7FgwQJccMEFuOyyy2Ieh7UVDAaFlq+cnBzb/paVlWHEiBHIyMjA3Xff7eh4BEFUbWgwRFR7/vSnP2kDIQC48MILAQB9+/Y1lGPb9+3bh1atWmH58uUoKyvDkCFDUFZWppVLSUlBly5dsGrVKtvj5ubm4quvvnLUx+bNmzsqx3j//fcxatQo/PnPf9asZXpELrVY+/bs2YOrr74aeXl5eOGFF+JqU5ZlhMNhwz6fz2cq56Zfy5Ytw88//4xHH33UtE9/XwDA6/Vq7cRzLFmWMWLECHzyySdYtGgR8vLyLNsgCOLMgQZDRLWHt0YEAgHb7WxZ+cGDBwEA7du3F7arH2CJCAQC+OMf/+ioj3rLTiyWL1+Oa6+9Fj169MBrr71m+o+9Zs2aQssHiysSWWf27t2LK6+8Ej6fDx9++KGpTM2aNbFp0yZTvZMnT6K0tFQrv2DBAlOcDnMBxtMvAJg3bx78fj+GDBli2uf3+w2f58+fj2HDhqFmzZooLi7GqVOnkJaWZjpe27ZtTW0xN9yrr76KBQsWoH///sL+EARx5kGDIYKIk1q1agEA3n77beTn57uuXx5usuXLl2PAgAHo0qULFi1apA3g9LRu3RqbN282bWfbWrVqZdi+d+9edO3aFbIsY/Xq1WjQoIGwzTfffBOFhYWGuCG+zX79+llaw9z2C1B0if7f//t/uOaaa4SBzvyx2PVmsUKbN29Ghw4dtP2FhYU4fPiw6VhsIDR//nzMmzcPf/vb34TnQBDEmQkNhoizimAwCAA4ffp0uR+rV69e8Pl82LVrF6677jrX9ZPtJluxYgUGDBiAyy+/HO+++652LXgGDhyIO+64A1988YU2ECgrK8Orr76KDh06IDc3Vyu7b98+dO3aFeFwGKtXr7Yc9PXv3x///Oc/sWDBAvz973/Xtr/00ktITU3VhBBr1qyJmjVrJtwvxssvv4xQKIQRI0YI22zXrp1we+/evZGSkoKXXnrJMBh66aWXIEkSBgwYoG2TZRm33HIL5s+fj2effdZk2SII4syHBkPEWQWb8T/55JMYOnQo/H4/mjdvjszMzKQfq1GjRnjwwQcxadIk/Pjjj+jduzfOOeccHDx4EF9++SXS09PxwAMPWNYPBAKW/1m7Ze3atRgwYADq1auHf/zjHyaXVYsWLbQl5zfffDP+/e9/4y9/+Qsefvhh1KlTB3PmzMGOHTvwwQcfaHUOHTqEK6+8EgcOHMC8efNw6NAhg7RAgwYNNCtRy5YtMWLECEyZMgVerxft27fHihUr8Nxzz2Hq1KmWLi49TvulZ968ecjLy0OvXr1cXa+cnBz885//xOTJk5GTk4OePXviq6++QkFBAUaOHIkWLVpoZe+8807MmzcPN998M1q3bo1169Zp+4LBIC666CJXxyYIogpSSfpGBFFuTJw4Uc7NzZU9Ho8MQF61apUsy7LcpUsXuUuXLlq53bt3ywDkRx991FB/1apVMgB54cKFhu3z58+XAchfffWVYfu7774rX3nllXJWVpYcDAbl/Px8+c9//rP8wQcflMv5iZgyZYoMwPLFrgGjsLBQHjJkiJyTkyOnpKTIl156qbxy5UpDGXYdrF5TpkwxlC8tLZWnTJkiN2zYUA4EAnKzZs3kf/3rX67Ow0m/GJ9++qkMQL7//vtdHUPPk08+KTdr1kwOBAJyw4YN5SlTpsilpaWGMvn5+ZbXID8/P+5jEwRRdZBkOU4BE4IgCIIgiLMAEl0kCIIgCKJaQ4MhgiAIgiCqNTQYIgiCIAiiWkODIYIgCIIgqjU0GCIIgiAIolpDgyGCIAiCIKo11Up0MRKJ4JdffkFmZqZtkkaCIAiCkGUZx48fR25ubsxcg4lQXFyM0tLShNsJBAJISUlJQo+qH9VqMPTLL79QlmmCIAjCFfv37xfm5EsGxcXFaJyfgcJD4YTbqlevHnbv3k0DojioVoMhlpJh//79WmoCgiAIonrRP3sIAGDJsZdtyxUVFSEvL69c0vkwSktLUXgojN0b8pGVGb/1qeh4BI3b7kVpaSkNhuKgWg2GmGssKyuLBkMEQRDVlFXyu67KV0RYRVamJ6HBEJEY1WowRBAEQRBVkbAcQTiB5FhhOZK8zlRDaDBEEARBEJVMBDIiiH80lEhdgpbWEwRBEARRzSHLEEEQBEFUMhFEkIijK7HaBA2GCIIgCKKSCcsywnL8rq5E6hLkJiMIgiAIoppDliGCIAiCqGQogLpyocEQQRAEQVQyEcgI02Co0iA3GUEQBEEQ1RqyDBEEQRBEJUNussqFBkMEQRAEUcnQarLKhQZDBEEQBFHJRNRXIvWJ+KGYIYIgCIIgqjVkGSIIgiCISiac4GqyROoSVcgyNHfuXLRp0wZZWVnIyspCx44d8f7772v7ZVlGQUEBcnNzkZqaiq5du2Lr1q2V2OPE+e+PbfDfH9tUdjcIgiCISiYsJ/4i4qfKDIYaNGiAhx9+GOvXr8f69etx1VVXoX///tqAZ+bMmZg1axaefvppfPXVV6hXrx569OiB48ePV3LPCYIgCII4k6kyg6F+/frhT3/6E5o1a4ZmzZph2rRpyMjIwLp16yDLMmbPno1Jkybh2muvRatWrbBgwQKcOnUKr7/+emV3nSAIgiASIpKEFxE/VTJmKBwOY+HChTh58iQ6duyI3bt3o7CwED179tTKBINBdOnSBZ999hluu+02YTslJSUoKSnRPhcVFZV73+1gLrEUKQQAiCBo2O6VzI9zSFZuUf/zNlVADwmCIIjKIAIJYUgJ1Sfip8pYhgBg8+bNyMjIQDAYxO23347FixejRYsWKCwsBADUrVvXUL5u3braPhEzZsxAdna29srLyyvX/hMEQRAEceZRpSxDzZs3x6ZNm3D06FEsWrQIQ4cOxZo1a7T9kmQc+cqybNqmZ+LEiRg3bpz2uaioqMIHREt+/KPukzL2PCUrFqFS2QsA8Koj+mLZb6pfHFG28dajPzXeUh7dJQiCICqBiKy8EqlPxE+VGgwFAgE0adIEANCuXTt89dVXePLJJ/H3v/8dAFBYWIj69etr5Q8dOmSyFukJBoMIBoPl22mCIAiCSJBwgm6yROoSVcxNxiPLMkpKStC4cWPUq1cPK1eu1PaVlpZizZo16NSpUyX2kCAIgiCIM50qYxn6xz/+gT59+iAvLw/Hjx/Hm2++idWrV2PZsmWQJAljx47F9OnT0bRpUzRt2hTTp09HWloabrzxxsruupDlu1sAAPxSdLwZlpW/I+oYNCCFAUTdZXoialmvZLR9sjb0+kT9zvs2Wd0mCIIgKgGyDFUuVWYwdPDgQQwePBgHDhxAdnY22rRpg2XLlqFHjx4AgAkTJuD06dO444478Pvvv6NDhw5YsWIFMjMzK7nnBEEQBJEYEVlCRE5gNVkCdYkqNBiaN2+e7X5JklBQUICCgoKK6VCS8CMc/VsKi8tIimWILaMHAHBlA1KZ4XOpXGVuHUEQBJEgZBmqXKp0zBBBEARBEER5Q4MhgiAIgqhkwvAk/HJDMvKBdu3aFZIkGV5//etfYx57zpw5aNy4MVJSUtC2bVt88sknrvpeHpCvpZzo1XgbAOCjPc1jF1ZjpPUK1MwNxtxjvIuNtU8QBEGc+cgJxgzJLuuyfKBMzmbBggXo378/Nm7ciJYtW2r5QF966SU0a9YMU6dORY8ePbBjxw5DrO4tt9yCBx98UPucmppqe9y33noLY8eOxZw5c3DZZZfh2WefRZ8+fbBt2zY0bNjQ1TkkE7IMEQRBEEQ1I1n5QNPS0lCvXj3tlZ2dbXvcWbNmYcSIERg5ciQuvPBCzJ49G3l5eZg7d255nm5MaDBUzlzVaIf28kKGFzL8CMOPMFKkEPcq072UbR7I8Kj19K/P9p6nvX78qT5+/Kl+7M4QBEEQVRIWQJ3IC1AyLehf+vyclscOh/Hmm286zgeq57XXXkOtWrXQsmVLjB8/HsePH7c8TmlpKTZs2GBoFwB69uxpareiITcZQRAEQVQyYdmj6cjFV19551NOTZkyxXIV9ubNm9GxY0cUFxcjIyNDywfKBiaifKB79+7VPt90002aKPKWLVswceJEfPPNNwaBZD2HDx9GOBx2nWe0IqDBEEEQBEGcJezfvx9ZWVnaZ7uUVInmA73lllu0v1u1aoWmTZuiXbt2+Prrr3HxxRdbHtdtntGKgAZDFUiXRt8DAL7a18iw3atGUIcRDaD26P4GosHVbOagT+q6K6Q87Oclt7sEQRBEBRGBpGUniK++8v8IWx3mhGTnA7344ovh9/uxc+dO4WCoVq1a8Hq9JitQrHYrAooZIgiCIIhKJlkxQ4mQaD7QrVu3IhQKGQZQegKBANq2bWtyo61cubLS84ySZagSSJdCAIBilpNMzV/mQTQPmV+1BHlVC1FILcsW2Ht1ZaGWXbn7QgBAj8bby6XfBEEQxNlBovlAd+3ahddeew1/+tOfUKtWLWzbtg333HMPLrroIlx22WXacbp164aBAwdi9OjRAIBx48Zh8ODBaNeuHTp27IjnnnsO+/btw+23314p14FBgyGCIAiCqGQSD6CWYxfSkWg+0EAggA8//BBPPvkkTpw4gby8PPTt2xdTpkyB1xtNPr5r1y4cPnxY+zxo0CAcOXIEDz74IA4cOIBWrVrhvffeQ35+ftznngwkWXZ5Bc9gioqKkJ2djWPHjjn2qZYH2/afCyBqGbJTDuUtQyzDvd63zMyj7ItEliGCIIjEqYj/M9gxFn3TDOmZ3tgVLDh5PIzr/vB9pf//dqZClqFKoEXezwCgaQOdVAc4xbrkq0yJ1GvhBtYHWGsuNanajGsJgiDOKiJxpNQw1qff/0SgAGqCIAiCIKo1ZBmqRELM+qOO6L06a0+xHDCU5VcKBHS5yljeMtbON/vy1O0R9V3Z/mOohlaHcpsRBEFUHSo6ZogwQoMhgiAIgqhkIvAkRWeIiA9ykxEEQRAEUa0hy1Al0jzvF8PnnT/lan9HdYWMrjS/pwwAEEDUTeZR3WDpqruM1UlRt7OcNU39v2t1Cn9WjlXvXGMfCIIgiIonLEsIy/ELJyZSl6DBEEEQBEFUOuEEV5OFyU2WEDQYqkI0bRC10rAg6FIoFiIWXO118MCnqxOEoKRqEgmW3PvVL92RXxoAAGrm/hRnr+MnUtjM8NlT7/sK7wNBEARB0GCIIAiCICqZiOxBJIHVZBFaTZYQNBgiCIIgiEqG3GSVCw2GqigsKDoFZYbtEUGQHNtWrH6RmL5QiRwxlNN/WTySUoctx/z1FyVFSO3cnxPuu1tOyyUAgNAvimuwRu7+Cu8DQRAEUX2hwRBBEARBVDIRJLYiLBK7CGEDDYaqKK3zlIBmltSVqUgzIepigW+ZLak/FVHeg1zgdEinYh2Ww4Z9LAfa/p/rq/uj+xo1OBDHGcSGBUz/xh2zRrkcjSAIouqSuOgiyQYmAg2GCIIgCKKSSTwdBw2GEoGuHkEQBEEQ1RqyDFVxaitSQZoLKeoXjv7FJ3xl7rLj6kxBFHSd5gmr+1j7xjJ+nYttx/5cQ7spaoD2eQL3WdEvDZW+qAHav0VKAQBHI8qJBASebaalxPrJXIMt8io+mJsgCKIyiEBCBInEDJECdSLQYIggCIIgKhlyk1UuNBiq4vBL3ZlitGHtgGrFKZZZLjLjDIFZdPQaFmE1yJotw2dWmWjZaPvMEuQBO47SDlPJFuHR2vUZjqO3OB2PKPuORlIBAGkexYpEchkEQRBERUKDIYIgCIKoZBIXXSTLUCLQYIggCIIgKpmILAnjO93UJ+KHBkNVnD0/KRo8TAfIq7qx0tQkrHpyz1WUm5n7irm8QrLX8BkAilX3lVd1X6VIRqXrkM7/zAKzmbuMNRNiwdd6/SJ1dhJR3XA1PIq6tEctIgq6Zny29zxD+wRBEARREdBgiCAIgiAqmUiCbjISXUwMGgxVcXj158Kf2TL3aJRxzdyfDGVYXjMn0u4h1UIU0gKdy0xl2Bf0eIQtrS9Tt7PPUTVrr5pL7aT6aGWr3087qfiVuy8EANTxhgAAh8IZAHSWIkStUx3yd8c8J4IgiDONxLPW02AoEejqEQRBEARRrSHL0BlGvXN/ARCNJQKAmlwZLbZHhcUM6WGxQl7VZmOnUVEcMcYXMZHEAMKm46WpYotpCKn9tY4R+mpfI6X/XnXpvmrR8koCYUb1HNbsaWbYzixZ6VLIVOcPDZUYKr2FCQA65f9o2aezBXbO1eFcCeJsIAzJEH8ZT30ifmgwRBAEQRCVDLnJKhcaDBEEQRBEJRNGYtadcOwihA1VYjA0Y8YMvPPOO/juu++QmpqKTp064ZFHHkHz5s21MsOGDcOCBQsM9Tp06IB169ZVdHerBCEHX5p0NbDZ62HK0VF3Gb9qgV9ar9/P9vm1ZfjMxaa0m+mJlk2TlEcqvf7emP1r33APgKi7jMWE+9WvtVcvRa0pWivH8qjuvWLZb+y3bnbEArMjSDGc039/bGPqS4rqZuvReDsAYPnuFob9vRpvszwPvr1+531r2sdWehRHlP4OavIVAGDhrram9tJVOQLmwixSFbpZXa9OxfvGJl8Y2onWTbHsL0EQBGGkStjV1qxZg1GjRmHdunVYuXIlysrK0LNnT5w8edJQrnfv3jhw4ID2eu+99yqpxwRBEASRPJibLJEXET9VwjK0bNkyw+f58+ejTp062LBhAzp37qxtDwaDqFevXkV3r0oSscnflaJaDpgoIh9QrRBW/zVmvGe5w/Tts23sq5YisSX1yuOT4Qm67b4BZiHa+ROTDfCofYr226NuC8uqhUj7rLyH1EfZI1jEXyobH3NRQDlr751dF6lblHPyq9Y1vQWHWWhqeE8p/WR519RryixSAJAisfaVPzwepSyzGKUIDHzsvFkuOGbtSREEib+3uxUAICAZz5FdQ31fAuq5dGn0vfmgBEFUKpSotXKpklfv2LFjAICcnBzD9tWrV6NOnTpo1qwZbrnlFhw6dMi2nZKSEhQVFRleBEEQBEEQeqrcYEiWZYwbNw6XX345WrVqpW3v06cPXnvtNXz00Ud4/PHH8dVXX+Gqq65CSUmJZVszZsxAdna29srLs86yThAEQRCVhQwJkQReMi2tTwhJlmUbh0vFM2rUKPzvf//D2rVr0aBBA8tyBw4cQH5+Pt58801ce+21wjIlJSWGwVJRURHy8vJw7NgxZGVlJb3vVYX9P6v5zNQvB1OrDhlcX8p7mLv7AdUFph8leyXjlyxDCgAAgpLiLoroXFO+ej8k3O+jEbMbi+VKY+4f9pm59zyS+TFmZViQ9clI0PBZ5GPnA8uZjpG+LNM8Yu4r5koLqGXTpFJzX2A+J8Bo2tZcaTDqLbFz5F2a+m2864+dh8i1xo7JgsUJghBTVFSE7Ozscv0/gx3j3s/6Ipjhj13BgpITITza6X9n/f9v5UWViBlijBkzBkuXLsXHH39sOxACgPr16yM/Px87d+60LBMMBhEMJhbPQhAEQRDE2U2VcJPJsozRo0fjnXfewUcffYTGjRvHrHPkyBHs378f9evXj1m2upEieZAiKSHH+hvsl6IvVibdo7wyPV5kerxIk9jLp7388MAPD4LwKi/Jj6Dkh6fe9/DU+x6+ej9or0QIy8orXQojXQojgIj2SpHC6qsMKVIZMj2lyPSUooanBDU8Jdr2AMLaywvZ8GKEZJ+Wiy0WrGyp7NVeEXgQgQfFckB9+dWX8jkEr/byShF4pQhSpJDBSsP6FJDC2suvvmJeJ1WpNgxJC7r0QDa8GNG++U0Bmit3X2gIsCYIovKIyFLCLzfMnTsXbdq0QVZWFrKystCxY0e8//772n5ZllFQUIDc3Fykpqaia9eu2Lp1q7b/t99+w5gxY9C8eXOkpaWhYcOGuPPOO7WYXysKCgogSZLhVRUWRlWJwdCoUaPw6quv4vXXX0dmZiYKCwtRWFiI06dPAwBOnDiB8ePH4/PPP8eePXuwevVq9OvXD7Vq1cLAgQMrufcEQRAEkRhhNWt9Ii83NGjQAA8//DDWr1+P9evX46qrrkL//v21Ac/MmTMxa9YsPP300/jqq69Qr1499OjRA8ePHwcA/PLLL/jll1/w2GOPYfPmzXjppZewbNkyjBgxIuaxW7ZsaZDJ2bx5s/sLlmSqhJts7ty5AICuXbsats+fPx/Dhg2D1+vF5s2b8fLLL+Po0aOoX78+rrzySrz11lvIzMyshB4TBEEQxJlLv379DJ+nTZuGuXPnYt26dWjRogVmz56NSZMmaTG5CxYsQN26dfH666/jtttuQ6tWrbBo0SKt/vnnn49p06bhb3/7G8rKyuDzWQ8vfD5flbAG6akSg6FYMdypqalYvnx5BfXmzMfDAnElY8BtsRwxlWGkSEoALguK9kAf2MuSuar6N/XKR6emUQMlqesvPzO9oShhTjOJDyqGzSPES9yHZRZYLg5qBowqzzy8lhHTBWLB1vpgZi3AW6B/ZN6uXnP1HFk7YS6g2thPcVJer+B4fIB2wIFLjiCIiiEeVxdfH4BJQsZJ7Gw4HMbChQtx8uRJdOzYEbt370ZhYSF69uxpaKdLly747LPPcNtttwnbYcHbdgMhANi5cydyc3MRDAbRoUMHTJ8+Heedd55tnfKmSrjJCIIgCKI6w2IRE3kBQF5enkFSZsaMGZbH3Lx5MzIyMhAMBnH77bdj8eLFaNGiBQoLCwEAdevWNZSvW7euto/nyJEjeOihhywHSowOHTrg5ZdfxvLly/H888+jsLAQnTp1wpEjR9xcrqRTJSxDRHKpmfsTAOD0ASUQnVl20nSTDie5wxhsxFxRD0vuub8AAL7e11DbFg2AVs7lFLeUXLS0/qSsSAAwa0n03ae2FL0gQTW4mbcIhROYqQFAscyUsbl2tb+i5xHRpBCMCtxaPwVSAPzye/NCev0xlfqlnORAPGj55BBVECcIIn7CspTQ7w2ru3//fsPSejurUPPmzbFp0yYcPXoUixYtwtChQ7FmzRptv8TJqsiybNoGKNaovn37okWLFpgyZYptP/v06aP93bp1a3Ts2BHnn38+FixYgHHjxtmfZDlCgyGCIAiCOEtgq8OcEAgE0KRJEwBAu3bt8NVXX+HJJ5/E3//+dwBAYWGhYcX2oUOHTNai48ePo3fv3sjIyMDixYvh97ubZKWnp6N169a2MjkVAbnJCIIgCKKSqeil9SJkWUZJSQkaN26MevXqYeXKldq+0tJSrFmzBp06ddK2FRUVoWfPnggEAli6dClSUlJcH7OkpATbt2+vdJkcsgydxaTW313ZXUiIixvus9z37I4uhs9pHnNaFuZDPxpOAwCcCCtf1KAnpNYxK0Uz9WjmohIFWbN2QxHVnaUmX/XKLKg7GrzM3FjMLcYnYdW76vilsSzBLFO2FhFNVGt0sfH7Rf1nStos2WsNzylT2U75PwqPS64xgkgucoKZ52WXdf/xj3+gT58+yMvLw/Hjx/Hmm29i9erVWLZsGSRJwtixYzF9+nQ0bdoUTZs2xfTp05GWloYbb7wRgGIR6tmzJ06dOoVXX33VkP+zdu3a8HqV35du3bph4MCBGD16NABg/Pjx6NevHxo2bIhDhw5h6tSpKCoqwtChQ+M+92RAgyGCIAiCqGYcPHgQgwcPxoEDB5CdnY02bdpg2bJl6NGjBwBgwoQJOH36NO644w78/vvv6NChA1asWKHJ2WzYsAFffPEFAGiuNsbu3bvRqFEjAMCuXbtw+PBhbd9PP/2EG264AYcPH0bt2rVx6aWXYt26dcjPz6+As7amyuUmK08qIs8MUbk8tr2X9ncNr2LpYJahwtIaAACfuqQ8x3dSK8ssS9lqHbbsnFlPIjqLC7O2MKsPU41OYVYlXRA2W27P14lanqxnc3wdN7C6EUH7fJAm63+Wp1jblqn+zQLAj0aUa/inxltc94UgzlQqMjfZiDXXI5BAbrLSEyHM6/If+v8tTsgyRBAEQRCVTERGgjpDSexMNYQCqAmCIAiCqNaQZYg4qxh/YVSpfPJmJW9dmldxgWV4FdfPoVLF562fhdUPKK4iqwSueqVoj8T0f4x6QAy9G4opeWuB1CzIUYLxs4543GKWbYhmi5LH0E8+oBoATkYUjSbmLhQFVxMEkTwiCQZQJ1KXoMEQQRAEQVQ6EUiG1aXx1D9bufjii12VlyQJS5cuxbnnnuu4Dg2GiLOWh1ovNnye8M1fAABZPsVCVBKJPv68SjX/w8IUqpV9zLKivquWFo8wWFm1DMkWOcR0wdbM+hTSVKsTtxDpifZbOTe/TW4ypk7NB2Cv2dMMQFTdG4gdVL1gZ1SXZGjTz1z0mCCqD8lSoD4b2bRpE+655x5kZGTELCvLMh5++GGUlJjlVuygwRBBEARBEFWae++9F3Xq1HFU9vHHH3fdPg2GCIIgCKKSoZgha3bv3o3atWs7Lr9t2zbk5ua6OgYNhohqw8/FNQAAjVKV7MhBT1TZOay6xUKyWXEaACKSdaAzM097VZeSX6cYzdxgTkzY7NhMeyiFC6S20yZi+0q5AHBDMDbzyKnnwo7H3GUhkdq2Rb9Fgd8M5hZLUV2LQ5t+ZVmWIAiFCBJLqXE2xwzl5+ejqKgopn7SRx99hKuuugp5eXmuj3H2DiUJgiAIgjgruPrqq1FcXGy5f9WqVbjmmmvibp8sQ0S14bUOzwMAJn17LQBjADEzMYe54GjNaqKzGLG8YlZL4EVB0R510sYHJDuxGPFL9+328X2ys+Aw+OBxpR3lHEJcWdbfa8/fqG1buKutoczQphsAAG/90D7msQmCUJATXE0mn8WWIQD47bff8Je//AXvvvuulveMsWbNGvTr1w8jR46Mu32yDBEEQRBEJVMVstZXZVasWIFt27aZErp+/PHHuPrqqzF8+HDMnj077vZpMEQQBEEQRJUmNzcXK1aswEcffYQ777wTALB27Vr07dsXgwcPxlNPPZVQ++QmI6od09q8AwAY/80gbVuKR3EI8UHKbLZVqvuqBFiANOdaY3h0mkIBi8mayD3GtxNVhlaObVKxFtThESVqZdgFd7Nt0eugaikJXIPFEUWTaHDTdYbtg5pQ4DRBOIVWk8Xm/PPPx7Jly9C1a1cUFRVh8eLFuPHGGzFnzpyE26bBEEEQBEFUMom6us52N1lRUREAoFGjRnjttdcwcOBADBgwADNnztT2AYi54swKGgwR1Q5mEcrynta2sbxlDN5CFBbk+GJlmMXmVCRoKsOW5LPl9mEun5k+2Fp0DEBn3RHs5y0/LL+YKOg6phXJUbC18pNhVJVeZ1U8qbyy81IAZgsUQRBnPzVq1IAkRQd8sizjP//5DxYuXKh9liQJ4bC1sr4dNBgiCIIgiEqGcpPZs2rVqnJtnwZDBEEQBFHJkJvMni5dupRr+zQYIqoNLFFrTf9JAECap9RURkuSqrq+mM6Q/oeG6fGUqMlMWdkSNZBY7y5j7jF2LPY5oOkXRY/N2mHuKr53XnXmp3et8bC6osDpUk5dm7WjV8zmYa41TR1b4Ep74fsrAAAjm31i2U4ysAsGJwjGnB1XAgDuaK5YEp78rru2j30/7r5whaHOE9t7mtoJQ0LxCevvRrKhwZA1TtSn9Rw/fhyZmZmujuFoMHTxxRe7alSSJCxduhTnnnuuq3oEQRAEQRB6zjnnHBw4cMBxotZzzz0XmzZtwnnnnef4GI4GQ5s2bcI999yDjIyMmGVlWcbDDz+MkpISx50giIqgTkBZccCsPfogY2YB4S1CIUFAclStWs1nFjFaiMI6371ffS+W/RBhDKDmcobB2E9mGQlDv3TfGCzIrDzMwqW3BoW4vGURRAx19BYiviy7Hh5B4DeDBVWz87i52VpTmWRQUZYoourx7A6zq4SXnIiozzyzEEV03z323Xxsey+lrroqIc0j/v/K5yHLUFVAlmW88MILjsYgABAK8dr5sXHsJrv33nsdj8oef/xx1x0hCIIgiOoKDYasadiwIZ5//nnH5evVqwe/XzwBtcLRYGj37t2oXbu240a3bduG3NxcVx0hCIIgCILg2bNnT7kfw9FgKD8/31WjeXl5cXWGIMoDlpi1fkAxnXoELh4PjO6mqGvKPNvS3Epsg1qEV2vWw2ZtEVUng7m8QhFzWWb2Z8rOvDq2vn0WZM32nVSDt3k3lx2sbESgTcTrFYXBAqljz0KZ22xo088c98UJLFEuucuqH7xOlx3M3axXTQ9rbm/lGQqq3y0rN5lUgW4yGYktj7deVkE4Ia7VZEePHsWXX36JQ4cOIRIxPpRDhgxJSscIgiAIorpAbrLKxfVg6L///S9uuukmnDx5EpmZmQZFSEmSaDBEVBnu+PpvAIA6AaPVJyBYSl7qwpLCwywrWkC1LmiZbUuRQobjsGBPvy4AWpsVasvjlc/MQsQsUsKga60NdeYsyGPG4PexPsRSqNa3r4edW1idm7LPbEb+4veXa2WdBlW//kMH7W9ths+pgpNFqPpRwn0XAHMeQQavIq9sU55R9myy3wLRc+1xYH0izh5cC3fcc889uPnmm3H8+HEcPXoUv//+u/b67bffyqOPBEEQBHFWwyxDibyI+HE9Hf75559x5513Ii0trTz6QxAEQRDVDnKTVS6uB0O9evXC+vXrXYkZEURF8eCWa7S//VK6YV806arH8BmIumJ4DaFoW+bkf6xsMQtAFrikTGoXqoeLuZJE/eMTwDJ3WURzB5j7ZaUQLQrIjHBK1Jquke4cQ1wZzUUlOMdiNZQ8qkHEjqOUZQHgQNT9xQdgp3MBrF79T5Mk7tPT310FABh9wUemPhFnJ0w5Wq8Y7REsLNCjD6DW/w1En2cWlK//vnjgMSjEE1WHTz75BM8++yx27dqFt99+G+eeey5eeeUVNG7cGJdffnnsBgQ4GgwtXbpU+7tv37649957sW3bNrRu3dq0lv+aa67hqxMEQRAEYQNZhpyxaNEiDB48GDfddBM2btyoCTwfP34c06dPx3vvvRdXu44GQwMGDDBte/DBB03bJElCOGyeQRNEecMsQiWR6CMdVJfFstkfC75kBiGRqjSz8oQixq+GVzC71Oqo7Xo59WoRWh3YCIJJage5WSk7D0NfXAR58kHi7MeT9UVvweEtQHzQtb4P4CxtzIIlUvpmith8GXdSAF7D8Yjqh8Fyy6w73PeSfRYtw+flNYQW1ASzyLtFliXICQxoEql7JjF16lQ888wzGDJkCN58801te6dOnYTjEqc4+gXil88TBEEQBJE8Eh18VeTArTLZsWMHOnfubNqelZWFo0ePxt2u66nVyy+/LMw7VlpaipdffjmuTsyYMQPt27dHZmYm6tSpgwEDBmDHjh2GMrIso6CgALm5uUhNTUXXrl2xdevWuI5HEARBEMSZR/369fHDDz+Ytq9duzahWGbXAdTDhw9H7969TXnKjh8/juHDh8elM7RmzRqMGjUK7du3R1lZGSZNmoSePXti27ZtSE9XgmBnzpyJWbNm4aWXXkKzZs0wdepU9OjRAzt27EBmZqbrYxJnBxO++QsAICQrqxvLItEgW2YmZyZx5l4Jhc3KtBEuSWooYnTF6E3trD3mZuJN7noXk5XLzM5dxhK08jM91pcUXVh2iRa87DzSUztHPpA6bP45iCZ+FQdd62HXwSurLjUptluPdzGKyjGXGit7PJICABh/4XJTH4izm5nb+gAAPAIjiPYdlbjPOkTq84B4YYDd9vKAYoaccdttt+Guu+7Ciy++CEmS8Msvv+Dzzz/H+PHjcf/998fdruvBkCzLBqFFxk8//YTs7Oy4OrFs2TLD5/nz56NOnTrYsGEDOnfuDFmWMXv2bEyaNAnXXqukVliwYAHq1q2L119/HbfddltcxyUIgiCIqgDFDDljwoQJOHbsGK688koUFxejc+fOCAaDGD9+PEaPHh13u44HQxdddBEkSYIkSejWrRt8vmjVcDiM3bt3o3fv3nF3RM+xY8cAADk5OQCURLGFhYXo2TO6nDIYDKJLly747LPPLAdDJSUlBpdeUVFRUvpHVD6DvxgJAPBIWQCis6JUb9RqwgKo2b7j4RRDG6KZI7O+lHGWD72Vxs/lMWPtewW/RdqyddNxlMJhgYXFaomwFmyMaB1++T2PaGbL2jcdR2edYUq97HqILEF8e/yyZSYfoA/M9kAQgI2o1YcdT68Szs7hlJp37VQ4aNkX4uxkxrY/AYD25HsFllDeimtlBRLViXf/mczcuXMxd+5cLQlqy5Ytcf/996NPH8X6JssyHnjgATz33HP4/fff0aFDB/z73/9Gy5YttTZKSkowfvx4vPHGGzh9+jS6deuGOXPmoEGDBrbHnjNnDh599FEcOHAALVu2xOzZs3HFFVfE7HM4HMbatWtxzz33YNKkSdi2bRsikQhatGiBjIyM+C8GXAyG2IqyTZs2oVevXoYDBwIBNGrUCNddd11CnQGUGzBu3DhcfvnlaNWqFQCgsLAQAFC3bl1D2bp162Lv3r2Wbc2YMQMPPPBAwn0iCIIgiPKkot1kDRo0wMMPP4wmTZoAULwt/fv3x8aNG9GyZUtHoSljx47Ff//7X7z55puoWbMm7rnnHlx99dXYsGEDvF7xBOqtt97C2LFjMWfOHFx22WV49tln0adPH2zbtg0NGza07bPX60WvXr2wfft25OTkoF27dq7O2Q7Hg6EpU6YgHA4jPz8fvXr1Qv369ZPWCT2jR4/Gt99+i7VrzTmMePeclcuOMXHiRIwbN077XFRUhLy8vOR1liAIgiCSQEW7yfr162f4PG3aNMydOxfr1q1DixYtYoamHDt2DPPmzcMrr7yC7t27AwBeffVV5OXl4YMPPkCvXr2Ex501axZGjBiBkSMV6/7s2bOxfPlyzJ07FzNmzIjZ79atW+PHH39E48aNXZ1vLFzFDHm9Xtx+++3Yvn17UjvBGDNmDJYuXYqPP/7YYGarV68eAMVCpB+EHTp0yGQt0hMMBhEMkkn9bKQopLi8fB414aLHnHyVd9uYZk6StQk8rLm+WGJHXXJUQVC14Tg6lxVTe+b7IqynBXGLNX5YGzYKRRqlmiq2+QdSCyxnytYCVxqv2cIrc+vr8NpDfF1jokyjFlM0mNvH1dUpATtwdxBnHnN2XAkAuKP5KgBG9Xhes8vv4PvDsHterL6zomSv1em5C4fDWLhwIU6ePImOHTs6Ck3ZsGEDQqGQoUxubi5atWqFzz77TDgYKi0txYYNG3DfffcZtvfs2ROfffaZo75OmzYN48ePx0MPPYS2bdtqi6wYWVlZbk5dw3UAdXmMymRZxpgxY7B48WKsXr3a1Hbjxo1Rr149rFy5EhdddBEA5aKuWbMGjzzySNL6QRAEQRCVgZygm4xZhvjYWDujwObNm9GxY0cUFxcjIyMDixcvRosWLbSBiV1oSmFhIQKBAM455xxTGRbawnP48GGEw2Fhu1Z1eFhs8jXXXGPwDDFPUbzCz64HQ+UxKhs1ahRef/11LFmyBJmZmdpFyc7ORmpqKiRJwtixYzF9+nQ0bdoUTZs2xfTp05GWloYbb7zR9fGIM59jJYplKDtYDADwSeYgXm0JPFj+IevASvYjFNECfI1l9AHVfA6uRGaQhkBQfnm5pqArc9utj2e3FJhXedba5Sw5AFDCtcMsQqyOVycZwMsHsM92CsDRwGxV8Vu9vkGBindUcVrpQ6a32OoUiTMAtjw+jFQA0eDoFE/0uY5lSdUrUIuCqZXt5jb4wH3++6K3YoZloEyuOOuQDCCRw7GqfCjIlClTUFBQIKzTvHlzbNq0CUePHsWiRYswdOhQrFmzRtvvNjTFaZl42mWsWrXKUTm3uB4MlceobO7cuQCArl27GrbPnz8fw4YNA6Aspzt9+jTuuOMOLbJ9xYoVpDFEEARBECr79+83GCXsQkUCgYAWQN2uXTt89dVXePLJJ/H3v/8dgH1oSr169VBaWorff//dYB06dOgQOnXqJDxerVq14PV6TVagWCEverp06eKonFtcD4bKY1QmOxgOS5KEgoICyxEuUb0o42Z07HNJxPxIsyX2flZFTm56GS1Wxkb4UIufYTE46szWrk40XoK9G6UCAOCkHDS0z+DjdgAunxNEFiezCKVVWat6xjrW15l3B7A2mBVI1G+2pF6/VJ84cyjY0h8A4OGi3kT3k5dysMv3xxO18rJ4veiza/dM8vuLZT9CFWgZikCClIR0HFlZWXHHzciyjJKSEkehKW3btoXf78fKlStx/fXXAwAOHDiALVu2YObMmcL2A4EA2rZti5UrV2LgwIHa9pUrV6J///6O+vjxxx/b7hel6nCC68FQeY3KCIIgCKK6UtGryf7xj3+gT58+yMvLw/Hjx/Hmm29i9erVWLZsmaPQlOzsbIwYMQL33HMPatasiZycHIwfPx6tW7fWVpcBQLdu3TBw4EBNEHHcuHEYPHgw2rVrh44dO+K5557Dvn37cPvttzvqN+9BAoxutwqLGQKAo0ePYt68edi+fTskSUKLFi1w8803x61ATRAEQRDVmYgsQapAnaGDBw9i8ODBOHDgALKzs9GmTRssW7YMPXr0AOAsNOWJJ56Az+fD9ddfr4kuvvTSSwaNoV27duHw4cPa50GDBuHIkSN48MEHceDAAbRq1Qrvvfce8vPzHfX7999/N3wOhULYuHEjJk+ejGnTprm6Bnok2YmPSsf69evRq1cvpKam4pJLLoEsy1i/fj1Onz6NFStW4OKLL467M+VNUVERsrOzcezYsbjNiETVoPOH9wIAzgmeBgCk+UoBAAFPdFaQ7lPUx6MBvSz4N/YjbxdszatT+9T2RSZ4v9ofK3eYIW8X527iXVPsPPTuLt6dwOqIXFe8UnRUZdr6R5RfUi88Bwt3m9/mukT774vZfomqTs1Uqlm7zCU6rc07lnWJqgMLlGbPVJBzj4lco1buWY9ALZ1/7piKealsnvN7tUUQxmdTX/ZUJIDiE2WYfMlH5fp/Bvt/qdV/7oU3LX4pmPCpEmy5/tFq+//bxx9/jLvvvhsbNmyIq75ry9Ddd9+Na665Bs8//7yWkqOsrAwjR47E2LFjY/rzCIIgCIIwIssJriarPrJIQmrXro0dO3bEXd/1YGj9+vWGgRAA+Hw+TJgwIanS2ET1o+/HdwKIBgIeL43OksIRdTbpVWZ7qT6jyGJUHDA609My2KsTTqucYno0SxBbqs8yyLswQft11imPthTdfkmvcgxxrjA28+WXmANAiAsYj9gIM5ryoUn89bAOtrbsI2Cy+/BijvrgV95iZWcRsoJZhOzypRFVg2lbr9b+ZpnmoxZD6+dae84s5CX0+CX+t0B9zgV5xfjgaqv9rA9WeQLLA0rU6oxvv/3W8FmWZRw4cAAPP/ww/vCHP8TdruvBUFZWFvbt24cLLrjAsH3//v20zJ0gCIIgiHLjj3/8IyRJMq1Cv/TSS/Hiiy/G3a7rwdCgQYMwYsQIPPbYY+jUqRMkScLatWtx77334oYbboi7IwRBEARRXSHLkDN2795t+OzxeFC7dm2kpKQk1K7rwdBjjz0GSZIwZMgQlJWp+i1+P/7v//4PDz/8cEKdIao3B04oQX8s31hZJGqiTvUrwZYSlytMK8uCg3Vm7dNhxVnkUd0qTG/ITt1Wy4GkubrM5nQ+b5kWUM0UqfUzFtaehbndTjFa0ySycbFFNNeXR/iZd88Z2zWrdmvtxtFfvgwLjw17oj/SXovABt5dJsp9xrsqmVr43Zv+qm174o9vxuwfUf48sV3JVxX0mP+D5vPSiVylVt9RK1V2pR1jHj0RUeVzcU68ynS9VvRqsjOVNWvWYNCgQSYxydLSUrz55psYMmRIXO26dogGAgE8+eST+P3337Fp0yZs3LgRv/32G5544glKikoQBEEQRLkxfPhwHDt2zLT9+PHjGD58eNztxqUzBABpaWlo3bp13AcmCMaFix8AAIQjymDa51VmjunBUq0MbxHil6qzWVGpLqC4WN3mY2rMajIxrQ3R7FO1HoUjSll+Wb7+WPxMLKwKf5VJ0dml3bJ7vl1mxeGtOhGb2WooYtzHl9UHc5vrGpeqJwteXVsf5O1UO1o/Q7cKiGUWOrIGVR4s0/z9rZYCiOYdYxZVUfA8s9yI1MZ5WB3NesQFVivbjPIM0cBs839vrIx2bLYsnwv6rwxoNZkzrPKY/fTTTwlpHboeDJ08eRIPP/wwPvzwQxw6dAiRiPFH/scff4y7MwRBEARRHVEGQ4nEDCWxM1WQiy66CJIkQZIkdOvWzbCiPRwOY/fu3Vru1HhwPRgaOXIk1qxZg8GDB6N+/fqOM80SBEEQBEHEw4ABAwAAmzZtQq9evZCRkaHtCwQCaNSoEa677rq423c9GHr//ffxv//9D5dddlncByWqL03+M1X7+4fr/wnA7G5isyO7YF3mimFB1szdVBqOule0oGrVFM7qZKjK1CKTONOwYYHUXo9aVzfrstTGEczMvDAGaPKK1mmeqCuQd3Gxz6yOKEAyGjRq0SeBd453NzGXgZ2CNoO/loD1fbJzvokCu4Go20/fx6g2DLufyU20S7gnmnRVgbnHeFeYURPLb9jGJy8Wwfb5PWXWZWJoVYkU25nrli1O8AjasNM2Kg9oNZk9U6ZMAQA0atQIgwYNSnj1GI/rwdA555yDnJycpHaCIAiCIKozMoTzKVf1qwNDhw4tl3ZdD4Yeeugh3H///ViwYAHS0tLKo0/EWUjjV2cAALyB6DYWOC2pszLe510W9uj+VgMyVUuFftk9EM1JVqabZRaXMauM0ZrBrBsp3mg4L9vHvhDanojRsuMEvcWJn89G8yepS3klc3B0hLPceGTrY/Nl+WX/IcEvJKsT5maS+pxtLPCbKX9rgbA218HJsmRmfeKtYLzFjM//pu8vv1r7jq//pv095+JXY/aBSBztO6TmF2N5xjQleLWc/png1dJ59NbCWBIOeqsNbxmyk2ngYf0TKbZDithaN5MNWYacEQ6H8cQTT+A///kP9u3bh9LSUsP+3377La52XQ+GHn/8cezatQt169ZFo0aN4PcbH6Ovv/46ro4QBEEQBEHY8cADD+CFF17AuHHjMHnyZEyaNAl79uzBu+++i/vvvz/udl0PhlgQE0EQBEEQSYL8ZI547bXX8Pzzz6Nv37544IEHcMMNN+D8889HmzZtsG7dOtx5551xtet6MMSCmGLxxhtv4JprrkF6errrThFnDyxgWvKqwa+e6Dc2NchM62rAtOoW07vHGEz3h9fV4dG7zzQlZLUuc/mwMine6OOf4VeDqjUTu1FF2RtHQlGlD5wrijfph4O6fUb9I+Y6ClsklQRiq87GX1epx9xlEc39Frsd23YlccC3ltDWRXA0c91FdCtab98wGADwTNtXHLdDOGPSt9dqf2f7lG8GrybNo3eN8W5qhiiY3irAXmtXd7xYAdQiNXMG64uTQO1yJ0E3GaqJm6ywsFDTOMzIyNAEGK+++mpMnjw57nbLTWHqtttuw8GDB8ureYIgCIIgqhkNGjTAgQMHAABNmjTBihUrAABfffVVQlkw4lagjgWfUZaoXrR4twAAkJaqzPCYgnTQFw1JPCf1FACgRA10Li7zq+/GwGelvvLOZk7svYyz9uhnVprFKcKW+aplZWMdfdkMvxKM51MDsj3sOIJz5IN+7YKso7NTpjJt/up5OXVtPpeaG3XciM3Xz0kwuBaszGbdLI+Zi+81H9yt7xcf6M22l6kWKd6ipkcLehUoZ5NFKHkwSxB7Dpk1CIhee5Ois81yec1Sq95bthjCTTYwflk+YP39cLPoQWSJisieClWkJgVqZwwcOBAffvghOnTogLvuugs33HAD5s2bh3379uHuu++Ou91yGwwRBEEQBOEMWk3mDH1C+D//+c/Iy8vDp59+iiZNmuCaa66Ju10aDBEEQRAEUeUJhUK49dZbMXnyZJx33nkAgA4dOqBDhw4Jt02DIcI1zd95EABQVqo8Prv++g9tH9MOCgYUE3hWSjEAnevHF3U4sQSqHr9ifvd6lM8pPnM6z0gslVlmgtcpULOZkimhKnOpCaKBmesrwx8xHFdklucDQcEpXuvbiyZ3tQloVssy90EJp3HE+mBn/mfHY8HYwuBSS9O/ud0QS7ipKq6wz/pAZ14F20rHSISTMmURpsRt7F9EMp8H0xwivaH4YclXmVtM9AxpSs7cO0OkVK7tk9z7c+yeZytXlshlx/eHD6A29jPiytWWMLKUWBB0NbAM+f1+LF68OKFAaSsqL0UvQRAEQRAAojFDibyqAwMHDsS7776b9HbLzTKUn59vEmQkzhwaLXhE+zu9xmkAQMNzflfec5Qx9Gk14LnbqnHRejXFCtFsNhjQ5bqKaEG66j6vus8bW/eV1WW5yLS2dLPOMBdkrS0PVy1QXt1MilmRTqnnxNpJ8SqWLL2yNW8BYmVZ0LV+9smX4ftve46sHU3V12xd8nDL8bV2bZq3Wooc1rUbVfhVlbJZmKu62SuY3dspWluVSQTWlt4qURZDeoGIDVtezgcr620kVkvU7WBBylHJCzVYXrXw6YOY+eB4do/D3HfBDq2szTOnWVLZsbll+CG7lQhEpdCkSRM89NBD+Oyzz9C2bVuTfE+F6Qzt378fkiShQYMGAIAvv/wSr7/+Olq0aIFbb71VK7dly5a4OkQQBEEQ1Q4SXXTECy+8gBo1amDDhg3YsGGDYZ8kSRU3GLrxxhtx6623YvDgwSgsLESPHj3QsmVLvPrqqygsLExIDpsgCIIgqiO0mswZu3fvLpd2XQ+GtmzZgksuuQQA8J///AetWrXCp59+ihUrVuD222+nwdAZQvv3laDn1IAavKyaidkXqlGDaNl0VXuHubGK1ccmVQ2w9Hmi5m3N5eUxmrmZOVrvLuKDi3lTuyjQMhqkq9bxqS6qiOrO0QVQR1WTWf/MAc4Miesfc62VSl7Ddj1lnLssElaTverOvczmmFbnFuIChkXaKgwt8Sv32Q6vRV/07rMw76KTje2LXA/8NeK1hESYlKi16x/b3RUNSo+2EapAXZizgYIt/bW/o8+o8v32akro1jpXvD6PXYJVto//PvLuMz18IHasBK56NJ0xQWhsNGGw/cKG0op2k1UT604yKC0txe7du3H++efD50s84sf1L0coFNJUHj/44ANtXf8FF1ygqUISBEEQBEEkm1OnTmHEiBFIS0tDy5YtsW/fPgBKrJBeg8gtrodTLVu2xDPPPIO+ffti5cqVeOihhwAAv/zyC2rWrBl3R4jyp+/HUV9qvQzjFIRZd9hyd1EQMNvGgoqZVUY/M+etPTy21h4LK4GoXf6d5TzTtxEEU3BWgy8jnCVK0D67DuxcmYXIbjmwqT3dZFmzEllYsEUWo1izVf290b7AXD4zJzDrj5WlSF9G+2wjDeCVLXKrCZ4Fq+dDbHFyv7x56JcjAAALLpnnuu7ZyGPbewEwL1EPevSWVKN0A/9ceAWK37HU0e2UqO3KaH2ysAg5sUwK29Msy2KLL99uSK64pfXkJnPGxIkT8c0332D16tXo3bu3tr179+6YMmUK7rvvvrjadW0ZeuSRR/Dss8+ia9euuOGGG/CHP/wBALB06VLNfUYQBEEQhAvkJLyqAe+++y6efvppXH755ZB0SZpbtGiBXbt2xd2ua8tQ165dcfjwYRQVFeGcc87Rtt96661IS0uLuyMEQRAEQRB2/Prrr6hTp45p+8mTJw2DI7fEFXUkyzI2bNiAXbt24cYbb0RmZiYCgQANhqo4x0PRjL4iRWgAyAiUKPt15uMTZUo9Xq/HjetIc0PpXB58mQj3IItM4VZusjKBqd3P6RWxIGlmTvbrAp0DFtpGdu3zLi7NxaY7j1JVRZqdt5YAVqDQ6yTI2qp/UbeeMfhapJzNu+ysdIfsjifcxwVd82rYdiSi9Kt/DvnEr4Q9ej2fiJ1qOYz3yGNRhg+G1gdYx3J16b+P5sUUqgK6nYK7xbOpV0svA6d9Z+MGi8AjTDZcfkiwFQhzVP/sp3379vjf//6HMWPGAIA2AHr++efRsWPHuNt1PRjau3cvevfujX379qGkpAQ9evRAZmYmZs6cieLiYjzzzDNxd4YgCIIgqiWkM+SIGTNmoHfv3ti2bRvKysrw5JNPYuvWrfj888+xZs2auNt1PRi666670K5dO3zzzTeGgOmBAwdi5MiRcXeEKH/0Myc2S5PC4qXweksIswgVh32Gz3zQMWC0/Igo0820nFiY+D5o1ikuwNku0JkpTkciTIFaOVe9Ncgql1JU9Tm6nT8Wu3aaFSmit8aoS8XZeauXx+cxW6KsVHWdWIy0IGX1TRh8rd1T51YYZ0Gp9rnODNYvq/Zs8q7x7fMB2l5dHoJ4rGtnG3N2XKn9fUfzVcIytrnrVOyC563uSYS3COnLcVYju2eLX7LPoymiw5maeyyEfZEV2xBRtejUqRM+/fRTPPbYYzj//POxYsUKXHzxxfj888/RunXruNt1PRhau3YtPv30UwQCAcP2/Px8/Pzzz3F3hCAIgiCqLWQZckzr1q2xYMGCpLbpejAUiUQQDptntT/99BMyMzOT0imCIAiCqFZQ1nrHhMNhLF68GNu3b4ckSbjwwgvRv3//hMQXXdfs0aMHZs+ejeeeew6AErx04sQJTJkyBX/605/i7ghR/mSqwdFA1JXDFJuZW6wolGLYr9/HkqKyAGRhyDHnMfHIfCBk9DMzbzM3m0mRWlCW778dfJA1C9Dkjwc4cFEl6Xcm6kpznlDUFHQt0HVi7UUk/nrrzPysGh/IytS8dVNLK6VpXotG1A5z2YlUsS1dGhZ9c4K+fXatmBJ1ddIb0rvHGE9/d5X6lzhptj64nV1Fa7enNVZ1DO4u7dkxJzS2gg/EZu92gdR2BCVFNZ+pUifDxUZULFu2bEH//v1RWFiI5s2bAwC+//571K5dG0uXLo3bVeb6qX/iiSewZs0atGjRAsXFxbjxxhvRqFEj/Pzzz3jkkUdiN0AQBEEQhAFZTvzlhhkzZqB9+/bIzMxEnTp1MGDAAOzYscNQ5uDBgxg2bBhyc3ORlpaG3r17Y+fOndr+PXv2QJIk4WvhwoWWxy4oKDCVr1evnqN+jxw5Ei1btsRPP/2Er7/+Gl9//TX279+PNm3aGJLFu8W1ZSg3NxebNm3CG2+8ga+//hqRSAQjRozATTfdhNTU1Lg78vHHH+PRRx/Fhg0bcODAASxevBgDBgzQ9g8bNszkI+zQoQPWrVsX9zHPdm7fMBgAcFJdGp/hi84OT5UpfzMLy+mQ8rnUY55xebgl6ZoFgAUvy+aAYWZlYMvbtSBr3Rc2lsqzcGk9jFYjVkazVtnU0QJ6HSgia+0LAqhNliyBZcUKvj27OrzVJ5Hl56I+MMKapS+63RvjnJxYD5h1xiuwAJjbNQZbG5bLW/bBelbv1a7d2T/zf2J7TwBRpXU9/H2yUx33cwrTzPoiWiYfS3laBB8UzXrL2tc/l8URv9q+cyV7K/S5ydgye+3d5vGIID7rU9xUcMzQmjVrMGrUKLRv3x5lZWWYNGkSevbsiW3btiE9PR2yLGPAgAHw+/1YsmQJsrKyMGvWLHTv3l0rk5eXZ0rD9dxzz2HmzJno06eP7fFbtmyJDz74QPvs9Tq73t988w3Wr19v0Dk855xzMG3aNLRv397FFTASl4MtNTUVN998M26++ea4D8xz8uRJ/OEPf8Dw4cNx3XXXCcv07t0b8+fP1z7zQdwEQRAEcUZSwTFDy5YtM3yeP38+6tSpgw0bNqBz587YuXMn1q1bhy1btqBly5YAgDlz5qBOnTp44403MHLkSHi9XpNFZ/HixRg0aBAyMjJsj+/z+Rxbg/Q0b94cBw8e1PrEOHToEJo0aeK6PUZcilKvvPIKLr/8cuTm5mLv3r0AFPfZkiVL4u5Inz59MHXqVFx77bWWZYLBIOrVq6e9cnJy4j4eQRAEQZxtFBUVGV4lJSWxKwE4duwYAGj/r7J6KSkpWhmv14tAIIC1a9cK29iwYQM2bdqEESNGxDzezp07kZubi8aNG+Ovf/0rfvzxR0f9nD59Ou688068/fbb+Omnn/DTTz/h7bffxtixY/HII48Yzt0Nri1Dc+fOxf3334+xY8di6tSp2sqyc845B7Nnz0b//v3dNumY1atXo06dOqhRowa6dOmCadOmCWW5GSUlJYYHwe3FqcqwwFAACHrKDO+p3lJ1j/IQM5Nyijek1dE0clQ3Vhnn8hIH6aruLNUcG2IuKl0ws89rTExaomoTRWTOXYbYJnCRKZwPaOYVmMO6vng99m4lkXYQn+yQtaHvN98vR+4xC00lURApHygddQma5y4Rzi0Z7aP53EUuRH27HoNasNF15o3jnEXEcruJArf5a8SrH4tcPrxu1MBPRwEAFl/273i6XSVhyVehuTQV9IrLES1QWBz4bqcz5MYtK3KlOa0jSsbK/zbwAc92zx87/7Bgrs+2eR3oB3kk2ZU7LlEkWXklUh8A8vLyDNunTJmCgoIC27qyLGPcuHG4/PLL0apVKwDABRdcgPz8fEycOBHPPvss0tPTMWvWLBQWFppcY4x58+bhwgsvRKdOnWyP16FDB7z88sto1qwZDh48iKlTp6JTp07YunVrzITvV199NQDg+uuv19SnZTVgql+/ftpnSZKEK9+tcD0Yeuqpp/D8889jwIABePjhh7Xt7dq1w/jx490255g+ffrgL3/5C/Lz87F7925MnjwZV111FTZs2IBgMCisM2PGDDzwwAPl1ieCIAiCSApJihnav38/srKytM1W/z/qGT16NL799luDxcfv92PRokUYMWIEcnJy4PV60b17d8tYoNOnT+P111/H5MmTYx5P30br1q3RsWNHnH/++ViwYAHGjRtnW3fVKrGQaKK4Hgzt3r0bF110kWl7MBjEyZMnk9IpEYMGDdL+btWqFdq1a4f8/Hz873//s3StTZw40XBhi4qKTKPmqsqt64cCiC4V5q0/DVN1OYXU2RILeORngwyWJ0v522uoyyxCxWVKmZBu6TdvLWHWF2Y1CfhC4GH1w9wSfv1MS+IsQGy2x7b7Ylh2AHO+NEkfeCuZrTr6siLLFJ+/jKHvNz8rjebkMpd1o7JthV0b2jloS9OjvVTqOJkBW6s+ezTVYO5a6T6y68Fb7dxYj/i8ZqL+RZ9nrr8C4warE1C/L2WChQFnOuMvXA4gaiHSro/+3qjXIRhHwDPfhh7NGheHJYjBW4QMCvkWERzsty2kC4z3ar8f4qBooQVaMrZvZ00608jKyjIMhmIxZswYLF26FB9//DEaNGhg2Ne2bVts2rQJx44dQ2lpKWrXro0OHTqgXbt2pnbefvttnDp1CkOGDHHd5/T0dLRu3dqwUs2KLl26uG7fCa4HQ40bN8amTZuQn59v2P7++++jRYsWSetYLOrXr4/8/HzbixcMBh2NigmCIAiiUqngAGpZljFmzBgsXrwYq1evRuPGjS3LZmdnA1DifNavX4+HHnrIVGbevHm45pprULt2bXf9hhLSsn37dlxxxRWOyhcXF+Pbb7/FoUOHEIkYB+TXXHON6+MDcQyG7r33XowaNQrFxcWQZRlffvkl3njjDcyYMQMvvPBCXJ2IhyNHjmD//v2oX79+hR2TIAiCIMqFCl5aP2rUKLz++utYsmQJMjMzUVhYCEAZ+DCZnIULF6J27dpo2LAhNm/ejLvuugsDBgxAz549DW398MMP+Pjjj/Hee+8Jj9WtWzcMHDgQo0ePBgCMHz8e/fr1Q8OGDXHo0CFMnToVRUVFGDp0aMx+L1u2DEOGDMHhw4dN+9zGCelxPRgaPnw4ysrKMGHCBJw6dQo33ngjzj33XDz55JP461//GlcnAODEiRP44YcftM+7d+/Gpk2bkJOTg5ycHBQUFOC6665D/fr1sWfPHvzjH/9ArVq1MHDgwLiPWVUY8/VNAICishTdVjXwWDUlMxdXCecuA6L6INFAW6iflRFzmcA0zhKqRiSjC4a5Nsrk6AOlqVVzrjXm+tLDVJ61oGu1LHO/6YXBvGoktqYuyz6rbq1QJFqYTwArWbidDO4szg3Hu8f0rjCvQJVajyignL9morJ2/RPVteuDE6J9s3Zf8MHQYe26CAK0YyRhBcxB1prbzIELhW9fqErM69DYqGAz9412jux7ov7S3bAuKsr2xqXPxezfmQBzl83YpmQASEGZqYxfUrdpCw+s77VdULVlHQfuN1GgtNKGjV6UpUvU2u3JhwuIFg54Ndeu2r4kuh7SWa1QPXfuXABA165dDdvnz5+PYcOGAQAOHDiAcePG4eDBg6hfvz6GDBkijAl68cUXce6555oGSYxdu3YZBi8//fQTbrjhBhw+fBi1a9fGpZdeinXr1pk8TiJGjx6Nv/zlL7j//vtRt25dh2cbG1eDobKyMrz22mvo168fbrnlFhw+fBiRSMR2RZdT1q9fjyuvjMrJs1ifoUOHYu7cudi8eTNefvllHD16FPXr18eVV16Jt956i/KhEQRBEGc+FWwZkh1IVt9555248847Y5abPn06pk+fbrl/z549hs9vvvlmzDatOHToEMaNG5fUgRDgcjDk8/nwf//3f9i+fTsAoFatWknrSNeuXW1vzvLly5N2rKrCZSv/DgDISTHrJdUInAYQnWXzy+ZFliE2IypRrUh+deacrtYpkaK325RzSp1y+dQyTKFa7QQA3TJ8r7KBLZsPC/KY8bBbWxqK9sHnVa1TWsQjs0YZA7QBoEzdxluIZJvg4pBF/i9ZEGxtRTxWGrucak7quVnSbGWd4q0/gG65vKWkgV72QDx7t1vmr1mLuDxjtu3Cvk+G9hzAXzv2FDOBDf75ORuYuY2tzDEupAB010MW/9QbZAm0srEtRE6tRyJLn1cLyjc+C8J8Y5JzK5KdJcgKu+93RS+tp6z1zvjzn/+M1atX4/zzz09qu67dZB06dMDGjRsdmbMIgiAIgiCSxdNPP42//OUv+OSTT9C6dWv4/cYkxE4sWSJcD4buuOMO3HPPPfjpp5/Qtm1bpKenG/a3adMmro4QBEEQRLWlgleTnam8/vrrWL58OVJTU7F69WpNeBFQAqgrbDDE9H70B5QkKS7Fx7ORQZ/fbvhcqnPVFJUqy/yZe4ndw2L1c07wtFa2bspxAEBQUjR8tMBkgS00xaOUiUQ4tWC1Tlgzn0dNzqUR42iaBWgz95jeHJ3iVVxyWlC0arpm+j2lukBqPjhZ9jCXlKnbCLP+upCAiQbRioOhJUEAtZW7DIagaONz60TjyFJV2sGPEruPTEfKsC+Gad5J+8xVIHKX8a4qN245e80jow6QrXK2hZvF1v3G0HSMFPSuHlOAunpf/ery2zJd4G3fj5XfsP91/pewL2cKE1q8DwCYtlVR5tVr/4SZ60m9DlZJb/XwLjDRPeFdXJbK0zaB1WHtPTnaPq7cY9wzJVKkrmjNoWQpUJ/t/POf/8SDDz6I++67Dx5P8u5RXKKLBEEQBEEkEYoZckRpaSkGDRqU1IEQEMdgiGKFxLDl8dl+VcFZnRH5dKrPVsuqM/zFAIC6wePavlp+5e80jxL8bKeQGp2tRwztnooEDPtPykFdHaWdopCyjVl3WNkUXzRAO+BhecWU91I1yNoTMQfvMisXm2cxSw2zbIV0SsDMkhUOGwOm2exVlGcsFLEK0JYM5QDzTJEPmLazwJgDhs25sjR5Aq6sMKeai2PHA+sTbzm0my1Hz8n6R8WNgjbfXsRBHTezeTcwi1iY/27o+pQmUE4/G9Bbcth5hzgLUax6os9O4NXCvQYrldiaFFVRt85NZjqO0JKTuMq44TmXI45ymBEVy9ChQ/HWW2/hH//4R1LbdT0YWrp0qXC7JElISUlBkyZNbJUsCYIgCIIg4iEcDmPmzJlYvnw52rRpYwqgnjVrVlztuh4MDRgwQIsR0qOPG7r88svx7rvv4pxzzomrUwRBEARRnZCQYMxQ0npStdm8ebOWH3XLli2GfZIoONUhrgdDK1euxKRJkzBt2jRccsklAIAvv/wS//znPzF58mRkZ2fjtttuw/jx4zFv3ry4O1bR6AOf3+r4jGHfyPXDAAAvtHsJADDp22hi2Glt3gEApPsUJZNUudRQt0TnJjsdVtxWzJSc4VPK1lRdYpmeYq1stvcUAF1wNJ90VafJwfQ1UmSlbIoadO0Np6nHNY6cAeBESOnLSfW9OGQso3eTacdhujEwuoP0wcY+Wfm7RFOcVh7OgC+s9jXqmgiVGc3avItH79bizeYyF0AdLRi9Tia3mMV2YTvcdpECNVPv9nEuGDs3mZvkpVa4cbHpA6h5l1SyXHVW144FrusDtHn3Ff/ZCfw1dBIAzjS3SnRlmXv6bMNODdrOMcgHV5sT5DrH7p44Uavmn02vjVJ0tIxzF7GpXYs+VKjOEOGIKpO1/q677sJzzz2HTp06adu6deuGlJQU3Hrrrdi6dStmz56Nm2++OakdJQiCIIizFlpa74offvgBu3btQufOnZGamqp5puLF9WBo165dyMrKMm3PysrCjz/+CABo2rSpMIlaVSZTN0u84+u/AYgqO2f6lNkBswjp1Z8f294LAJDtM1o5REtYWUAzmxll+xTrD7MIZXqjfcj0KMvsebVWZgXyyGZVXy2oUJ08HVNjJZl16reSNK3Ob8XK38yCw1tpjnpStb9T0pXz9XFLptkMXW8ZYFaSMtVaxC+hTg9ELWelHgtVXA8XWKnD0iKkYrDg8Pu0RtjabP2s0KO2Lwv2OcPNLFIUvOxmiXs8RK1EznOGOTknUZC5075oVh4tZ1bsOjzGgGFVToLrCwv+9+syXIfisHhUZcIOgpYZomct1pJ6u+czGc+u3kpjtazdbiGJKahaYEXycL9hPCZl/oocYNBqMkccOXIE119/PVatWgVJkrBz506cd955GDlyJGrUqIHHH388rnZd/xq0bdsW9957L3799Vdt26+//ooJEyagffv2AICdO3eiQYMGcXWIIAiCIAhCxN133w2/3499+/YhLS06wR80aBCWLVsWd7uuLUPz5s1D//790aBBA+Tl5UGSJOzbtw/nnXcelixZAkDJQC/KbEsQBEEQhACyDDlixYoVWL58ucng0rRpU+zduzfudl0Phpo3b47t27dj+fLl+P777yHLMi644AL06NFDE0EaMGBA3B2qaAq29AcA1A9GjWRpXiUY2s9pcohcX0y/g+kBMVjdgBR1qbF0rMWq+jMz1bIg6RQp2gZzh1k94AFd31itUCRoaP9wKAMAcKREeT94MlOrU6K6xSJqwDFTg2acKI5qEp0IKNeDKWQzl0NZWGCGVs+JJXXVzkdgbk71G6+Z5gpk2jD6fRHjPh5Rjl/movNyLi+7QOd4tIjYcdxo8thh1Y7mlhSsG3ETmM27m9wltrRzh4jdKiL3llV/bV0xWuC+tasjpj6NPmlsxPXPX5VGe95123g3u3ZPHDwv/J0QJnVlZR24HKOufqMmFtMgM7j0ZGP78ahB+2w0lZy2W5Eq1KRA7YyTJ08aLEKMw4cPIxgMCmo4I65fA0mS0Lt3b3Tt2hXBYDChoCWCIAiCIAgndO7cGS+//DIeeughAMp4JBKJ4NFHH8WVV14Zd7uuB0ORSATTpk3DM888g4MHD+L777/Heeedh8mTJ6NRo0YYMWJE3J2pKB7/7jqkZ6gqylCsKCHdjPJUWBldMguRhjrTsJsFsQA/ZhHSW4zYPmY1YsF82vJi3SwkrI7y0z3GJe6ipaD6ZfYAcDCUDQD48UQtAMChUxlqm+ZBq9WS9bDuMEdOpRvKZqmWIp+LoEk7a0w0v5gxmFbfX81io5Vl243vdseUuM921hS+rsjioFmGJPugbn07Vm2opdSyYmXraCm7fhufKbuymiVBsLzdykIjsvLwKs92ZWNZsER9sQqc1o6vt5RxFhCG3Xf2us/uAAAs6jTH9jhVHbtr6+UsQnYWuIjMP4eq9Vh3nZ0ut3e0jJ4pzjtoz813zG7ZfEgWq1VHOEtQmZx4YLhjyE3miEcffRRdu3bF+vXrUVpaigkTJmDr1q347bff8Omnn8bdrmsb4NSpU/HSSy9h5syZCAQC2vbWrVvjhRdeiLsjBEEQBFFtkZPwqga0aNEC3377LS655BL06NEDJ0+exLXXXouNGzfi/PPPj7td15ahl19+Gc899xy6deuG22+PChW2adMG3333XdwdqUgyPCVIVzOxZ6jL2e2yFpeoMTjFsk8tq8tv5ClR3xULUA3vSQDROCDRclEmjshbavSWISacyN4ZbEZTKkdvHYsR2ldaEwCwpSgXQNQixJB1x2OxQszCon1W9+8YOAWxuPyDCQCMMzI2y2NWGJk7R4/XJjcSmFXKHB/E4pP4eBk+9sEQO5QE763IOmO1/FYYy8NntLfIIZYozpbAc884F8NhJ9BoZ52x2sfH+ABRi4J2ry1m+l7BM+Vk+XZYa1c88y/Ti5WeJbosLO7Rr8VSma83I6w9f9Zo9bWl+oLvLG814vOaqcdhwptKu8bnJOTg+rPfxOh3zC6PHvc5wR+AsCyVW+48ERQz5Ix9+/YhLy8PDzzwgHBfw4YN42rXtWXo559/RpMmTUzbI5EIQqGzM/EhQRAEQRCVT+PGjQ3SPowjR44klBfV9WCoZcuW+OSTT0zbFy5cqOULIQiCIAjCBUyBOpFXNcBKafrEiRNISUmJu13XbrIpU6Zg8ODB+PnnnxGJRPDOO+9gx44dePnll/H//t//i7sjFUmKJ4QU1czL3E561VZtyaca0hdQXWppWiCh2Z2V6VWWnTM16YDAtMxM1KxdZsUtlhU3l97lwy+JjbbhMdQBgGNqDrJDpcrS+TLVzVQjRenT4ZNKALR++TxzO4UjxvbZMvSWSwq0bX41r1hYreP1qkHiXp+hDiBwC3FuJr3Z3MpNIQq29npU95ssLityy0ncPicB306Vaa36yZflc5tpedzUIo76ZMoZ5dwerneZ8MHgvDtE71bgXV/xuPVEbi3+mLzqcTzYubtMbiJBWXYPBn46CgCw+LJ/J9ynioT/jfAIgpb5AGrR0nr+XjgJoGa/nyY3meA680HLfBnD950tLuFyknkQNtVlrjNz2IHZVWrt0o0Y3q3qlysUQG3LuHHjACirxyZPnmxYXh8Oh/HFF1/gj3/8Y9ztux4M9evXD2+99RamT58OSZJw//334+KLL8Z///tf9OjRI+6OEARBEARBiNi4cSMAxTK0efNmwwKuQCCAP/zhDxg/fnzc7celM9SrVy/06tUr7oNWNqWyDyzzFpsx6QUW/Vx+o1OqmCGb2ehziNX2FQEA0lXBRGYpEi3J1oI7WVCg+n5KVpfyS9Gl/DVUSxOrz5bPB5hVSTcRYxnuzw0eBQCUqdaXvSfPAQAcP62YDsM6kcRwmWrl8akzIm9sC0WKXzk3n1r2tJrp3iPIFM/PwEo1IUWR0KF6StyyaslgGVKtUR42gzNbmpRK0Tq8RYgXXywv9BYW/nx5S5khl5qF4KN5u3WArG2/LC1x7Jo6acO6lJv8VKwss2/yecKcWKLEcgfOArT1ZaJ9OjOm1ixg2mrZujBwmFsu79EEGvXWGOP52+UqC3OB0/y9YL9xdsvbeezKmvbp8o5Z5bOzk4GISk9YC3h6IceUdUgmFEBtD8tWP3z4cDz55JPCHKmJcHZJsBIEQRDEmQi5yRwxf/78cmnX0WDonHPOcawy/dtvvyXUIYIgCIIgiIrE0WBo9uzZ2t9HjhzB1KlT0atXL3Ts2BEA8Pnnn2P58uVnTHJWLyJRM7HATcYIqVo+mj6Qqh3EtIVYW0oZpT0W2OxHmaENEVpAtapWrdcUYmZn1q+fy2oY6l57/kbLdvuvHQ0AKDyuBFSXnFadEbqZg8dnDC5mLiQ25tXr9WhaRGp/+ZxkBhM5U4i2CCrWX2VeRZqZqn0es9uGGckldiz1jfXbjWaME1VpJ/UZpiBo2Vw2GS4Y24BkR/WtA70T6YPT44mOzbvL7LRheGVkfru+Pu8eK+PdqYI+lJYpvej78Z0AgP91/pdlXyqTglZLAADTtl4t3B8WXA83sN8luyBpKwVnsy6QdRAyez7cuNJERHOQuQ94TsZ3Imkk6CarLpah8sLRYGjo0KHa39dddx0efPBBjB49Wtt255134umnn8YHH3yAu+++O/m9JAiCIIizGXKTVSquY4aWL1+ORx55xLS9V69euO+++5LSqfLGK0UQAVOTNsMUndnsh+UZY1aadJ1lKE0yZl7nl9SLZCiZJYgtgS1W58VXNPrBss+bd3YCAAxt+pllmRbvFgAAUoPZAIDjRUqYeOS0cq5SQD8DU/OjqUvWWVA0n7Vdv0/LW6bOHEWZ4mXNMiTeroc/llcyBjOKAqhjIcx9pvZX4vrgTLXZbNnhc5tZBT7r8XEWLJGytRurC088S+GdnH8s+YN4sbLOifrNL/GO9i12yDcfUG2UPbAPQO61Zqy2bXmX2TGPVVFM3jwQAOBXg4j9XP5C0XPEgqN5qw+ffV6/z43sgZvs7lYWIbu8hTwiZX/tswvrjklN3pAfsmIVqInKxbXoYs2aNbF48WLT9nfffRc1a9ZMSqcIgiAIolohJ+FVTXjllVdw2WWXITc3F3v37gWghPMsWbIk7jZdW4YeeOABjBgxAqtXr9ZihtatW4dly5ZRolaCIAiCiANaWu+MuXPn4v7778fYsWMxbdo0hMOKl6NGjRqYPXs2+vfvH1e7rgdDw4YNw4UXXoh//etfeOeddyDLMlq0aIFPP/0UHTp0iKsTFY1eZ4ihDwi0Cg5kbjK/Lgw4RTVRt2+4BwDwzb48AMAfGu4HAHyyx5zHrVP+jwCAz/aeBwD4U6MtMfts5x5jFJ9WRKhKShS3W1h1j3mK1SSsOqt0mCVU9TBVaaORkKlOA1HXRZhzNTDXFx9QDUQVo7U2uABtwBww7eeSuIpcdox4Ah01V52g3VgaP3r3jRbg7SA4mneluQlodeLqsnKPeTiXo6EOV8bOLcLXFykXM8Kcdo2oPaf3zc5lmAxtJVEZzZUZVp9r3XG6rVLUbz+8cpbjY5c3sZIW26HdG8G15F1pYc7VKCK6kIQFuVv3JdGAaR7+HrPvRFg2u0Z5LTO9XpFhu1rvbEnmezbx1FNP4fnnn8eAAQPw8MMPa9vbtWtX8aKLHTp0wGuvvRb3QQmCIAiCINyye/duYR7UYDCIkydPxt2uo8FQUVGRK7XH48ePIzMzM+5OlTdlshcsgJgFS+sxB+Spsx1V6jTijc4WmEWIwSxCDLugaGYhShbhU2qgNFOXVi1CnmLVklOqU8MuY7NfdR9TkWY5xHxR61jQr1i/RPm/ACCiU6COqPnPIqplKBgIqXWV/aJAaLbN7zHLG/C4sayIgpRFn/Xb+GXyvPVKVEbbLug/b1kqc2DVMFmlmIK2qN+mvGXuZ918vjDAbNVxYnVwY5mw6oMbq4+zdq1lFKzK+gTPaHG46ujTPtRaidlkgdTsmvk9ouUaCszazcsTiK13RouQlaVchBOrj5N7YrVPFKitfZ9V03fEJhSWSSxEnzdrlW0AkJP8PNpCq8kc0bhxY2zatAn5+fmG7e+//z5atGgRd7uORRcPHDiAOnXqOGr03HPPxaZNm3DeeefF3TGCIAiCqC5QzJAz7r33XowaNQrFxcWQZRlffvkl3njjDcyYMSOhuGVHgyFZlvHCCy8gIyPDUaOhkPUMhSAIgiCIymXGjBl455138N133yE1NRWdOnXCI488gubNm2tlDh48iL///e9YsWIFjh49is6dO+Opp55C06ZNtTJdu3bFmjVrDG0PGjQIb775pu3x58yZg0cffRQHDhxAy5YtMXv2bFxxxRUx+z18+HCUlZVhwoQJOHXqFG688Uace+65ePLJJ/HXv/7V5VWI4mgw1LBhQzz//POOG61Xrx78frP7qaoQkr1a4lBmAr7rgg+0/TO2/QlA1OzPFKePy0rC016Nt1VYX93gPa5qJ6luMZZPlll6DSZxLoI8HOJcg6VeU1kvp0Wk6Q6FzW4yphnNXGgsINvvQC/I6zEH/zJztpVWEB/UrRRWy6j3kQ/QFrlD+HZZGb1rzCpxqs8maFk7JrsuomBlOHOP+QRq6Vb918O7scznoQua14JP3bsJ3OjT8Ni5+eyUpxM7llE12c6NWhWY9O21AKLfJScuxlBE+W1gz53HpmxUxTv2dbHCjYaXmyBlPlBbX9/OPcbDLxpIxMWbVCqwG2vWrMGoUaPQvn17lJWVYdKkSejZsye2bduG9PR0yLKMAQMGwO/3Y8mSJcjKysKsWbPQvXt3rQzjlltuwYMPPqh9Tk3llygZeeuttzB27FjMmTMHl112GZ599ln06dMH27ZtQ8OGDWP2/ZZbbsEtt9yCw4cPIxKJOPZa2eFoMLRnz56ED0QQBEEQhAUVHDO0bNkyw+f58+ejTp062LBhAzp37oydO3di3bp12LJlC1q2bAlAsebUqVMHb7zxBkaOHKnVTUtLQ7169Rwfe9asWRgxYoTWxuzZs7F8+XLMnTsXM2bMsK27e/dulJWVoWnTpqhVq5a2fefOnfD7/WjUqJHjfuipOlGBFcipcAD/bP6+5f6JLd6rwN4kDzbR1Sa86pcjlKnOwGpElWp96YpydiCgbGMq04xwxDzLYhagsjLFaqRZivTL6NUyzEIUVt9FdkIfZ6lhFiEnFhur7WW6fvs5S43dUnizVcZYxmDJkSEsa6egayojOA3eIsRgy31FAdR8QCxrQ5RrL5mILDi8ZUI029aWPQsUoZV2nasQu0ELNBc0pVnEIuyNRfvr+qBu67FaSTe0susTCfcpXqa1eQcA8OCWawBErT7glKgBswJ3PMRjFYvHmqS/z3ygtJPAbCu1aCcWxCpnIUqAoqIiw+dgMIhgMBiz3rFjxwAAOTk5AICSEsUjkpKSopXxer0IBAJYu3atYTD02muv4dVXX0XdunXRp08fTJkyxXIRVWlpKTZs2GDKWNGzZ0989llsCZlhw4bh5ptvNrjqAOCLL77ACy+8gNWrV8dsQ0QFhsoTBEEQBCGCBVAn8gKAvLw8ZGdna69YlhZAiQseN24cLr/8crRq1QoAcMEFFyA/Px8TJ07E77//jtLSUjz88MMoLCzEgQMHtLo33XQT3njjDaxevRqTJ0/GokWLcO2111oe6/DhwwiHw6hbt65he926dVFYWBizrxs3bsRll11m2n7ppZdi06ZNMetbUWUGQx9//DH69euH3NxcSJKEd99917BflmUUFBQgNzcXqamp6Nq1K7Zu3Vo5nSUIgiCIZCIn4QVg//79OHbsmPaaOHFizEOPHj0a3377Ld544w1tm9/vx6JFi/D9998jJycHaWlpWL16Nfr06QOvN2o2veWWW9C9e3e0atUKf/3rX/H222/jgw8+wNdff217TEkyWvJkWTZts6p3/Phx0/Zjx45patTxUGXcZCdPnsQf/vAHDB8+HNddd51p/8yZMzFr1iy89NJLaNasGaZOnYoePXpgx44drjWN7mvxVrK6XaUI/K66plSLaEktNcFqtmI+D2ZEE8ympyhusqBPTRrLu4X0JmvV9cRcUCUh5bEJhcz6Ix4vC5xW6peWco9YIPpniAVXq26xVJ+yClEUiMz6U6a5hZwHaFohCorm3600hZQyaj9tTOux3HoieNcXcy3ZJTHl3WNO3E1OXBl8cK6dsrXmZ+LcEnqXGmuHuSNErj/AGIRt9WwKg625wFg+SFp/CXldKB+nPVMc9pv2eTyxn7vy4IntPbW/2aKPkLqgw6zArH+ulb+DvNq4A/cZ72oVlQ2b7nVyrg8fKM27zQwJd9V9vPJ0tE+xXbpnE1lZWa50AceMGYOlS5fi448/RoMGDQz72rZti02bNuHYsWMoLS1F7dq10aFDB7Rr186yvYsvvhh+vx87d+7ExRdfbNpfq1YteL1ekxXo0KFDJmuRiCuuuAIzZszAG2+8oQ3KwuEwZsyYgcsvv9zJKQupMoOhPn36oE+fPsJ9sixj9uzZmDRpkmZ+W7BgAerWrYvXX38dt912W0V2lSAIgiCSSkXrDMmyjDFjxmDx4sVYvXo1GjdubFk2OzsbgBKkvH79ejz00EOWZbdu3YpQKIT69esL9wcCAbRt2xYrV67EwIEDte0rV650lFds5syZ6Ny5M5o3b64txf/kk09QVFSEjz76KGZ9K+IaDH3yySd49tlnsWvXLrz99ts499xz8corr6Bx48YJjcys2L17NwoLC9GzZ3R2FAwG0aVLF3z22WfVfjDUaoISzCmnKZ9D2WKLUEZq1DKUolqEWNCyVX4fwzYPs1Qo76XqqLykNDqDDoc564MaUF1SrJiEQqHoI8eCt1PTTwGIZaFQLTXc0nTNYhSxthjx20TWHt5KEl2ua7aeMIsCH3TNt6WvH7V2OVeI5i1CdlYZJwHTVtdXNKO2W3Yfq/0Idxj9LNzx+dvkzLK3Pqhq5vxWwTny1zfi4H8TpkRdUYHUC3Z2AgBk6twSJyOK6ZdZiJiKfkQLAo7CngvtHvDX34GFhF9qLyKeQOl4g6tjwT/P4t8E9TscQ4G6Qqng1WSjRo3C66+/jiVLliAzM1Oz1GRnZ2tL4xcuXIjatWujYcOG2Lx5M+666y4MGDBA+794165deO211/CnP/0JtWrVwrZt23DPPffgoosuMsT1dOvWDQMHDsTo0aMBAOPGjcPgwYPRrl07dOzYEc899xz27duH22+/PWa/W7RogW+//RZPP/00vvnmG6SmpmLIkCEYPXq0FvwdD64HQ4sWLcLgwYNx0003YePGjVrE+fHjxzF9+nS8917yV2KxmyQKuNq7d69lvZKSEq1/gDnKniAIgiCqBBU8GJo7dy4ARTRRz/z58zFs2DAAwIEDBzBu3DgcPHgQ9evXx5AhQzB58mStbCAQwIcffognn3wSJ06cQF5eHvr27YspU6YY4op27dqFw4cPa58HDRqEI0eO4MEHH8SBAwfQqlUrvPfee6YUG1bk5uZi+vTp7k44Bq4HQ1OnTsUzzzyDIUOGGBQmO3XqZBBdKg/cBlzNmDEDDzzwQLn2iSAIgiDONGQ59ujpzjvvxJ133mm5Py8vz6Q+LUKkVXjHHXfgjjvuiFnXilOnTmHfvn0oLS01bG/Tpk1c7bkeDO3YsQOdO3c2bc/KysLRo0fj6kQsmJhTYWGhwQ8ZK+Bq4sSJGDdunPa5qKgIeXl55dLHyqRUcecilKW6kNIUE7DXr7yzRKt615fEuYOYcrOm/qyfZjAFa9UVxWsSRXxR0zKrFVETIspqILXWmm7wGlWrjo2dK0q/39bV5iDQmbWrKU97ODcDBC40GOva9ZthFTgs6i/vHtNroVi5zuJxRej75NHckQ40WiwCVu1cDrHvp3VwtHZcm+Bfqz4Yz9F4fcEFFYtco76onHu58sL3SixEWParh4ueBwsuZi6wSa3/H4Co7lDY8KyK74FH4Lblg6sZvBK1Uo8FwPOaWNaBzloZLZg9It7uAP1zaaUvJHL/8t87cxljn6Q4Eh/HC+Umc8avv/6K4cOH4/33xVqB8a4oc+0grV+/Pn74wZyJfe3ateWWmLVx48aoV68eVq5cqW0rLS3FmjVr0KlTJ8t6wWBQi6x3G2FPEARBEBVGkpbWn+2MHTsWv//+O9atW4fU1FQsW7YMCxYsQNOmTbF06dK423VtGbrttttw11134cUXX4QkSfjll1/w+eefY/z48bj//vvj7siJEycMg6zdu3dj06ZNyMnJQcOGDTF27FhMnz4dTZs2RdOmTTF9+nSkpaXhxhtvjPuYZzLnPz5L+5sFTssp6mwvRbUM+YzLgfUz3bBFwDFv9QC4fF86mJEn4Dcr32rHYRaXsHncLbuwXpQJFLH1de3yHMVSlxa2a8rjZT1DtAvujCdwOpZFSL8kPBnqzNHjmvso2sYThlFiIXqdmVUtdh9NgetJCmSNyh+YiecY0f4l77rbwSwvoUj0Gher1qIJLYwz4/tbKf8R3Pftn7VtvPWS4ReoVbNrZRco7bS/ojaY5Sf6G2OW5tD6pz47piX1cUjj2VlhzVbNaNmKuseEOz766CMsWbIE7du3h8fjQX5+Pnr06IGsrCzMmDEDffv2jatd14OhCRMm4NixY7jyyitRXFyMzp07IxgMYvz48VqkeDysX78eV155pfaZubeGDh2Kl156CRMmTMDp06dxxx134Pfff0eHDh2wYsUK1xpDBEEQBFHlqOAA6jOVkydPaolZc3Jy8Ouvv6JZs2Zo3bp1TKFHO+JaWj9t2jRMmjQJ27ZtQyQSQYsWLZCRkRF3JwAlot0uoEuSJBQUFKCgoCCh4xAEQRBEVYNihpzRvHlz7NixA40aNcIf//hHPPvss2jUqBGeeeYZS20jJ8QtupiWlmarQkmUL7vuiQaGN/r348ofAdUloLrHWCJVkQuJGZt5M7FXkCTVylysBVvr2/WHDGWMcf5GPNyxNPM587/ZfLmtgqENZm6LAFs+SNoOXnnZSRk7N5wbNWmtDuceE5n9yyJGlwOvrmxVryJIVJWYD5TW1KvVdzu1anv4681cUsrPov65L1W3larXORSxdvEkwpPfdQcAeFWlJOYSK4notLzU523CN38BAMz8w0JDGw+3eVv7m7nMmNvJpDukwxT87CC5K6tj5x7jsXJ16V2yZpcaH9Qdnwsr3npE1WHs2LFabrQpU6agV69eeO211xAIBPDSSy/F3a6jwZBd0jWed955J+7OEARBEES1hNxklhQVFWkLoG666SZt+0UXXYQ9e/bgu+++Q8OGDVGrVq24j+FoMMSkuAFFm2Dx4sXIzs7WLEMbNmzA0aNHXQ2aiCTiU78FaqA0C5xmgc2SYLYs2ma1n1kULAOpDRYWZcacYmEhknXL6f0+o5KzHXYB0qJy+nadBEKK8qE5hbfo6M+Hzy9mVUeElwukjlqVdNdbUmfQSVgCrJ99OwmcZljlhEoEvSUuLButMMwSpOVh0+2LFRQdvxVJgQXyJzu4duY2JRVRcURZDRHNP+Y1HY9tc6I6bloQwXVbZMmxsgiJrhe/tJ4/rh3seRFZLHmLkJNny809cVI2InsgV6AiNbnJrDnnnHNw4MAB1KlTB1dddRXeeecd1KhRA4DipRLlQHOLo8HQ/Pnztb///ve/4/rrr8czzzxjSJJ2xx130NJ1giAIgiCSSkZGBo4cOYI6depg9erVCIVCsSu5xHXM0Isvvoi1a9capLa9Xi/GjRuHTp064dFHH01qBwmCIAjirIfcZJZ0794dV155JS688EIAwMCBAxEIBIRl403W6nowVFZWhu3bt6N58+aG7du3b0ckUnFqndWdxk89Hv2QobpRAkbF6aCWjFV1n+ncWcwNZgrWdeBuESnSavW1YyhlmCtMS6iqc2oEvGFDX6DVtNYDYnWsFKj18CrMVlpFxnbcP8O8e0wUvKyVdfCL5bUoE008ad0HU1tx2s6Ze8KJu0wrI7lXqza1JXCH8oHSXpvnI5a2Ee9y08O72PTuoui9NV6PP/5PydO0qa91Fm8rJm+OZuz2SsoP+7EyJUHm6bBf2Cc9z7VbEPMYLLhafyzAHPis32b1WYQTxWke9rzw+lQh23tj1J9ysqDBHCAfW8dK365HilSoAjUNhqx59dVXsWDBAuzatQtr1qxBy5YtkZaWltRjuB4MDR8+HDfffDN++OEHXHrppQCAdevW4eGHH8bw4cOT2jmCIAiCqA5IMIV0ua5/tpKamqpltF+/fj0eeeQRLWYoWbgeDD322GOoV68ennjiCW15W/369TFhwgTcc889Se0cEaXJo4ridES1DEYyotYHX5riP01LVcKUM1JKAERnRMzy4pPMliGtDY9xFuUTzIjYTLk0bFxeHNZZXPiZIZt5+lSLjl5Kilms2OzSx1khRLmQTP21sRKURsTKyE7gLRROcp7ZLX1PxCKk7Wd9EixNLq9l806WQWvXRnYwi5acBcQaAuFZoLSLAFmrgHv9NWaWJj7IWLM+6Mpqucm4wHe/ur3t+5O0shv6THPUxyOhdFO/StQl/Oy9TGDBYP0a/pUy+Zzffr6pDI92HdQ3r0AZ3crKw5a5iwK24wkkt1omr2/LynKjBcDr9vNWIv6zk3ZFeCQ5YVkIIrmEQiHs3bsXv/zyS+UPhjweDyZMmIAJEyagqKgIAChwmiAIgiASgdxkMfH7/SgpKYEkJd8OltC6QUp+ShAEQRCJw5bWJ/KqDowZMwaPPPIIysqsc2LGg2vLUOPGjW1HZT/++GNCHSLEqFZzRFJVV0xa9EHg3WN+r9GczczqksH1IAvfA6rZ387txLsIjB1Vg6vVj+xZYS6xiMfcbihs1FKJeJX3FG/0HK3M1dH+m100AW6oz1wcouSVPovztnMX8i465qryOdB/4ZOvWp2DHpEuC3NXWQU82yW2tKsbKyGmfn+EyVxx7fH9tm3PiTvSxa+9tdtQd32Yy0Ttnkc2PksRQUAvc8+m+hTXNHMR613Fbf6rJKz+tt+Dhrq91owFEH2ufZ7oRDLNa9RqL1YDqMu0gGGzftbCDi+IT1HAtDaKGO60rVcDsHB5MT2r6IGUN9m5XhdPGGYXukn13qGGmNI36+87w/45YffW+Iw60f0iqgZffPEFPvzwQ6xYsQKtW7dGenq6YX+8ws+uB0Njx441fA6FQti4cSOWLVuGe++9N65OEARBEES1htxkjqhRowauu+66pLfrejB01113Cbf/+9//xvr16xPuEGFEC5xOV2YukmoRSk8v0cpYWYQYVsvo9fD7jEGHRksImx2zper65bnRvGIWatW644TU+qUh5TFkucpKfepjGSzWyqZJIcOxnZyHFnjLlKhhDtTk62nWI66MaJk1b5ViFiF9H9hMNsTN8J3McPm+CQOztWX99kvKRfAWHP3nuNSkpfgtQnbw523XbjIDyfX3nM/9xiyoWeozejrkB8/F7/1TqRtWroskZQIAgqrcRHog+h0u9Rvb16Qo1OdGbyVdcvnTbk9Fg1++zi8lV45tDJhm73ZL33m5DT63mL4+v7zdiXo6b7kRBUXz3yX7Z4EPuq4iI4kq0o2qjF4EOpkkTWu8T58+WLRoUbKaIwiCIAiCqBDizlrP8/bbbyMnJydZzREEQRBEtYFykzmjvOKWXQ+GLrroIkNHZFlGYWEhfv31V8yZMyeuThDWlKnuMaSpJutUxVzOkrAC0QSqLBCZ1xeKGgAF2jD88USJG3mXkY2bgrXLO+w0V5sugLq4VFXZVZO3ShFjuwFf9PFkbgI+0JZ99nmYu8gcJG7Vb/1+PlDadH1k8z5mlvcnoFIbEeilWN0bUQB1mep64F10Udem86BokfvJidK3Vf9Ebgr+GE7cE1YBtyJMitmcrpH+eofB94UFEJsD7HmVcb3biv98Sl3lcjKkiIKVlqmaQapbmL2fLA1qddh3mKnGx3we46Sg1RIA0cSweteS5rZSP/O6QyKtLOZKjLrK2fW27kP0+6M8s7wLEhDcG62P1grSWv/VY9u538z1BQslZA/CFZlVgWKGHFFeccuuB0P9+/c3DIY8Hg9q166Nrl274oILLoi7IwRBEARBEHaUV9yy68FQQUFB3AcjnNNo7mMAAClbCRz2B5UZY1qKsgQ3oAuWjrns3GbKoAVqOsjbpQVHRlhAqLldNkMMqzPyErbUXrX6yPqAyjJlRigzyxDXnj4oNajOvFPUmbOV8rQ+6JU/bXPgs/WydmZ9iFolzBYcKwuFwZpiYUTj82zp++MmYJg/Jn9ubgKqnQQfl5fSdXkhUjdmmBS/1SIBqcxQF9DJKcgsWN74vOgtqiy4Ok1dfs8U24vDys8tU27Xfy9ZTj/e4sSWtYskHhKBD5YGzAHS7LOmVq3rb8TiweZzG4Z0+ce0HHMWz2RIpLYtsQUIXkMbycaNMnV5QW6yxOjTpw8mTpwYd4C16yfA6/Xi0KFDpu1HjhwxZLInCIIgCMIhchJe1ZhE45ZdW4ZkWXzFS0pKEAgE4u4IQRAEQVRXyDLkjPKKW3Y8GPrXv/4FQFEUfuGFF5CRkaHtC4fD+PjjjylmKEGYawwAkKKa4wOKyT1VdY+l+hXTu97FI3JXAVGzNjPB27lMnLhT+DJhQUJLZj5nrjRWRwvyLtNZDy2+vLJsdqkxLN1jNgrGPpFSNhwmVNW6EDX/e2O4H0V9sNIXMmgSWdzH6PFEatji5JrJwolbTNQvwD6hbFw6RhyiNsKwt06LdJ00jSn1s3YNdU0FPYr7qoxzJWl90DcrMZeX6iZTLeZpqnuslHvXH1PkwuU/D/5iJADgFRcK1DzjL1xu2lawpT8As2YQU+IWKs6rWCV5tSOqSRRbfZxHdB+t9Ib07Vr1y0rvS0qye5JInAEDBhg+Jytu2fFg6IknngCgjMKeeeYZg0ssEAigUaNGeOaZZ+LuCEEQBEFUW2g1mSOmTJlSLu06Hgzt3r0bAHDllVfinXfewTnnnFMuHarW6CZXkmoRSgkqs8u0gPLuFSgws+BK3kJkN7vklZztllCzAFAn8HnQrJba65E8xrI+r/l8TDnDPO4Vlxkiy47VzNCjvYuCO2PPGq0sQXbWHqvgZ6HFKYbytN46Y5U7zInFycr6Y9UvAIAsPp4T7CxSvEXITlHcSc4zq2P6dU8tk4SIyIqFiFdTZpYjUR9S1TIlaoJBlnfMF4n+/LIFDNEcgWWGz/pnNRGLEM/kzQP1PQZg/SyFdJas6HNs/ztiR7KClqP3NrYcgZuydtvLBRoMOeLrr7+G3+9H69atAQBLlizB/Pnz0aJFCxQUFMQdruP6aVy1ahUNhAiCIAiCqHBuu+02fP/99wAUgcVBgwYhLS0NCxcuxIQJE+Ju15FlaNy4cXjooYeQnp6OcePG2ZadNWtW3J0hCIIgiOoIBVA74/vvv8cf//hHAMDChQvRpUsXvP766/j000/x17/+FbNnz46rXUeDoY0bNyIUUtw0X3/9ta0UNuGeRs+ogdMpUbN8MFW53qmce4y5xPTuslimXDs3gpM2eJeDlcaIHczlZXDlSUYXhld1j7GErX7BOVoFQ9vBB1Z6ONeVHj7QmRFycBxRXU2lmnNLMsXoePAKXFZe9ZbYJdPksXV9xZHIkvWLJenU6shmFexYgdlugsVFKt7JSABrF9yuudAkc1m+DktI7Of0qTw6meaIR1VS59ypTlyx8XDXxhuUPnmiLoWgZP+Uhw0uV+X8+WBrHv2zqi2uiBHkbqzP/07FXnjg5N5XmcSseshN5ghZlhFRlcE/+OADXH311QCAvLw8HD58OO52HQ2GVq1apf29evXquA9GEARBEAQRL+3atcPUqVPRvXt3rFmzBnPnzgWgxDXXrVs37nZd6wzdfPPNePLJJ5GZmWnYfvLkSYwZMwYvvvhi3J2prsg+1eqRGg3C1JSmVcVltqyVBT7bBQc6ySVmFVjKrCZ6RV0ftzQ/HDYvqdfahXFZvBZgqU4G9cvlPVzgNLMMMasXO3cgqsxrCii1mQRqFiytm+osVmvDGtPyXN2BrK4dHyxt7K94hq+fOYcteuRuybH4GXCL+dzcWyjc9MHOSuXumJwVkD8Pm3xpbvKwOWmXwayCYVWjzaMGTotyn6V6jdaZiCBP2u0bBgMAnmn7iuUxY3EyrORFS0dJtA8eY25DO6wskHbPCW851XKHqfdMn48slkXIieSDE4u4XZ2Kth5JsgzJQsfPaf3qwOzZs3HTTTfh3XffxaRJk9CkSRMAiuhip06d4m7X9WBowYIFePjhh02DodOnT+Pll1+mwRBBEARBuIXcZI5o06YNNm/ebNr+6KOPJpQFw/FgqKioCLIsQ5ZlHD9+HCkpKdq+cDiM9957D3Xq1Im7I9UZKaDMetJSS7VtLPcYswixz3Y5itzE8ljNgu3asFpOKxJH9Kn9ldQcZT6Yl8uzehJn7Qn6FStQqi86S7bNQRYD0ewaEMeaiPbxWMUVOYln4M/DyhokKmtXJhlWGEO/Ibas2C1Vj8ca5SQ2STsmKyvZx6lYtROzLy6W8zPc5GrTYoVsvsOmfQIhQdbPO77+GwBgzsWvOu7DDetuBQAEVCtQyKP7zyNibN/07BrifyykFyTr5znW8yHKOxaPRSh6PLEIo76dZIh/ElUD/ZgkHhwvra9RowZycnIgSRKaNWuGc845R3vVqlULN998M0aNGpVQZwiCIAiiOsJWkyXycsOMGTPQvn17ZGZmok6dOhgwYAB27NhhKHPw4EEMGzYMubm5SEtLQ+/evbFz505t/2+//YYxY8agefPmSEtLQ8OGDXHnnXfi2LFjtscuKCiAJEmGV7169dydQJJxbBlatWoVZFnGVVddhUWLFhkSogUCAeTn5yM3N7dcOkkQBEEQZzUV7CZbs2YNRo0ahfbt26OsrAyTJk1Cz549sW3bNqSnp0OWZQwYMAB+vx9LlixBVlYWZs2ahe7du2tlfvnlF/zyyy947LHH0KJFC+zduxe33347fvnlF7z99tu2x2/ZsiU++OAD7XNlJ3p3PBjq0qULACViOy8vDx5PctRDCcAbVNxCAX80YNjLBUo7cWMxrFwbThDlRopwAaa8a8agFC1zfVAfE+YSY+4+IJq/jOHnXYO6ZfQ+bsm0G/dN9Nx4l4zZ9SAy1ScTq2uo38ZwE7SsKX1z3bcLTGauDrbMX3+8RBR5WTui5f5WKth2mI4pM7kC5WPYReCo3i3CXCVOXC+snl+9Vvz9s5M04L9/bIm9Plj6ZFhZ4s5UqpmLh30XRFeLtWsXUH3dZ3eo9dVFGmpD7Nkv1atgq6scmHyFWT3dehGBtlxevZSOctpxatB2bmuGnVurTFXIDvO/kQaXd/yK2eVNResMLVu2zPB5/vz5qFOnDjZs2IDOnTtj586dWLduHbZs2YKWLVsCAObMmYM6dergjTfewMiRI9GqVSssWrRIa+P888/HtGnT8Le//Q1lZWXw+ayHGD6fr9KtQXpcB1Dn5+cDAE6dOoV9+/ahtLTUsL9NmzbJ6RlBEARBEK4oKioyfA4GgwgGgzHrMdcW8/qUlCgrDfWxOF6vF4FAAGvXrsXIkSMt28nKyrIdCAHAzp07kZubi2AwiA4dOmD69Ok477zzYvazvHA9GPr1118xfPhwvP/++8L94XD8YnLVjUYvPQIASD9HzURvY5Vwk2OJh1lljFYlseXJ7tiWQde67cxKxGee57PX6+tb5VTT509js9V4lsbyQed215nNKu1mjGxmbyUAqZ8VW2Z0t5E74K0P8eAksJr1zSpYOlnHtMsazixEmsXIZjk0uy7sOQ6xZnVBu7zlwM5CwSxiUTFRY18MsKBtLX+X8Xhulnozq4c+n1lItV4wSw3LTcbaD8vRn2o+tx57DllAtZ66XEwps56w4xmul2Qsw5a+e0wSFbrl8RanHbENEndyrayDn81lk2fd4Z/VCrUcJclNlpeXZ9g8ZcoUFBQU2FeVZYwbNw6XX345WrVqBQC44IILkJ+fj4kTJ+LZZ59Feno6Zs2ahcLCQhw4cEDYzpEjR/DQQw/htttusz1ehw4d8PLLL6NZs2Y4ePAgpk6dik6dOmHr1q2oWbNmzFP96aefsHTpUqFBJt4sGK4HQ2PHjsXvv/+OdevW4corr8TixYu1k3n88cfj6gRBEARBVGeS5Sbbv38/srKytO1OrEKjR4/Gt99+i7Vr12rb/H4/Fi1ahBEjRiAnJwderxfdu3dHnz59hG0UFRWhb9++aNGiRczM8vo2WrdujY4dO+L888/HggULYqb8+vDDD3HNNdegcePG2LFjB1q1aoU9e/ZAlmVcfPHFMc/VCteDoY8++ghLlixB+/bt4fF4kJ+fjx49eiArKwszZsxA37594+4MQRAEQRDxk5WVZRgMxWLMmDFYunQpPv74YzRo0MCwr23btti0aROOHTuG0tJS1K5dGx06dEC7du0M5Y4fP47evXsjIyMDixcvht/vd9Xn9PR0tG7d2rBSzYqJEyfinnvuwYMPPojMzEwsWrQIderUwU033YTevXu7Oq4e14OhkydPanpCOTk5+PXXX9GsWTO0bt0aX3/9ddwdqU6wXGRSplFxWZ/yzc+5YHjlZVEgNe8OYiZerX2dyZd3X1m1AQARLhedldvMDna8cCRax8cpTovcYzzRvGLGKVSZ5r7Qta/lBWMaTUb3kz5Ymg+65Ms4yYkWdV9Y5zxj2F07LbcXjMfk9Z0MdVjALZfzTP+csHadBGbbHcvq2E6IPscWLkabaxftk3quahsh/aWVjK4uR0HpzM0mOz9nJ/AuOz4/HQwB68rfLID6ZJlxNu8zLCbg7rF6nDJBELdVHj6/FhQd+5yZ685wXN6lxml5CTW3tO+b+N7Y9aW83FX24QEeyC6e7YSp4NVksixjzJgxWLx4MVavXo3GjRtbls3OzgagxPmsX78eDz30kLavqKgIvXr1QjAYxNKlS+PS+ykpKcH27dtxxRVXxCy7fft2vPHGGwCUIOzTp08jIyMDDz74IPr374//+7//c318wIXOEKN58+aaFsEf//hHPPvss/j555/xzDPPoH79+nF1giAIgiCqOxWlMQQAo0aNwquvvorXX38dmZmZKCwsRGFhIU6fPq2VWbhwIVavXo0ff/wRS5YsQY8ePTBgwAD07NkTgGIR6tmzJ06ePIl58+ahqKhIa0cfP9ytWzc8/fTT2ufx48djzZo12L17N7744gv8+c9/RlFREYYOHRqz3+np6Vpwd25uLnbt2qXtK/dErXrGjh2rBU9NmTIFvXr1wmuvvYZAIICXXnop7o7EoqCgAA888IBhW926dVFYWFhuxyw31Oz0Xr/Y+qPHZIURTJD4TNd8dnlmaSnTLWVnczC2vF0LQXMg9WBa7i8KBlbfA2pOMdnDZq/RPpiCrLn2fYKl71r73Dmyz/o6sSxChpmoxQzQbrZqFTSrXzYeS+3ZbsZrWr4ss4zvIkVdq36aM42zsrxFx401yL6e0UoXj0QAb+HS4/coCw6KI371aLr7IHOKxQ5yZbE6TApAqApuYTXyCG5f1PplDMy2I3reynEy/cWG/XorJv9MsmX9HoHEAG+h8VhYlfRl+H3890e/T+sLy17Pgts5iQBAL5mh/CZ4ZeP3UG85461q9t8Tc24zQx39Zq0/sRcNeKQIpDi/E2cCLMFp165dDdvnz5+PYcOGAQAOHDiAcePG4eDBg6hfvz6GDBmCyZMna2U3bNiAL774AgC0HGGM3bt3o1GjRgCAXbt2GQYqP/30E2644QYcPnwYtWvXxqWXXop169Zpq9XtuPTSS/Hpp5+iRYsW6Nu3L+655x5s3rwZ77zzDi699FK3l0HD9WDopptu0v6+6KKLsGfPHnz33Xdo2LAhatWqFXdHnFDVRJoIgiAIIinIsvJKpL6r4rHL33nnnbjzzjst93ft2tVRO3v27DF8fvPNN2PWsWLWrFk4ceIEAMVIcuLECbz11lto0qQJnnjiibjbdT0Y4klLS0sogtsNVU2kiSAIgiCSQUWLLp6p6LWI0tLSMGfOnKS062gwFGupm5541/g7wa1IU0lJieZbBMxiVBVNo+ceVf5IYfo6ykePKtvsFQQOMxdSSZnPUMZgspaMriLmDmN1mbKzvg7vOmN1S8New379PitTtRONIj4ZK6DTaGHnZEp8qusvF/DJTOO8e0wUaGqlLm2neGt3TlbuMTu1Zyt3jVdwSa2St9q5say0k3i3CBB1ZbD2RHWtXGl28O1qbiddG7zrz6oPTlx2Xu1Z0GvlGIPE+WtpF6CtIXKJWbRr54aLut1497X5mmrPFHPtWrYqOI46M7fT9mGBzgwngdOxgov17bDvXfResONFj1MSVs4qpPYl1as459m6IzdK4naJlPmgbp8uWD+WHlRVUqQmrDl69Cjefvtt7Nq1C/feey9ycnLw9ddfo27dujj33HPjatPRd27jxo2OGpOk8nuQ4hFpmjFjhinOiCAIgiCqHBW8muxM5dtvv0X37t2RnZ2NPXv24JZbbkFOTg4WL16MvXv34uWXX46rXUeDoVWrVsXVeDKJR6Rp4sSJhn1FRUUmdc7y5rx/6YQoA2ywyFlLBLMVFmjML4EvK/WodaNlrYJxmcWFzcT0lictmFG1GvEWIj1Ogn0ZzKJkVbZMJ1nr1WaVxvcUNejamDtMPJPlLUZ+UXCxi1+JqMWCs1IJLAC2isVce27Una2WnTvByfJ7N1YYN0HVfASfZhHStcGsJawPVu3rrUmxrFT6a8uuXTxWTL6Mvg3eAsR/tg3EZX1Sv/e8pUhf38eWrNvkOuODi7UgaWaZE0pG2Afy67FTEDeXFQckR60x0fNgetvst+20mo+tjP0WQX+9xZIAIosQO0deXZvhk8xlq2JmTSli+KrEVb86MG7cOAwbNgwzZ85EZmamtr1Pnz648cYb42434ZihysKJSJPTnCwEQRAEUamQZcgRX331FZ599lnT9nPPPTeh1eVVcYDsCCbSRNpGBEEQBFE9SElJEcb/7tixA7Vr14673TPGMjR+/Hj069cPDRs2xKFDhzB16lTHIk2VQZOZ6hK/gM5Gy1xEqjkzXKaaddX3oC+auFEzPjP3WFjZwlxe4XB0HMsnR2V1gn5Vz4MFtHp0Y1/uzjN3mUivR1OX5dwH7HNAF7SsuYU84mlKmWQef/t4BWrmPtP3IYYOkKb+bJsgMrZrg1eRtnWryOL23OjqGI/trJ7ezRWrjpNAWYadtg8jmsjWheq0TYC2EyzdY6xdXVsm7SQX94J3xyXuQrJ3KyeaGDe6sIEFc1vrZ/m1AGfr+2bW6TEmpbVzW1u5y/S3ngVZM3cWc5dFwiI1fXXxg8D1J+qrcuTYz6Z5EYXxt8wuqXB5Q6vJnNG/f388+OCD+M9//gNAiVXet28f7rvvPlx33XVxt3vGWIaYSFPz5s1x7bXXIhAIOBZpIgiCIIgqDdMZSuRVDXjsscfw66+/ok6dOjh9+jS6dOmCJk2aIDMzE9OmTYu73TPGMpSISFNlIPvYdEr3gKoTDVmdCUXKVLVW1TIU1ilE83N0US4yrSwLfo4YLUOyzJbjM2uNbgatlg2pwpUlYWVfUA1eFg2TRUrWgHE2FQ1+5pcTG9WwlUOIg4vZrFOvVs3KinKnWcGCqePJK2aX00rLHeYgsDzW7F9vIbFaHi8qGwuRRSiW5Udfx2omHp3/m/vqxGpkdQ68ZIIrNWzZ/L1JxOrCrpP4Oxf//JE9N6Il9uy5Y9v4IGkR0XO0tmKapRXEavUAtOvIvgshVkNwP81q1XxZgWQCOxRnIWKwpfcAEFalvdl32E42QKtjEVhOnF1kZWVh7dq1+Oijj/D1118jEong4osvRvfu3RNq94wZDBEEQRDE2Qq5ydxx1VVX4aqrrkpae2eMm4wgCIIgzlrkJLzOYr744gu8//77hm0vv/wyGjdujDp16uDWW281iCy7hSxDSea8J1QFbtUCbLAEc0NPWXU3sWDo4lD0dlgFIDO3sKSbBrBmNSsxC7pW3W8sLFvStVkq+QzH8fsU03WpV9nOVKuBaPClfhsgDjq0ck+I3FtuzNhmdWpj4DQLuNTrDPHuMd4VlijxBFjy7h+7YGirxKxurpsowacb3SVROwCEoibsOWTuFSf95Nv1qvdRHyDLqx1riTm55KBA1MUV4nR67F1fYvT3xk29WIhcYWEnGZJVTM+xZGxXj9l1ZO3a5e9XkL/eoqBlPmGrXZua7pR6HqpLPSyb3avsb/Ysed3cN9OiivhGCX5PBBFBVgCicigoKEDXrl01zcHNmzdjxIgRGDZsGC688EI8+uijyM3NRUFBQVztk2WIIAiCICoZ5iZL5HU2s2nTJnTr1k37/Oabb6JDhw54/vnnMW7cOPzrX//SVpjFA1mGkoRmEVKHlzKzwhgCqLmnVf0YDqmWIcmv7eItQyz42UnGE232x/rCAqojupmoxIKsZfVd2V4aYmrVOouFVzl2ql+Zp7EgayYFoJ9lsqDnqDK0arkRBDHzy1q1/gssF1ErlFFp2sMdp7yCJvU5rkoixq8Nszp4BYGsrgKBOZzU5YNb7c6ft8LwlhZ9XdE2A4agZeND6WSJfqz2DWfFtVfCWYQMy+k1q4A451msIPV4sbMS8oHT0SB9XX2LwGk/l1/PDrFyuXOLkzXqPRLcc3dWF3ZPjHjY9dG1xV8HLY+hi5yBPpvn0GxtjOd8kkwFZ60/0/j9999Rt25d7fOaNWvQu3dv7XP79u2xf//+uNsnyxBBEARBEFWaunXrYvfu3QCA0tJSfP311+jYsaO2//jx4/D7/VbVY0KDIYIgCIKoZMhNZk/v3r1x33334ZNPPsHEiRORlpaGK664Qtv/7bff4vzzz4+7fXKTJUhUaVp5izB9IfVd9kXdAJK6jQUye9R9Pr9qCte5pliAdPRd2e4VBPTxLjWmNyTzpmadm8y8z5gYNqxPqBoxlmV98Kp1mLYQYHZDMPcY2x4RBMYGPCGIMOjeaEGj9u4wvdvIrLGilhHMAXidF6Yu7SZJbTTJq1k7SFPxdpEk1Qo3Crui6xQNpDa6lJz0Kyy4dm4CsqPuFT7xaWw3JzvvIHte1KJ2ri+7JK9sHx9sbUespLF6ePcYw+6ZMiUITvB/ONNzHU8bnJ4RAIRjXDN2P8VB1zEUxWF93k7c4M6S8VroiVWqmwyUm8yGqVOn4tprr0WXLl2QkZGBBQsWIBAIaPtffPFF9OzZM+72aTBEEARBEJUM6QzZU7t2bXzyySc4duwYMjIy4PUaB+QLFy5ERkZG3O3TYCgOzp81S/tbDirvkVTVCpGiWkJUq4/k1c12mEXIy3KFsXdBwDBnAeIDp+1mPx6v0arEKNPlM2MWILZN0lSrjfuB6Aw3HDYuVeVziun/NuUuEswQA54yw2c/F2TtESwLt5pVi2aiHi4o0lbVV82Z5iQnGR/UyltYhMvl+ZxZcUgNaMvDhYrAxmXzorZEAd5OYdfbyy3ndotT+4Qopxhv3XAlMSAoq+Ugs5hSO1lOz66LyGImUppWtkM9rt6CaH9v7HKsiY6ttavlCDNaiNxYQERL3+ORZ4h+d93U4WUlzJWt+mJl/QGsZTZ4VfBkyXAQySM7O1u4PScnJ6F2aTBEEARBEJVNRHY3UhTVJ+KGBkMEQRAEUdlQzFClQoMhFzR65jEAgFxDF9iborh6AgHFhcGCo70CXSCPFgytmmiZ20xgxmVl+EBnra7gyefN+l6tDVZXv5f1kw+O9Oj2qvVYCc1criZdZYlQ9QHDFqbpqO5QtCyvFcSjb4PXrmHmbJPOkI0rjHcNOEmGKeoLc1n4ueBwN1ipSyvt27envxZ8MDRPsnRTTO3IZ5b7gNdUAszB0KZ7YRckrbVnDiSOR5ncSptJc1HHGQDN6+cwLSK7ZLHmPnjVNsw6VLEQPsseYx/sntFYLjC7+nauQHaufk3x3LhwgrVbqbpDRIVCgyGCIAiCqGQkJBhAnbSeVE9oMGRDs7cfAgCUqarMvhzVEqJbLs9yejE8NkHRVvCBznb77KwQfi7o2mpJL6Bb6u0xWoSYhYi3SAGAT81NxiwidgHUfC6yoBosbTejs1sWblKptphJuwmW9Ah+Pcx9slaVdrNM3soKYZAPiDELFgVHO1F7Lg/sZsx2z51T7HJnsWXd2vVyYLGwlSOwuG9295NZhPgAZaU/YsVpRjzXQ2/5Y1YMu6Bqvi88wn5bHVvQX/7758Qaxu4Bu29mGYH4rD28fICboGfTtZT0QeIRZ9c4WZACdaVCoosEQRAEQVRryDJEEARBEJUM6QxVLjQYEtDmv/cDAHw+xXDmVxWimZvI5zWbTplbiQ9wFiVWTbY1kz9GtA8KYa5vSifEgdlezVYom/al+tVgcS/vJjMrLjO0IGObQGE7PZBY2AVFW7nHtL7aBm4a+5RIwlU77IKlzRor9sHSxnYFujoJGILtjsm7ACNcclCxy8uFzo2m5Czuv+EaCgKlywOPpmsl6o/R5cIHCju5f3b3yo3rJmZZgRvNSh/J0G4c31Ur17abtuxcYFaJWfXPX6znrkLdYjy0mqxSITcZQRAEQRDVGrIMqVyy7B/a3z7VPMIvfWczYLvgaLtAQm1WIhnLipe+w7DPCdGATed9EVqNYLR+MQtQeqBE+cwtqRcFUDtBy1PluEYU3uojUtZNxCIUPY5AKdrFFIxf0s3aEwU+W0kMaAGnDhSky2tmaxe0y+fpSmQ5skjR2Sp3mPB6adYpMfEsD7cj+nwI2pKNFqKqiCgw27Ks3XPH/Z44sfYkou4skrpg8OdhV7YqIckypATcBonUJWgwRBAEQRCVTwTWo3in9Ym4ocEQQRAEQVQyZBmqXKr9YKj9+4p7TO/68nns3St2ukC8i0pvouVVpe3cY4nAu994N4a+DA/TTdKbuTODxQCANF8IQPT6sDbKIjo3hoe9KfVDbJ+6XR/kGA2gdv4l5t1jfPJHkendSfuxXFB2rjHelSZy3/BaQQwnOkF8e06CoxMJlrYj0Xat3BSsXZH+DXOBhl3IyvHuSeH157bZtc+71PgEvG7Unsrr3iQLKw0iu4BqRqxFC4b2HeDErcUnb2Z1HCWwVbEK8icF6upDtR8MEQRBEESlQ6vJKpVqORi6bPlUBDL8AAC/x2ztMSujOn/K2DzGSQAhswhpwcwR8+yElXFiAWVlmLo0s0DZtctgljFmAUnxh7R9WWrgNIO/HqU6y5CWt4ypVLNZmpbPLFpPm4lHzLmPeOKZoblZymxSnnawlN6JRUgra6OuHfM4NgGiAUmROwhrFgrr2bCTXFDx9MmNpcMqENt0j3RBx5qVwSLgWW/R0WQa1M8hrqzhunNWo6iVx72pVv8shGWxlcvNcvnKsB6ZFw/wJcK6v4yyATxugvydKGo7eWad5M+ztPxWBQsQKVBXKlXbXksQBEEQRNKZMWMG2rdvj8zMTNSpUwcDBgzAjh07DGUOHjyIYcOGITc3F2lpaejduzd27txpKFNSUoIxY8agVq1aSE9PxzXXXIOffvop5vHnzJmDxo0bIyUlBW3btsUnn3yS1PNzCw2GCIIgCKKSYQrUibzcsGbNGowaNQrr1q3DypUrUVZWhp49e+LkyZMAAFmWMWDAAPz4449YsmQJNm7ciPz8fHTv3l0rAwBjx47F4sWL8eabb2Lt2rU4ceIErr76aoTD1pF0b731FsaOHYtJkyZh48aNuOKKK9CnTx/s27cvrmuXDCRZrj62taKiImRnZ6PNwvHwpQcARJObMnXpRGGuKZFLIlYyw3DEemzKu8D0Ab28W4w/XjhsbldTqVbdY0wpOjWgOBayA8VaWaY4zZ9ThDtX/b6AlsxVfWf6Op7odeYVY/0Sbz7XqUmr58vas3JD6gM3rdxk4mSuFkHzDgKn3bjHon2wVuTmy5jUsHXnw6s/8+4VN+q7ycJJ0k7LRJw2wa98uyJlaisXl52mEB9sLWojliaRXgtJtGBBacO5+40//6qsjwM4c+u5OYdEnlX+u6y/H1ZJliOCex6WPSg5EcKjnf6HY8eOISsrK+4+2cH+X+rS8Z/w+VLibqesrBhrPp8ad19//fVX1KlTB2vWrEHnzp3x/fffo3nz5tiyZQtatmwJAAiHw6hTpw4eeeQRjBw5EseOHUPt2rXxyiuvYNCgQQCAX375BXl5eXjvvffQq1cv4bE6dOiAiy++GHPnztW2XXjhhRgwYABmzJgRx9knDlmGCIIgCOIsoaioyPAqKSmJXQnAsWPHAAA5OTkAoNVLSYkO0LxeLwKBANauXQsA2LBhA0KhEHr27KmVyc3NRatWrfDZZ58Jj1NaWooNGzYY6gBAz549LetUBNUygBqIWha8gmX0VrMSu5kdbxFyUoeva4cpKFo4ezUuqefb1QeJS9z5M8XpoNeYf0zYF21JvfVYuowFkcpMIVqpE9IFW4fVKO6gRzlmiA88FbWr1o9w6tfsfuqX/3q4Bc9OgqT5GaOTQGp++XaiuMlBxogu9VbeTEvVKxAny5Z52Lny52EoozajWSE0hWddIc66o1nbBDnLknW/AKNEAnuG2DNvCqhWsbsu8ViCeIttshE9S/xy9kTbiwfTQgaThdX8W8bXEWmc+6Uw4OFD8MsPKaI9pnHXB4C8vDzD9ilTpqCgoMC2rizLGDduHC6//HK0atUKAHDBBRcgPz8fEydOxLPPPov09HTMmjULhYWFOHDgAACgsLAQgUAA55xzjqG9unXrorCwUHisw4cPIxwOo27duo7rVATVdjBEEARBEFWGJK0m279/v8FNFgwGY1YdPXo0vv32W83iAwB+vx+LFi3CiBEjkJOTA6/Xi+7du6NPnz4OuiJDiiGgx+93Uqc8ocEQQRAEQZwlZGVluYoZGjNmDJYuXYqPP/4YDRo0MOxr27YtNm3ahGPHjqG0tBS1a9dGhw4d0K5dOwBAvXr1UFpait9//91gHTp06BA6deokPF6tWrXg9XpNVqBDhw6ZrEUVSbWMGZJUZVGPJENSXx79C7LjZJzhiMfwkmXJ8NLj4Y7jqH1ZQljXXkTwCkeUV0R7eRDR9cXjiagvWXv5vBH4vBF4JRleSYbfG4bfG0bAo7z07fOURTwoi3hQGvGiNOIVlo1u81gGn7J9JREfSiI+lMlelMle4XHDkAwvVle7BurLCV4pAq8U0e6z/mUq4+Dll8LwS2F4IZteVnW04wjKuiEse0wBol4pAi8ilq4Lq/sqerbKC9MzDA/C8KBU9qFU9kXPQ/diZRjse8Suv18Km+4Jj909YNvZZzvs7hX/fLHPbuB/K0S/G062x3McK0TPh1Uddq9Er3iUnUXPA39dXf1uq98b/vtTqchJeLk5nCxj9OjReOedd/DRRx+hcePGlmWzs7NRu3Zt7Ny5E+vXr0f//v0BKIMlv9+PlStXamUPHDiALVu2WA6GAoEA2rZta6gDACtXrrSsUxGQZYggCIIgKpmKzk02atQovP7661iyZAkyMzM1S012djZSU1MBAAsXLkTt2rXRsGFDbN68GXfddRcGDBigBT9nZ2djxIgRuOeee1CzZk3k5ORg/PjxaN26Nbp3764dq1u3bhg4cCBGjx4NABg3bhwGDx6Mdu3aoWPHjnjuueewb98+3H777XGff6JUy8GQT4oIA6cZ/DJLfoYsCnjm846J8pc5aSe6z76M3XNvlzuNwWZQAZ8SvJzK5R2zw85iwIKq2cxPe1dnXz7B0veo5YgtezV+NvQ7jrxG0SBr8bJaQx2r2b6LaZfIIsEHvNvlJIsVjCpSO3Yyu41l6dFfW22pOKfim2jQq9P6pXL0p0kLrrZYdu8sQFtkvZCEZZzYcJws1ectR6xOdBl+YhYJJ4rilhIGdnIQLFDdhcUkkeBtt1Yz07FdLHqwOie2nf/tLxOoWJcbFaxAzZa1d+3a1bB9/vz5GDZsGADFyjNu3DgcPHgQ9evXx5AhQzB58mRD+SeeeAI+nw/XX389Tp8+jW7duuGll16C1xsNS9+1axcOHz6sfR40aBCOHDmCBx98EAcOHECrVq3w3nvvIT8/39U5JJNqqTPUdtHdCGYq6Tgk7j9tEXaDGKt9TgYkVrpAyj7lnf/y8ivG7NpjsL7oY9OY3k/QrwyG0v2lAIAUdTUZb3bXH7s0rDzkbMWYT/Djo+kNqavSAuqKMX1Z/pqz/zz8Fv+Z6OtEk7yKV5UBQFAKcfvcD4asEqzaUV6DIe2aqik4gNj/YekHDvyzavfMs/+wnWg0xSJRraNYqSr07Zv3WV8f04ozFXbu+nsWS2dIj5X7jB8MxeuecXMfrXAyAImnf5q2mc1Aj3/2q8JgiMEPhkpOhPBwx/crRGfoyrYTE9YZWrVhRrn29WymWlqGCIIgCKJKIcOZWdKuPhE31XIwJElyVB/DhXlXpCVkpTjtxJVmtipF/2YzFDtLEA9Tk+bbYxYhg/qz16gILbLuaH2x6K9mMdInyoQsrMNmxWW6+j7OjcVgekNeQbvarwXbpWm4xNZFYm4Ju7La8RzMVvkydtYj3pIlLhPDPebgl9JuRm6nHB6rPXZsuzrlnQTTSktJhBNLDn+/7BK0JkOTSLN8JtiOlRvLiYWFfY8cWU/isLDwyWntsNMHEilCW5WN1Tf9cezUqSubio4ZIoxUnSeBIAiCIAiiEjjjLENz5szBo48+igMHDqBly5aYPXs2rrjiCldtyALLjl2MD2/JsYsZsp1tWwQ88nnHRDDrjmjwb6VTxbazYHF9Od6CFVWMNh/AFAzN3jkrkAjeCuHRFdXOVzskPzbXBQpr8R3Kuw/iHGUeG+sJ60NI1Zu1i9thiKw9VhahZCoaG4/HWTAMubicz2es7pOTNngLkV37yVa9jipOi/cbjqcpnjs5J6PV0g43MWMx21KfO/3z4iYmycpy48Tq4wZeSVsPnxPPVNfFMyCy8tgdm99uZSUSXQcrq1GVsBDJSDCAOmk9qZZUgSfAOVUx0y1BEARBJAxbTZbIi4ibM8oyNGvWLIwYMQIjR44EAMyePRvLly/H3LlzyyXTrZVFyM3yUVEcEB/LY3dsHrs6ljEbomXF6hJ4K4kBXkARiC67N68Ck4X19HWi+/Xjb2P8j2ZZ0PprHquzWXXEQVyDFZq1SrKeXVplkLcrY5ejjJ/5u8k/pl1TKfHl83rcWJXs6lR0RnUncVEeLcbJuqw+0zwgWKEo2MevQLOzLsW0FOrruHiO3Vgg47I4WR1XaCVVv48xYnxiteO0rJvjOKFKWISIKsEZ8yTEk+m2pKTElMGXIAiCIKockSS8iLg5YwZD8WS6nTFjBrKzs7UXn82XIAiCIKoCbDVZIi8ifs4oNxngLtPtxIkTMW7cOO1zUVER8vLyYgoixuMes3oORWbYiNoMC1aOus904nERFtht21UhVudnt3TfyXJrK3VpPbGCaI0CfOZtygmo+3Umco8W6CgZyjC8Nn2yQn9vmLk/zLm67AJnLZdix+MycUCycoXF4x5zQrIDp3nc9NtrcsHGruvknlvtc3J/edeaoQ7XP7tl/m5gx3DjLovHFcUHPMej8m5HstxZVXlpfUUrUBNGzpjBUDyZboPBIILBYEV0jyAIgiCIM5QzZjCkz3Q7cOBAbfvKlSu1DLpuYIHDsmy2yjCciCMy+NkUC1DWl5U0i4daR1sur0rYR6JtRJgVRrAsPhZOAhRNQodhYzBpwGNedm5lmRAFW5s+C6qWRbyGviR7aXosS4VohmqaOWrL//VWpPIJdi0PnFhT7AK/rajooGmn8Okg7CxEfMB0PMvnE6ljZ/1J1lJ+oRUK0eugt4xYWYSc/J6Y8jnaWIjYMd1YiKKCm8m15Jj6wLUvVeR6dbIMVSpnzGAIqJqZbgmCIAgiYWgwVKmcUYOhqpjpliAIgiCIM5szajAEAHfccQfuuOOOpLXH5wsDoi4uq7xgInOyVidi7XZjLq+o8rKxfSttIbc4cal5Oc0gPuhadI4mzQ+boGtH+a+0/GLRI7CjA0CZzsXj4d1van99auCzKDIsVjC3KIA6WpdXqg2b9rnJTcYjcjM5DRAuLxdVxIUrUN/XWHnLyiuwWnQ8N0HWThTIrYgnMNlNe1ZuLTvs3G58ffbs81pLQhLIAm+rn5SIu6yc0Ldf4cHVEQjDCVzVJ+LmjBsMEQRBEMTZBiVqrVyq5WDIbkm4E/T5sNjzZzXHlAxlTaaQmGX5OiKrj5V1h1eXFuVU8wr28fAWFlOQtI0VySrTvWEfr0AtsOjwM2XWfpk6sw1xAedKu+o2y7sjOAdutppoALSV8rSTXF9W2KlAJ5rJPVZZu+th+XwY5BSc/WDHKyNgdR38mlJytP8h2af2qXwUneOxHrmxCDlZfm9lEXKzfN6JhcTqe66vW95WHSuc9N9qMUVl9ZmoeKrlYIggCIIgqhQUQF2p0GCIIAiCICqbiAwkEl8XocFQIlT7wZDIPWQVOO0kMFniXFb2yVit2/dYJFDV9uu+NLwpl3dFuAnMZufO1KYN+ySx+0PkBnHjMuGVrVlyV0NZznXGAp5LwtaPcNBTBgAIqc5A5kJxE9DLa9HYIXJbxAqqjkcNWug6caG0zIgnSNc+Ga0Tt419UHu0bwn+sMuxkwp7OBelI5cld4p2rjCr4GRXyVNtEsG6gXeP2bmO2O+JXRlez8l079XLbAxStw+YdtInN9i5BJmb3c4dnqzgeOLMoNoPhgiCIAii0iE3WaVSLQdDEVnSlsIne9mvG6Vou7L8Pj5IWqTs6vWIA6ntcrHFCo7Ww1uLRDnKnOQk47dFg5eNx/HprGOa1Ygtu9fUq9UyqoXImM9M+duvBlB7ba43P1NMFiZrUTnNNk2Bsg6sVInMfCM2gbFOnqVYViS776WdBYdZKpw8h/EEr2uB2JxlxNgHK6V2j+3+eLG14PDK+E6W6LsKtLc/F711zK8tZFDb16xq1sv7nahfx8KRgnaVsAIlOBiqSLXss5BqORgiCIIgiCoFWYYqlaowHCYIgiAIgqg0qqVlSKS3I8KNy4vHifuND9Q2BFA7cIsxWD07d1is/mmJFWX22bqsXVuavhCfuNEmcJYPxBYFUGt/q8N3n9ZDZUOpwMytJeD0KccMsaBO1Vxvd152wcXxaA9p9ZPghhMFZTtxvcQqE29y0EQ0k5zgREPJKSKdK9N3wWGQt1I2ObpOburwbiw7zaB4XF5OXIz8vbC6hnqYy4zXILO9znEkaOXdtraaSial+UrUFYrISMjVRavJEqJaDoYIgiAIokohR7RVkHHXJ+Km2g6GmHVIlJssHqxUoEXH5OuIZi6sHb9qJXHTT36mJeqTm8Bxq+XJHoHVqoyftXJWH7tga3tLjXE2yfKWsWNHFamjxy+JKI+3P6xcw6BXWWof1urEVqZm1hS91cRq9u7IOsMFi8ZljdHNXuNRirZC33/WL9H580StXuoG2b0lh7cqGSwLUvztMER9iWfxhFXgtOjeu1GgtlKKdoKVNdb+eO6D2/XnHK9CuL5uRJW8cGKpdXNubqxImkWcPe8J3AfizKbaDoYIgiAIospAAdSVCg2GCIIgCKKyoZihSqVaDob0riaZc+O4hQUv8+Z5UfC1bGHO9gpcYMxs60QzyMotZut2ipEs1o0LQe+aslKcdhOUqrm+HOgXaccBU86OuqHKVDdFiWRMyKmpe9vccpNrw8btlJBej4MyvMuLd7UJselTPGradi5ArxYQy7nLXGAXhM0/O7yLKlmB23Zq6Xw/+XuudyNaqUbz11D03FipJsert+NETToZJOI20+6nLuYl1vfdLgGsm4ByVpd3lxHVj2o5GCIIgiCIKgW5ySqVajkYkmE/kxEtdY+Fm7J8wKM2G9HnG/MYrUV2gdmxrDl2y0WdtG91rUS5yawQ9Y0PwDYFZtsFWzuYwZVZzLJFRLRAYYv9ScoNxRDdE6vZO9tudx95a49VXiwA8PCWSUH+tWQGZicqSxALvaWItxLxViQnz2oylvAb20uu4jSPk+e7oixEycbJsx+rrhv03xuvFIFczvfOgIwEB0NJ60m15Mz6ZhAEQRAEQSSZamkZIgiCIIgqBbnJKpVqORiKQHL03Dhxl1mVYdv1JmwrjaAIC8LWuYJ4XSG+rsitxQeaigKR+bJ83yROz0dU301QNO/y8knmIEnLd0HSVV67xYnbo0RN4hrwKDpDQZSZ6rIkrvGY1u2CXS1dGILjsLJWfYgnyFMUaGoK/tWSj8ZnKHaTjJY/hhu3mdW9Fj1/0UBnPhDcveZPsnETOJ38YztvPxnK4rbaQQ764sS9x7vSkuUKDEW8CEUqUMgwEoGzJRV29Yl4ITcZQRAEQVQ2zDKUyMsFM2bMQPv27ZGZmYk6depgwIAB2LFjh6HMiRMnMHr0aDRo0ACpqam48MILMXfuXG3/nj17IEmS8LVw4ULLYxcUFJjK16tXz931SjLV0jIUCzY706wxNs8Ybx3h8405WcbvVZd6e3xlprI8zHLD6rjpk117driZkVuVCXgU64NP0G9mLeKtP3bH8mjWDPEyZv22iFqXLbsPebymNj2aiU88u7QL4AxzVipR/iuGX70OIiuQlRWDzcwjanAna8OAi5xW/LmIAnx5xWk3FhwnqtUMdo9Y+1ZL1/Vl7CwVZmVoPoA6+tkvlUGIZC4bC/01ZPWsltInw/oo7IODdp3kEGPwOeHiXSgRq6zt/bSykgos16GIA8kJUzvu65wtrFmzBqNGjUL79u1RVlaGSZMmoWfPnti2bRvS09MBAHfffTdWrfr/7Z17VFTl+se/M1yG4SqhwnAXuohKprk0kLysY5mWYZ1MLQOWZsu84OWk5M8KvF9Ks1rnmJqRpK70lHS0C6gnlYWJt5MnU45gopIHMrxAHRNmmOf3B+zN7D17bgw04jyftVy63/t+Zs/47Od53ufdjy1btiA2NhZ79uzB1KlTER4ejtTUVERFRaGqqkoy7oYNG7Bq1SqMGDHC6vw9e/bEvn37xGsPD9d+FqwMMQzDMIyr+YNjhgoKCiTXubm56Nq1K06cOIFBgwYBAA4fPoz09HQMGTIEAPDSSy9h/fr1OH78OFJTU+Hh4WFm0cnPz8fYsWPh7+9vdX5PT0+XW4NMYTcZwzAMw7gaIzn/xwlqa2sBAHfddZdYlpKSgl27duHy5csgIuzfvx9lZWUYPny44hgnTpzAyZMnMWnSJJvzlZeXIzw8HN26dcO4ceNw/vx5p9bvLGwZasauQGeFcmNz9LNQZTRaCx5VSfq0zKdu/ttLLPPwaHYJNLuVhOBqLyvuMbP5hIBbMcjb/i+LqQzk/ewJihTcYYILTH5tiqfgQrOW5dlC8LBYbocbxyhmBlb4HEV3m7Kp1hFzulKOH8EVYI8pX+6WEA60FOWucKuiy0FwOVpxUVlyPZjKUO7qkruz7MGe/Dpm2aut9ZVluBZlakXeZi4Yk2Hlbkh7gqst3ZPp+p3JK2Tp+VZcSzsFetvjXpe3FbCV58l0XGeDq1vT1hJK62yrzOZ/NHV1dZJrjUYDjUZjtQ8RYc6cOUhJSUGvXr3E8nfffReTJ09GZGQkPD09oVar8cEHHyAlJUVxnE2bNiEhIQHJyclW5xswYADy8vJw77334ueff8aSJUuQnJyM06dPIyQkxM47bVtYGWIYhmEYF0NkBFHrFTChb1RUlKQ8OzsbOTk5VvtOnz4d33//PYqLiyXl7777LkpKSrBr1y7ExMSgqKgIU6dOhU6nw7BhwyRtf//9d2zbtg2vv/66zbWaxhMlJiYiKSkJ8fHx2Lx5M+bMmWOzf3vglsoQkcrsjcvUEmLpTcOaS9aeTM4eYoBwc/CsYFVq7mtobJlXqPNs3vNNHtIviZdHSxCtPJjaLDN0819qhaXZYy0ys5Q5sJXeHuR9lORvydJhz/lrwmetlwVQe5n88MifBy+VQpByM45kNZafpyVvay3Y2t75AZic6yRYTxSC0G0ENCsGoQt9RYtT22Ip2Nqe4Gvr49q/LVxPyj+DShYeeXC0sE6lAOq2yLYtf4YdpS3ODLM2hiNnDrZYOmVnkalsP1XtbaVxxDrYbpCTrq7m/6AqKysRGBgoFtuyCs2YMQO7du1CUVERIiMjxfLff/8d//d//4f8/Hw8/vjjAID7778fJ0+exFtvvWWmDH366ae4efMm0tLSHF66n58fEhMTUV5e7nDftsItlSGGYRiGuRMJDAyUKEOWICLMmDED+fn5OHDgALp16yap1+v10Ov1UKtlO2s9PGBUyGm0adMmPPnkk+jSpYvDa66vr0dpaSkefvhhh/u2FawMMQzDMIyrIYJTB4w5uJts2rRp2LZtG/7xj38gICAA1dXVAICgoCBotVoEBgZi8ODBmDt3LrRaLWJiYnDw4EHk5eVhzZo1krHOnTuHoqIifPXVV4pz/elPf8JTTz2F6dOnAwBeeeUVjBo1CtHR0bhy5QqWLFmCuro6pKent+LG2wa3VIaMpLIYJG2KpWfLnr4Cpm4oW/1M23oo+bRM1tRoEqgtP6jVksna1NRuy2Wi5D6zlCfJWrC1gKF5vWoPk9w+kLrFDM0maiXXgG0Xj4JsVdI6YXwh31Cj2iTPjEoewCvNgaJkPjc0B+42No8vukFNTPpmrgHxfoySMZRQQ9n9KWkjc8MJrgch4FvyLFhy29hxGKaYs8mOH2tHAqcFV5JeXK9td0hjc1u5TE0xP7jW/KfO0lyNYqC9QqZoO+7N1j0oubwcySou0JqMy9bcQPKAdGvPpoDwjMqD/ZWQf15G0Q1nx/jyTQQK67Z0b/a42JT6NkL9x7rNjEbL31F7cDDeSEieKGybF8jNzUVGRgYA4JNPPsH8+fPx/PPP49q1a4iJicHSpUsxZcoUSZ8PP/wQERERePTRRxXn+vHHH1FTUyNe//TTTxg/fjxqamrQpUsXPPTQQygpKUFMTIxD99CWuKUyxDAMwzDuDNlhSQoLC0Nubq7NdsuWLcOyZcss1l+4cEFy/cknn9gc84/GLZUhW2d1KWWPbi2OjGFqDRIsLJ7NgdPCtdI5aaLFpvla6WwvW+uzJ5Ba3qZlXpMzviBke25+o2r+y1P2Btk0IJrbSt/6PBUyLMu31lvbJi/2kdUJ13qSWogAwMPD0Dy+7bcruUXIEcQ+dgSNGkVLme1s4yIqedZq08BeC2/XKqk1qWlO6VZ9AaVt7I4gt5rIrS+OBB/bk+m6vd/sldZgzbIEKFs+rZ1vZzanjezopukbbAX7mz4LepnFTf58eziwKcKa1U5cm8yiam0cuQXKdN02A73t+a45kE6l3fiD3WSMFLdUhhiGYRjmdoKMRpATbjJntuUzrAwxDMMwjOthy5BLcXtlSH6wqimW3EJtjVotuMDIrEzAw0ZwtGQ82RfKmguMxPu3310m5gMSBzHJjySa8KVmbTE42iRaUjy0VejeXNXiNmt50zE7qFVo7MBHYs3kLZjsPWVyVzLBW3KPWXOB2eNSMwuYFuaWHz5q9XDNZjelEHAKBRmS3FVlJdjageBcR1w9lt5h1VbmlbukWg53tZyt2porTZ4zyBEXnXwNknVaCAZ35OBXR/IKyQ8Ktpb12d5y0zpx3Sbuaw/xN0DmxrLiHpM/t/a4oCzOo5RF3sImBaVDXS2twVKQN3Pn4/bKEMMwDMO4HCNZTWhrE7YMOYXbK0MtVg7zAGo5gtVEyUJkyaJizZrkKcsqbWoNUqvMrUWmmGadFoOtbbzRKgaOW+2h3E9+rbQrQbQQGS3PLSBYiOQZqNUKopMHUsvv2erbpqzK1KIgfBHkAZotQdctQamW5hC3udvxxqvYxkKgZ6P4hm4ePCov0wspDMQt9yZB4rLAXfE8M8W3bcFq0nqEvpIAXxvWEdHKoWhxaarTy8qVUgIIVhkhk7jS1n25Zahlnqa2StYkSxah1lh9TAOhraU1kLdtmVO27ja2YrSk6rD9FFiyoJg+52aWJrHcvJ+wiUIeZO2spcZSxuzbwgJEBPt+ka31Z1rLbfAEMAzDMAzDuI4OowzFxsZCpVJJ/rz66quuXhbDMAzDOA0Zyek/TOvpUG6yRYsWYfLkyeK1v7+/C1djH0oZqFUyF5hStmkxq7RolifFvkCLq8iSS81T7YTpFdZdXJbmFdwJ8hxIRkWzuRB47MwaZQeVwtyNIMhJKa+J6A4T3EqkXN/0b1mgpspyUKfl9ZqvQe7iMs+TZC1jr7K7UJKPRQywlbqB5G6zprZ23UbzODYyLpvmLxKeeZlbSB5srVfIeSTmwbHiHhLWomnOLm5UCTlzLGfZbvn85MGz5m1EZG3tyUxtDUtZpD3EZ9Zo1tbyc9I2Gz0cySskIDzDrc3eLSLbRGHPPbU8W3a41Ej+/NkOAG93yAjn3GS8td4ZOpQyFBAQgLCwMFcvg2EYhmGYO4gOpQytXLkSixcvRlRUFMaMGYO5c+fC29vbYvv6+nrU19eL13V1dQCaLBnWgqFtYe28MaUM0Ur9lDB9+xPGkVuEPOyw8liy5Fiz8NizxdbSm6i1OeSrNZicqSYGaJLUQmEtELw1Zzi1BIIam8dvCs5U3m4tDfJsVMh0Lb/HxtZkZW4eQnkNsDi3HC9b52BZXbeypUgJ+bZ/pQzAdmHh7DR5iK7SPVvKkGyaSVx+1pkQQK20UUJcv9FLcamm30e1zLJk38YDucyEtAGWnxdLFjOlddsK5LfWRglLKRwES4u1jQH2fG/kqQus/R41ikHmUllZe0bl6TwUzzFzICVAI6lalWW+tZCRQE7sJrPneA3GMh1GGZo5cyb69u2L4OBgHD16FPPnz0dFRQU++OADi32WL1+OhQsX/oGrZBiGYZhWwG4yl6IiF6qTOTk5NpWVY8eOoV+/fmbln332GZ555hnU1NQgJCREsa/cMlRbW4vo6Gj0ypsOD18NAOWT2B2RiHkckP19BZTiKIRhzOOLzB94ecyQpa3w1s5kc8Qnby1GwVZSM1O8PZre2r2a70m49hTfHM0TBqpkb4Zq2VZn01gF+TZ8oY0QT+JlslaV7I2czN5wTeZsw5dF6+dqmc8tx0t8PlpvMRTXYqXemmXIEeTxRZbGccQy1GhiGVKZfcZSy5BSzJCteB2g5bmztQXeFEvJGxuaLVFK88rHF+YlE8uQPMmiWO5AskUl2sIyZO17Y24ZsntpIta+L/LvgDXLkNjGhmWo4X96bHpsN27cuIGgoCDHF2wHdXV1CAoKQgpGwhPKVkp7MECPYnyF2tpaBAYGtuEK3QOXKkM1NTWoqamx2iY2NhY+Pj5m5ZcvX0ZkZCRKSkowYMAAu+b76aefEBUV1aq1MgzDMO5JZWUlIiMj22XsW7duoVu3bqiurnZ6rLCwMFRUVCj+n8lYx6Vuss6dO6Nz586t6vvdd98BAHQ6nd19wsPDUVlZiYCAAKhaY8JxAXV1dYiKikJlZSVr++0Ay7f9YNm2Lyzf9kWQ75kzZxAeHt5u8/j4+KCiogINDQ1Oj+Xt7c2KUCvpEDFDhw8fRklJCYYOHYqgoCAcO3YMs2fPxpNPPono6Gi7x1Gr1e2m3bc3gYGB/IPXjrB82w+WbfvC8m1fIiIioFa375Z7Hx8fVmJcTIdQhjQaDbZv346FCxeivr4eMTExmDx5MubNm+fqpTEMwzAM08HpEMpQ3759UVJS4uplMAzDMAxzB9JhjuNwVzQaDbKzs6HRaFy9lDsSlm/7wbJtX1i+7QvL171w6W4yhmEYhmEYV8OWIYZhGIZh3BpWhhiGYRiGcWtYGWIYhmEYxq1hZYhhGIZhGLeGlaHbgJycHKhUKsmfsLAwsZ6IkJOTg/DwcGi1WgwZMgSnT5924Yo7HpcvX8aECRMQEhICX19fPPDAAzhx4oRYzzJuHbGxsWbPrkqlwrRp0wCwXJ3FYDDgtddeQ7du3aDVahEXF4dFixbBaGw5h4tl7By//vorZs2ahZiYGGi1WiQnJ+PYsWNiPcvXTSDG5WRnZ1PPnj2pqqpK/HPlyhWxfsWKFRQQEECfffYZnTp1isaOHUs6nY7q6upcuOqOw7Vr1ygmJoYyMjLoyJEjVFFRQfv27aNz586JbVjGrePKlSuS53bv3r0EgPbv309ELFdnWbJkCYWEhNAXX3xBFRUV9Pe//538/f1p7dq1YhuWsXM8++yz1KNHDzp48CCVl5dTdnY2BQYG0k8//URELF93gZWh24Ds7Gzq3bu3Yp3RaKSwsDBasWKFWHbr1i0KCgqi999//w9aYccmKyuLUlJSLNazjNuOmTNnUnx8PBmNRpZrG/D444/TxIkTJWVPP/00TZgwgYj42XWWmzdvkoeHB33xxReS8t69e9OCBQtYvm4Eu8luE8rLyxEeHo5u3bph3LhxOH/+PACgoqIC1dXVePTRR8W2Go0GgwcPxrfffuuq5XYodu3ahX79+mHMmDHo2rUr+vTpg40bN4r1LOO2oaGhAVu2bMHEiROhUqlYrm1ASkoK/vnPf6KsrAwA8O9//xvFxcUYOXIkAH52ncVgMKCxsdHsXDCtVovi4mKWrxvBytBtwIABA5CXl4fCwkJs3LgR1dXVSE5OxtWrV1FdXQ0ACA0NlfQJDQ0V6xjrnD9/HuvWrcM999yDwsJCTJkyBZmZmcjLywMAlnEb8fnnn+PGjRvIyMgAwHJtC7KysjB+/Hh0794dXl5e6NOnD2bNmoXx48cDYBk7S0BAAJKSkrB48WL897//RWNjI7Zs2YIjR46gqqqK5etGdIizye50RowYIf47MTERSUlJiI+Px+bNm/HQQw8BAFQqlaQPEZmVMcoYjUb069cPy5YtAwD06dMHp0+fxrp165CWlia2Yxk7x6ZNmzBixAiEh4dLylmurWf79u3YsmULtm3bhp49e+LkyZOYNWsWwsPDkZ6eLrZjGbeejz/+GBMnTkRERAQ8PDzQt29fPPfcc/jXv/4ltmH53vmwZeg2xM/PD4mJiSgvLxd3lcnfQq5cuWL2tsIoo9Pp0KNHD0lZQkICLl26BAAs4zbg4sWL2LdvH1588UWxjOXqPHPnzsWrr76KcePGITExES+88AJmz56N5cuXA2AZtwXx8fE4ePAgfvvtN1RWVuLo0aPQ6/Xo1q0by9eNYGXoNqS+vh6lpaXQ6XTiF3Lv3r1ifUNDAw4ePIjk5GQXrrLjMHDgQJw9e1ZSVlZWhpiYGABgGbcBubm56Nq1Kx5//HGxjOXqPDdv3oRaLf2Z9vDwELfWs4zbDj8/P+h0Oly/fh2FhYVITU1l+boTLg3fZoiI6C9/+QsdOHCAzp8/TyUlJfTEE09QQEAAXbhwgYiatnYGBQXRzp076dSpUzR+/Hje2ukAR48eJU9PT1q6dCmVl5fT1q1bydfXl7Zs2SK2YRm3nsbGRoqOjqasrCyzOparc6Snp1NERIS4tX7nzp3UuXNnmjdvntiGZewcBQUF9PXXX9P58+dpz5491Lt3b+rfvz81NDQQEcvXXWBl6DZAyFvh5eVF4eHh9PTTT9Pp06fFeqPRSNnZ2RQWFkYajYYGDRpEp06dcuGKOx67d++mXr16kUajoe7du9OGDRsk9Szj1lNYWEgA6OzZs2Z1LFfnqKuro5kzZ1J0dDT5+PhQXFwcLViwgOrr68U2LGPn2L59O8XFxZG3tzeFhYXRtGnT6MaNG2I9y9c9UBERudo6xTAMwzAM4yo4ZohhGIZhGLeGlSGGYRiGYdwaVoYYhmEYhnFrWBliGIZhGMatYWWIYRiGYRi3hpUhhmEYhmHcGlaGGIZhGIZxa1gZYjocQ4YMwaxZs+6oeTMyMjB69GinxoiNjYVKpYJKpcKNGzcstvvoo4/QqVMnp+ZiLJORkSF+Dp9//rmrl8MwjB2wMsQwdrJz504sXrxYvI6NjcXatWtdtyAFFi1ahKqqKgQFBbl6KXc8Bw4cUFQ833nnHVRVVblmUQzDtApPVy+AYToKd911l6uXYJOAgADxpG1Xo9fr4eXl5epl/OEEBQWxMsowHQy2DDEdnuvXryMtLQ3BwcHw9fXFiBEjUF5eLtYLbqHCwkIkJCTA398fjz32mOTt3WAwIDMzE506dUJISAiysrKQnp4ucV2ZusmGDBmCixcvYvbs2aJLBABycnLwwAMPSNa3du1axMbGiteNjY2YM2eOONe8efMgPxWHiLBq1SrExcVBq9Wid+/e+PTTT1sln48++gjR0dHw9fXFU089hatXr5q12b17Nx588EH4+PggLi4OCxcuhMFgEOv/85//ICUlBT4+PujRowf27dsncQNduHABKpUKO3bswJAhQ+Dj44MtW7YAaDrRPiEhAT4+PujevTv+9re/Sea+fPkyxo4di+DgYISEhCA1NRUXLlwQ6w8cOID+/fvDz88PnTp1wsCBA3Hx4kW77t3Wfa1ZswaJiYnw8/NDVFQUpk6dit9++02sv3jxIkaNGoXg4GD4+fmhZ8+e+Oqrr3DhwgUMHToUABAcHAyVSoWMjAy71sQwzO0HK0NMhycjIwPHjx/Hrl27cPjwYRARRo4cCb1eL7a5efMm3nrrLXz88ccoKirCpUuX8Morr4j1K1euxNatW5Gbm4tDhw6hrq7OarzHzp07ERkZKbqlHHGLrF69Gh9++CE2bdqE4uJiXLt2Dfn5+ZI2r732GnJzc7Fu3TqcPn0as2fPxoQJE3Dw4EH7BQPgyJEjmDhxIqZOnYqTJ09i6NChWLJkiaRNYWEhJkyYgMzMTJw5cwbr16/HRx99hKVLlwIAjEYjRo8eDV9fXxw5cgQbNmzAggULFOfLyspCZmYmSktLMXz4cGzcuBELFizA0qVLUVpaimXLluH111/H5s2bATR9LkOHDoW/vz+KiopQXFwsKqsNDQ0wGAwYPXo0Bg8ejO+//x6HDx/GSy+9JCqf1rB1XwCgVqvx7rvv4ocffsDmzZvxzTffYN68eWL9tGnTUF9fj6KiIpw6dQorV66Ev78/oqKi8NlnnwEAzp49i6qqKrzzzjsOfTYMw9xGuPSYWIZpBYMHD6aZM2cSEVFZWRkBoEOHDon1NTU1pNVqaceOHURElJubSwDo3LlzYpu//vWvFBoaKl6HhobSm2++KV4bDAaKjo6m1NRUxXmJiGJiYujtt9+WrC07O5t69+4tKXv77bcpJiZGvNbpdLRixQrxWq/XU2RkpDjXb7/9Rj4+PvTtt99Kxpk0aRKNHz/eolyU1jN+/Hh67LHHJGVjx46loKAg8frhhx+mZcuWSdp8/PHHpNPpiIjo66+/Jk9PT6qqqhLr9+7dSwAoPz+fiIgqKioIAK1du1YyTlRUFG3btk1StnjxYkpKSiIiok2bNtF9991HRqNRrK+vryetVkuFhYV09epVAkAHDhyweN+WsHVfSuzYsYNCQkLE68TERMrJyVFsu3//fgJA169fV6w3lQ/DMLc3HDPEdGhKS0vh6emJAQMGiGUhISG47777UFpaKpb5+voiPj5evNbpdLhy5QoAoLa2Fj///DP69+8v1nt4eODBBx+E0Whs0/XW1taiqqoKSUlJYpmnpyf69esnusrOnDmDW7du4ZFHHpH0bWhoQJ8+fRyar7S0FE899ZSkLCkpCQUFBeL1iRMncOzYMYnFpLGxEbdu3cLNmzdx9uxZREVFSWKRTGVlSr9+/cR///LLL6isrMSkSZMwefJksdxgMIgxNSdOnMC5c+cQEBAgGefWrVv48ccf8eijjyIjIwPDhw/HI488gmHDhuHZZ5+FTqezee+27svX1xf79+/HsmXLcObMGdTV1cFgMODWrVv43//+Bz8/P2RmZuLll1/Gnj17MGzYMPz5z3/G/fffb3NuhmE6FqwMMR0aksXamJabulLkgbwqlcqsr9z1Ymlsa6jVarN+pu46exAUsC+//BIRERGSOo1G49BY9tyD0WjEwoUL8fTTT5vV+fj4mMnSGn5+fpJxAWDjxo0SZRVoUjaFNg8++CC2bt1qNlaXLl0ANMUcZWZmoqCgANu3b8drr72GvXv34qGHHnLqvi5evIiRI0diypQpWLx4Me666y4UFxdj0qRJ4mf24osvYvjw4fjyyy+xZ88eLF++HKtXr8aMGTPskgfDMB0DVoaYDk2PHj1gMBhw5MgRJCcnAwCuXr2KsrIyJCQk2DVGUFAQQkNDcfToUTz88MMAmiwI3333nVkwtCne3t5obGyUlHXp0gXV1dUSBeLkyZOSuXQ6HUpKSjBo0CAATZaSEydOoG/fvuI9aTQaXLp0CYMHD7brHizRo0cPlJSUSMrk13379sXZs2dx9913K47RvXt3XLp0CT///DNCQ0MBAMeOHbM5d2hoKCIiInD+/Hk8//zzim369u2L7du3o2vXrggMDLQ4Vp8+fdCnTx/Mnz8fSUlJ2LZtm01lyNZ9HT9+HAaDAatXr4Za3RQ+uWPHDrN2UVFRmDJlCqZMmYL58+dj48aNmDFjBry9vQHA7BlgGKbjwcoQ06G55557kJqaismTJ2P9+vUICAjAq6++ioiICKSmpto9zowZM7B8+XLcfffd6N69O9577z1cv37dqkUkNjYWRUVFGDduHDQaDTp37owhQ4bgl19+wapVq/DMM8+goKAAX3/9teQ/+pkzZ2LFihW45557kJCQgDVr1khy1QQEBOCVV17B7NmzYTQakZKSgrq6Onz77bfw9/dHenq63feVmZmJ5ORkrFq1CqNHj8aePXskLjIAeOONN/DEE08gKioKY8aMgVqtxvfff49Tp05hyZIleOSRRxAfH4/09HSsWrUKv/76qxhAbctilJOTg8zMTAQGBmLEiBGor6/H8ePHcf36dcyZMwfPP/883nzzTaSmpmLRokWIjIzEpUuXsHPnTsydOxd6vR4bNmzAk08+ifDwcJw9exZlZWVIS0uzee+27is+Ph4GgwHvvfceRo0ahUOHDuH999+XjDFr1iyMGDEC9957L65fv45vvvlGVLJjYmKgUqnwxRdfYOTIkdBqtfD397f7s2EY5jbCZdFKDNNK5IHM165doxdeeIGCgoJIq9XS8OHDqaysTKzPzc2VBAwTEeXn55Pp46/X62n69OkUGBhIwcHBlJWVRWPGjKFx48ZZnPfw4cN0//33k0ajkYy1bt06ioqKIj8/P0pLS6OlS5dKAqj1ej3NnDmTAgMDqVOnTjRnzhxKS0uTBGsbjUZ655136L777iMvLy/q0qULDR8+nA4ePGhRLkoB1ERNQcqRkZGk1Wpp1KhR9NZbb5nJo6CggJKTk0mr1VJgYCD179+fNmzYINaXlpbSwIEDydvbm7p37067d+8mAFRQUEBELQHU3333ndn8W7dupQceeIC8vb0pODiYBg0aRDt37hTrq6qqKC0tjTp37kwajYbi4uJo8uTJVFtbS9XV1TR69GjS6XTk7e1NMTEx9MYbb1BjY6NFOThyX2vWrCGdTic+N3l5eZKg6OnTp1N8fDxpNBrq0qULvfDCC1RTUyP2X7RoEYWFhZFKpaL09HTJ3OAAaobpMKiIWhEYwTB3OEajEQkJCXj22WclWadvZ2JjYzFr1qw/5KiSQ4cOISUlBefOnZMEpjMtqFQq5OfnO33MCsMw7Q/nGWIYNCXX27hxI8rKynDq1Cm8/PLLqKiowHPPPefqpTlEVlYW/P39UVtb26bj5ufnY+/evbhw4QL27duHl156CQMHDmRFSIEpU6awu4xhOhhsGWIYAJWVlRg3bhx++OEHEBF69eqFFStWiEHOHYGLFy+Ku6Di4uLEoOC2IC8vD4sXL0ZlZSU6d+6MYcOGYfXq1QgJCWmzORylZ8+eFjNRr1+/3mLQdntz5coV1NXVAWhK4WC6w45hmNsTVoYYhumQmCp/ckJDQ81yFzEMw1iClSGGYRiGYdwajhliGIZhGMatYWWIYRiGYRi3hpUhhmEYhmHcGlaGGIZhGIZxa1gZYhiGYRjGrWFliGEYhmEYt4aVIYZhGIZh3BpWhhiGYRiGcWv+H+rTQEf00A+JAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "p = zarr_CHL.sel(time='2020-07-02').sst.plot(y='lat', x='lon')"
+ ]
+ },
{
"cell_type": "code",
"execution_count": 10,
@@ -2806,7 +2826,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 10,
@@ -2815,7 +2835,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHFCAYAAAA9occoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hURdbG39txenJmBhiSJEmKogi4CiZAVxTd1V1dFUE/M0YwCypBRVFWXcyAq65pTbsqgkpYECQIgqKASGaGSUye6Z7uvt8fVeem7gk9meH8nmee7r5dVbdu6qk659R7FFVVVTAMwzAMwzD1xtbaHWAYhmEYhjna4AEUwzAMwzBMhPAAimEYhmEYJkJ4AMUwDMMwDBMhPIBiGIZhGIaJEB5AMQzDMAzDRAgPoBiGYRiGYSKEB1AMwzAMwzARwgMohmEYhmGYCOEBFNOu+O677zB9+nQUFRWFfDdy5EiMHDmyxfvUEuzYsQP33HMPTj75ZCQmJiI5ORkjRozAhx9+GLZ8bm4uJkyYgNTUVERHR2PYsGH45ptvTGVKSkowc+ZMjBw5EhkZGYiNjcXAgQPx5JNPoqqqKqTN6upqPProo+jWrRvcbjf69u2L559/PqLjqE+/AMDn8+GRRx5B9+7d4XK50LVrV9x///2orKyMaH/PP/88+vbtC7fbje7du+PRRx9FdXW1qcxHH32Ev/71r+jZsyc8Hg+6deuGK6+8Ejt37oxoXwzDtDNUhmlHzJkzRwWg7t69O+S7n3/+Wf35559bvlMtwPPPP6/27dtXnTlzprpkyRL1iy++UK+55hoVgProo4+aylZVVakDBgxQO3furL711lvqkiVL1Isuukh1OBzq8uXLtXJbt25VU1NT1TvvvFP99NNP1W+++UadPn26GhUVpZ599tlqMBg0tXvdddepbrdbfeqpp9Rly5ap9913n6ooijpz5sx6HUN9+6WqqnrJJZeoUVFR6qxZs9SlS5eqjz32mOpyudQLL7yw3udsxowZqqIo6v33368uW7ZMfeqpp1SXy6Vef/31pnKnnnqqOm7cOPWNN95Qly9frv7zn/9Ujz/+eDU2Nlb96aef6r0/hmHaFzyAYtoVtQ2g2jN5eXkhAxpVVdULLrhAjY6OVquqqrRtL774ogpA/e6777Rt1dXVar9+/dRTTz1V21ZWVqaWlZWFtEnn+H//+5+27aefflIVRVFnzZplKnv99derHo9HLSgoqPMY6tuvNWvWqADUZ555xlR/1qxZKgB1yZIlde4rPz9fjYqKUv/v//7PtH3mzJmqoiimgfbhw4dD6h88eFB1Op3qpEmT6twXwzDtE3bhMe2G6dOnY8qUKQCA7t27Q1EUKIqC5cuXAwh14e3ZsweKomDOnDl48skn0a1bN3g8HowcORI7duxAdXU17rvvPnTs2BEJCQkYP348cnNzQ/b73nvvYdiwYYiJiUFsbCxGjx6NTZs2tcQha6SmpkJRlJDtp556KioqKlBYWKht+/jjj9GnTx8MGzZM2+ZwOPC3v/0N69atw8GDBwEAMTExiImJCdsmAOzfv1/b9sknn0BVVVx77bWmstdeey0qKyuxePHiOo+hvv1avXo1AOD888831f/jH/8IAPj3v/9d574WL16MqqqqsP1VVRWffPKJti09PT2kfseOHdG5c2fTOWAY5tiCB1BMu+G6667DbbfdBkDEraxZswZr1qzBSSedVGu9F198EatXr8aLL76I1157Db/++isuvPBCTJo0CXl5eXjjjTfw1FNP4euvv8Z1111nqjtr1iz89a9/Rb9+/fD+++/jn//8J0pLS/GHP/wB27Ztq7PPfr+/Xn+qqjbonCxbtgxpaWmmQcBPP/2EQYMGhZSlbT///HOtbX777bcAgP79+5vaTEtLQ0ZGRtg2f/rppzr7Wt9++Xw+AIDb7TaVo89btmyp174AYODAgabtmZmZSE1NrbO/v//+O/bu3Ws6BwzDHFs4WrsDDNNUdO7cGV26dAEADB48GN26datXvcTERHzyySew2cR8Ij8/H3fccQf69u2LTz/9VCv366+/4rnnnkNJSQni4+Oxf/9+TJs2Dbfeeiv+/ve/a+XOPfdc9OrVC48++ijee++9Gve7Z88edO/evV59XLZsWcQB8K+99hqWL1+OefPmwW63a9sLCgqQnJwcUp62FRQU1Njmli1b8NRTT2H8+PGmwU5NbcbExMDlctXaZqT96tevHwBhiTKev1WrVtXZf+O+3G53WAtbcnJyrW34/X5MmjQJsbGxuPPOO+vcF8Mw7RMeQDHHPOeff742eAKA448/HgBwwQUXmMrR9n379mHAgAH46quv4Pf7cfXVV8Pv92vloqKicOaZZ2LZsmW17rdjx45Yv359vfrYp0+fepUjvvzyS9xyyy3405/+pFnljIRz99X13Z49e/DHP/4RWVlZeO211xrUpqqqCAQCpu8cDkdIudraGDt2LHr27Il7770XHTp0wCmnnIK1a9figQcegN1uN11L43UBALvdrrXTkHOgqiomTZqE//3vf/j3v/+NrKysGttgGKZ9wwMo5pjHavVwuVy1bqcl/IcPHwYAnHLKKWHbNf4jD4fL5cKJJ55Yrz4aLUh18dVXX+GSSy7Bueeei7fffjtkMJCSkhLWwkJxUuGsQHv37sWoUaPgcDjwzTffhJRJSUnB5s2bQ+qVl5fD5/Np5RctWhQSd0Tuyfr2y+Vy4csvv8RVV12F8847D4CwdM2aNQuPP/44OnXqpNV1Op2mthYsWIAJEyYgJSUFVVVVqKioQHR0dMj+Tj755JB+qKqK6667Dm+99RYWLVqEiy66KKQMwzDHDjyAYpgGkpqaCgD48MMP0bVr14jrN4cL76uvvsLFF1+MM888E//+97+1QZ+RgQMHYuvWrSHbaduAAQNM2/fu3YuRI0dCVVUsX74cnTt3Dtvmu+++i5ycHFMclLXNCy+8sEarWyT96tmzJ9asWYODBw+isLAQxx13HIqLi3H77bfjjDPO0MpZ90Xnm2Kftm7diqFDh2rf5+TkID8/P+Qc0OBpwYIFeP311/G3v/0t7DEwDHPswAMopl1BgcSRCio2hNGjR8PhcGDXrl249NJLI67f1C68JUuW4OKLL8bpp5+OTz75JCTImhg/fjxuvvlmfP/999rgwe/346233sLQoUPRsWNHrey+ffswcuRIBAIBLF++vMaB4kUXXYSHHnoIixYtwr333qttX7hwITweD8aMGQNAWJlSUlIa3S+iU6dOmsXpoYceQkxMDCZNmqR9P2TIkLD7GjNmDKKiorBw4ULTAGrhwoVQFAUXX3yxtk1VVVx//fVYsGABXn755RALGsMwxyY8gGLaFWRZmDdvHq655ho4nU706dMHcXFxTb6vbt264bHHHsODDz6I33//HWPGjEFSUhIOHz6MdevWISYmBo8++miN9V0uV43/4CNl1apVuPjii5GRkYEHHnggxJ3Wr18/xMfHAwAmTpyIF198EX/+85/xxBNPID09Hf/4xz+wfft2fP3111qd3NxcjBo1CtnZ2Xj99deRm5trknHo3LmzZo3q378/Jk2ahGnTpsFut+OUU07BkiVL8Morr2DGjBlh3YJW6tsvAHjqqaeQkZGBLl264PDhw3j//ffxySef4J///KfJhVcTycnJeOihh/Dwww8jOTkZ5513HtavX4/p06fjuuuu0wLVAWDy5Ml4/fXXMXHiRAwcOBBr167VvnO73Rg8eHCd+2MYph3SWgJUDNNc3H///WrHjh1Vm82mAlCXLVumqqqqnnnmmeqZZ56pldu9e7cKQJ0zZ46p/rJly1QA6gcffGDavmDBAhWAun79etP2Tz75RB01apQaHx+vut1utWvXruqf/vQn9euvv26W4wvHtGnTVAA1/tE5IHJyctSrr75aTU5OVqOiotTTTjtNXbp0qakMnYea/qZNm2Yq7/P51GnTpqldunRRXS6X2rt3b/Xvf/97RMdRn36pqqo++uij6nHHHae63W41MTFRHTNmjLpy5cqI9qWqqjpv3jy1d+/eqsvlUrt06aJOmzZN9fl8pjJdu3at8Rx07do14n0yDNM+UFS1gQIzDMMwDMMwxygspMkwDMMwDBMhPIBiGIZhGIaJEB5AMQzDMAzDRAgPoBiGYRiGYSKEB1AMwzAMwzARwgMohmEYhmGYCDmmhDSDwSAOHTqEuLi4WhOJMgzDMIyqqigtLUXHjh3rzG3ZGKqqquDz+RrdjsvlQlRUVBP0iKkPx9QA6tChQ5w9nWEYhomI/fv3h80B2RRUVVUhxROLCgQa3VZGRgZ2797Ng6gW4pgaQFE6j/3792tpLRiGYerLimGjAABnrlnWyj1hGoOvKA8A4EpMq7VcSUkJsrKymiUVlNYXnw8VCOBqdIKrEVE1PgTxZs5B+Hw+HkC1EMfUAIrcdvHx8TyAYhgmYi78eWNrd4GpgxW78gEAZx6XGvLd2r2FAIDc8hgAwLgu9fs/0BIhHy7Y4FIa4SbknCItzjE1gGIYhmGYtohdUWBvxEDNDoUHUS0MD6AYhmEYppWxKYC9EYYuG8ADqBaGB1AMwzBMndz+8Vbt/bzxA1uxJ7UTznVHnNY1uQV7wrR3eADFMAzDMK1Mk7jwmBaFB1AMwzBMnbSm1enLXw8DAMb27dBqfWhu7I104dmbritMPWElcoZhGIZhmAhhCxTDMAzDtDLswjv64AEUwzAM0+LkFJcDADISYuos2xjXXXXuHu29M71bg9tpbtiFd/TBLjyGYRiGYZgIYQsUwzDMMUJpRSUAIC7a08o9qZ/lqSloy1YnI+zCO/rgARTDMAzDtDIKGucS4uFTy8MDKIZhGIZpZdgCdfTBAyiGYZhjhLbgumOY9gIPoBiGYRimleFVeEcfbWYV3vz58zFo0CDEx8cjPj4ew4YNw5dffql9r6oqpk+fjo4dO8Lj8WDkyJH4+eefW7HHjSewZzMCeza3djcYhmGYVkYMoJRG/LX2ERx7tJkBVOfOnfHEE09gw4YN2LBhA8466yxcdNFF2iDpqaeewty5c/HCCy9g/fr1yMjIwLnnnovS0tJW7jnDMAzDMMcabWYAdeGFF+L8889H79690bt3b8ycOROxsbFYu3YtVFXFc889hwcffBCXXHIJBgwYgEWLFqGiogLvvPNOa3edYRiGYRoFufAa88e0LG0yBioQCOCDDz5AeXk5hg0bht27dyMnJwfnnXeeVsbtduPMM8/Ed999hxtuuCFsO16vF16vV/tcUlLS7H2vD77V7wMAbD0Gi8+FhwAAit+nlSmPTgcA2G3iqeDgT4ZhmPYLr8I7+mgzFigA2Lp1K2JjY+F2u3HjjTfi448/Rr9+/ZCTkwMA6NDBLOffoUMH7btwzJ49GwkJCdpfVlZWs/afYRiGYZhjgzZlgerTpw82b96MoqIi/Pvf/8Y111yDFStWaN8rltG5qqoh24zcf//9uOuuu7TPJSUlrTqI8h8Q8Vz2lEwAQCA6CQCgKmIcqzqitLJuh9ymyrqHtgMAHB37tEhfGYZhmJbD1kg3XJuyhhwjtKkBlMvlQs+ePQEAQ4YMwfr16zFv3jzce++9AICcnBxkZmZq5XNzc0OsUkbcbjfcbnfzdpphGIZhGgm78I4+2vSgVVVVeL1edO/eHRkZGVi6dKn2nc/nw4oVKzB8+PBW7CHDMAzDMMcibcYC9cADD2Ds2LHIyspCaWkp3n33XSxfvhyLFy+Goii44447MGvWLPTq1Qu9evXCrFmzEB0djSuuuKK1ux6Wyv++CABwnnSOti0YmwYAUNxxAADVJk+/nHVonwEo0ncXUM3tVufsEu1mHNf0nWYYhmFaBRbSPPpoMwOow4cP46qrrkJ2djYSEhIwaNAgLF68GOeeey4AYOrUqaisrMTNN9+MI0eOYOjQoViyZAni4uJauecMwzAM0zh4AHX0oaiqqtZdrH1QUlKChIQEFBcXIz4+vkX2Gdy1TnvvT+0BAFAqiwEAqkPEZ5W5kwEAhVUBrWysS3hXS71BAECnOCcA4GBpNQCgVzoPHBmGYZqTlvifQfv4R1IveJSGD4Mq1QBuPrKzRf+/Heu06RgohmEYhmGYtkibceExDMMwzLGKHY104R0zvqS2Aw+gmplA/iHtvV267HwdhJaTT0aI+/xB02cAKKwU7rxyn3g9VCoU1aOdwsRbVVmplY3ysEo5wzDM0YytkTIGtkbUZRoGu/AYhmEYhmEihC1QzYxz6MXae8p5l1fhB6CPXvMrxedAUK/ncYpvaVZRUS0sUQEZ87+zSM+b11OW8UTpSuYMwzDM0UOjV+FFWHf+/PmYP38+9uzZAwDo378/HnnkEYwdO7bhnTjG4AEUwzAMw7QyjVYij7Bu586d8cQTT2jZPxYtWoSLLroImzZtQv/+/Rvcj2MJHkAxDMMwzDHGhRdeaPo8c+ZMzJ8/H2vXruUBVD3hAVQL4kruCABIKBcB4OTKK64Sr0kep1aWgseLveK76qBw3aW6xCUzqnf5g7z8gmEY5mimqVx4JSUlpu31yQkbCATwwQcfoLy8HMOGDWt4J44xOIicYRiGYVoZcuE15g8AsrKykJCQoP3Nnj27xn1u3boVsbGxcLvduPHGG/Hxxx+jX79+LXXIRz1sgWoFossPAwCyopMAAF6/K6QMBYvHuoRsQbWMMCeLVAenXueIVDCPi26mDjMMwzBHBfv37zcpkddmferTpw82b96MoqIi/Pvf/8Y111yDFStW8CCqnvAAimEYhmFaGZuiNErLierGx8fXO5WLy+XSgsiHDBmC9evXY968eXj55Zcb3I9jCR5AMQzDMEwro9gVKLaGD6CUJhDSVFUVXq+30e0cK/AAqhVwpncDAPg3fg4A6NRnFACzEnm0UzwMu4uqAOg6UAOShep4QUW1VjYgg8g7lBYBANxxic3TcYZhGKZZsNkV2BoxgIrUevXAAw9g7NixyMrKQmlpKd59910sX74cixcvbnAfjjV4AMUwDMMwxxiHDx/GVVddhezsbCQkJGDQoEFYvHgxzj333Nbu2lEDD6BakWBVOQDAowjrUqFuVEIXn1AtL4vJMNWhlRYp0U5YsVUVAQB8AaFSbivLk1+Iy+zo2KdpOs4wDMM0LXYbFFsjFsYrkcnZvP766w3fFwOAB1AMwzAM0+ooNgVKI4SgFHAy4ZaGdaAYhmEYhmEihC1QrYhrxGWmz91y1mnvyzMHAgCKcioAAGkxQveJAs2dhmBDuxwGZ9uSAQDpbqEd5XPFiTakTpSjuFyrk+IV7j0KaGcYhmFaD5tdga0RFigbW6BaHB5AMQzDMEwro9gaFwOlqJzSq6XhAVQbwnbcqdp7pULky0uLEcHiUogcZHgqqNQjzuPd4jI65bNXUCUKHyqVweQy8Dw1Wr/cqiNU/ZxhGIZhmPrBAyiGYRiGaWXYhXf0wQMohmEYhmllFDuvwjva4AFUGyVq5/8AAD26nQQA8DpjAAAlXuGeI5ceAJT7RJC4Uz585VK1vMovCiV6xGWOdur+dVtpMQAguGM3AEB1CoVztSQfAOA44bymPByN6rx92ntnWhcAuiI7OnQT++7cv1n2zTAMwzBNBQ+gGIZhGKaVERaoRgSRI1h3IaZJ4QFUG8VqAVKk5cblSQAAeBy6EnmxV1iefDInHkkdRDnEwxjvErIGcQ59lYatvBAAoLqEZUvxSYkDuygb+Okbrax9wNmNPRwNsjoBwPp9RwAAJ2YJi1OJJx0AkLh/q9hv1sAm2y/DMExbhmOgjj54AMUwDMMwrYyiKFAakUxYCfIAqqVhJXKGYRiGYZgIYQvUUYL623oAgE267mL6nK59FxUTDQAISiG1smrhCyddNbc0C9tLssM0bPab+7sLLSp70QFtmy9fvHeldhafC0WiY9URJdqPT9bKFpYK5fRou9h5kZSrSpDq6PbKIq3siR6hU7UXKQCA7oU7Rbt2vi0Zhjm2sNltsDUiBsqmsj2kpeH/VAzDMAzTyjRaxkBlF15LwwOoo4RAQQ4AwPPHWwAAwd83aN/ZXUKCIBibBgCIkTnwnHJVhhIQlh7VHaPV8acdBwDwuUVQeqHMlxeoVGXZzlpZjwxG9xWUAQDSooXFKdojLFBkkQKAGGmVspWLsikBaYLyCcuZqhhmSUGxzw5x4jbMtos+pblFH/jmZBiGYdoq/D+KYRiGYVoZtkAdffAAimEYhmFaGY6BOvrgAdRRgj0lw/S5es827X2wohSA7t6zHfgZgK7xVBXbQTbiDmm3WmpG2WXCYZ+MPDcm9i7zSVegnODklAu3XJwMVk8wuOXspYcBAP7kbqIvlULrSQn4xWvQr5V1dugOACiRgefrD4njOLVTPACgk+5xZBiGYZg2BQ+gGIZhGKa1aaQLD+zCa3F4AHWUoHqrAAB5z94JAKgur9K+6/jQfFNZyiVXVVkJALCHUai1QZiYqqSlyUVSBzZhTaqs1uUNSOE8QSqaO6XYW6wq+mA/vFPvZ4KwlBVUifppNnGLKXu3iL4NHhPSl8JKEUy++4iwRG3PEwHop2YlamXO6pkWUo9hGKa9YFMU2BohpGlTeADV0rDTlGEYhmEYJkLYAnWU4B55JQAgwSnkAFwjLquzjq2qGACgyFgokg0QXwprUvKBjeJznBCzVKq9Ie2oVcIiFEzpKspQHJMU4VScemyVmrMLAJDhEbIL9r5/EF+EsTwRvxUKy1NKtAsA4HGKvlUYrGAvrNkNACiuEPFXHeLEPnuliGNLiHLIOvoxDu+WUuM+GYZh2hKK3da4ZMJBtoe0NDyAYhiGYZhWptHJhDkXXovDAyiGYRiGaWUarQPFA6gWp00MoGbPno2PPvoIv/76KzweD4YPH44nn3wSffr00cpMmDABixYtMtUbOnQo1q5d29LdbVXq47ojFG+5ePWJYHKjhEAwSqiVB9N6iA1SMTwo5Qec2T/rDZHrT7rsbJXFcrvf/D2AYJXYp6sWl50Vcr+V+kQ7/oDYz47iSq1MvFuUKZNBlvnlQl09Wrr7Civtps8AsPlgEQDdrbezQLgKkzzCDZoU5dTKUpmuiUJJvW+H+Hr3vzEEdv+gva/eLtTlbXGJAPRr7f9xiSiQLmQfgk6P3oDMG2irEhIQqkO4NpVqee4M15wWFzAMwzCNp004TVesWIFbbrkFa9euxdKlS+H3+3HeeeehvLzcVG7MmDHIzs7W/r744otW6jHDMAzDNB0UA9WYP6ZlaRMWqMWLF5s+L1iwAOnp6di4cSPOOOMMbbvb7UZGRoa1+jFJ1Re6dEHU+TeFLUOWokBcuvjsK9O+s5cIa0zQI3LhBWNTAQDVirwlMvsbysqA8PICU/tqlXmACwCuYZfW/yAkmbEieJyCxourhDXsgj66dAEJe36xI0/sR+bnc8gfjVQZgG78DSGrEomFlvp0awwAuA2FyfIkjV/YmSssOlVyQ8dY3VoV9d+5AICYvz4k6mxbLl5lvkLY9HYdGd1E/73ifCsOmRPQHStepSUQAFy9ThTbpPSD74hor7KnCMQv9orjiTKY+ePcwuKm2sXxVzuEdcovpSfshmXR+p4Yhmlr2OxoZAxUE3aGqRdtcshaXCz+8ScnJ5u2L1++HOnp6ejduzeuv/565Obm1tqO1+tFSUmJ6Y9hGIZhGKaxtLkBlKqquOuuu3D66adjwIAB2vaxY8fi7bffxrfffotnnnkG69evx1lnnQWvN3TZPTF79mwkJCRof1lZWS1xCAzDMAwTEYpNafQf07IoqmrMetb63HLLLfj888+xatUqdO7cucZy2dnZ6Nq1K959911ccsklYct4vV7TAKukpARZWVkoLi5GfHzLBAm3BhR0bIsTFrygSwYdSzcPAKgyf50qXXi2iiOmNmylBuuezW76joLG1aCwGWtaTw0ksPdHAMDXVZkAgI7xIhC6f6WucL60ugsAYEuOsCKmx4oy1dLFRgq+BTK4HAA8Ujn9pExxrXcVisDqWLm9T2posj3y6nWSLjtyhRV7dfs4WdnL/WLbniNCkZ3cgAdK9Htu0yFhTY2VQfCkFhyUj92pnRK1shlyn8ke0b99JeJY9heL9g6WiP1QQD0AHJccLc5HjAyy95EbVFwjoy5Wp3hx/TvKslEeQzA6wzAhlJSUICEhoVn/Z9A+vr98NGJdzror1ECZrxpD3/uq3f9/a0u0iRgo4rbbbsNnn32GlStX1jp4AoDMzEx07doVO3furLGM2+2G2x2aQJdhGIZhGKYxtIkBlKqquO222/Dxxx9j+fLl6N69e511CgoKsH//fmRmZrZAD48u1CoRsKzapeVIWqAUv54/D5SjTlqeFJ8McpZyBnAYBp5yKbzqF98FjgjrVEMCxsNh73oCAGBEhbAQUTD5r0pvrQw5Xw+WimMgK1JuubCw0LzNGDSdHiOOgQLDO0nLFkkdHCrVLUUBaWnqIAPavTLwPM4vLF7RDv1RyQ0IS1OqR2zLLRPt/edXeV4cume8h7QQVcv2vdJqRVakdVJqQfRPtNsnVdQhy9Z+KedwpFKc/71SuR0AfisQgfw9pSJ7spRo2CbzCSYYrFW0bUxPodDetQ0ZoH67VUg29Hzh/VbuCcO0Do3WgWpMImKmQbSJAdQtt9yCd955B59++ini4uKQkyNWHyUkJMDj8aCsrAzTp0/HpZdeiszMTOzZswcPPPAAUlNTMX78+FbuPcMwDMM0jkancmEZgxanTQyg5s8XS/JHjhxp2r5gwQJMmDABdrsdW7duxZtvvomioiJkZmZi1KhReO+99xAXx4uzGYZhGIZpWdrEAKquOHaPx4OvvvqqhXpz9OMcerHpM+kUwaMHFtqqhWsqWC70joK+KvlZbCc1bABwnjIOAOBd/jYAPbFxUxMbLXxKS3/KFvs1zKh25Av3k92y0sQt3WVB6SLrnhStfdfBoi8V7RRlO8aJ7b8V6krn1fIepKBrN5nDpXRUmU1vN1Z6RnPK/bJP4jO5AaMcetB9rgxq90k/IpWhfrsN7r4q6d5bd0BcA69f9IVU17skivNDiu0A8O0vhwEAW/YXyb6I9pJjxDH+uFdfHDCsl9D6KvElir7s3yrqZA1Efala8ro4xvMm1bvO4uMGa+/LysSx/OmwULr/dtCpAIDCw9IV+UK9m2WYdoVis0GxNcIC1Yi6TMNoEwMohmEYhjmWsdltsDXCDdeYukzD4AHUMYC938gav4vkkWsuy5OV8QPEwoDtubrwaUGFsFyQhcgoVwDo+e2MFqqUaLGtulSUJQmBQ/Jz0GD4pADuXski0NxRdBAAoMoA/NiAruLudwtLnkdajzKkpWt8/w4AgG9/LzT0QZeOAIDcchG4ThYzY5B3gszNlyklGg6QbEGUeWlzlEPv+OCuSQCASmmVKqoQgebRMsj+dIOa+yldRNko+UMbtAv3t0WkolbI8pQ9+xZtW+b9L4Ytu2zwUADAtlxdsf6yu84EAMyJFQsE9svA+HPSQyUlGOaYorHpWHgA1eLwGWcYhmEYhokQtkAxDMMwTCuj2Bq5Co9joFocHkAxbZY+6fFh3wOAr/AQAGDNEeEiO6GDCPL+8bCukZQjXXWk+1QtldNJKZx0lQCg1CsCwnsmCfdZUbRwIyZ68wEA3qgkrezcVXsB6HpPF/YVrjtyL557XIpWtlIGhpdLF1tfqX6eX0Eq47o2F/Un3+KupP6ThlTAsOiCAss37CsCAKRIdyL1rdIQcB4lt9FvtFIt9ufPFmK0JjV6qQdm6z0C4ajJbWfku+2FIds6P/oqAGDKo+IzBZiP2bWpzvYYpj3T0kHks2fPxkcffYRff/0VHo8Hw4cPx5NPPok+ffo0uA/HGjxkZRiGYZhjjBUrVuCWW27B2rVrsXTpUvj9fpx33nkoLy+vuzIDoA3mwmtOWiKvEdN2WLFLWI+SZTD51hwh2VAsrU0Zsbra+h9TheWqwJMBAHDKYPS/f7cPAFBa5dfKkpWnQC7Jd8iymoXIEJ1OlqB0qYJOgeY/5oigdAoqB4DCMnNgPLVPdSm3nzEXHimcl8lj8sk+UNlEjx6Afkonkfewe4Lof6Vfqq07Rf+dh7frOy8rAACoXmEhc5x8ARjmWKMlc+H9eOtliHO76q5QA6VeH0544f0G9zUvLw/p6elYsWIFzjjjjAb341iCXXgMwzAM08o0lRJ5SUmJaXt9c8IWF4vE58nJyQ3uQ31YvXo1hgwZ0i7y1LILj2EYhmHaCVlZWUhISND+Zs+eXWcdVVVx11134fTTT8eAAQOatX9jx47FwYMHm3UfLQVboJh2S+8UEWC9t1i4yUgrqpdMvBvj0hWQDjmFJpJLet/IC0cuuGhDWXKTxUWJx4cCtStl0LcrzCxymNRgskstqpKqalNbxn2RCzBRuh6pTLHUeMozaF3Fyj5QGWMiY0DXmwKAQln/kAyiJ6X2TlKZPSGxo1bWIRNI+3OEC7P6vyJo3PNHXf+pKaAkwuW5wr16wvtfNmn7DHO0YLPZYGtEEDnV3b9/v8mFVx9Lz6233ootW7Zg1apVDd5/fWlPUUM8gGIYhmGYVqapXHjx8fERxUDddttt+Oyzz7By5Up07ty5wfs/FuEBFNNuyUwUlqYjVcIyFFTNeejiXfqPVX6lsLjkSyvNhgNFAHRlc6tlx/idtYxRDT0rSVjBdhaIlS27johgdaOEghVqhwLBfZbgdGNfrPu05gos8erB79vyROA6qZ9T2WSP+Bzv1ANYVZ+eJxAA1ErR/8pPnhV9u/jOGvsfCT1feL9J2mGYo52mGkDVF1VVcdttt+Hjjz/G8uXL0b179wbvOxJefvlldOjQoUX21dzwAIphGIZhjjFuueUWvPPOO/j0008RFxeHnJwcAEBCQgI8Hk+z7feKK65otrZbGh5AMQzDMEwroyiNFNJUIqs7f/58AMDIkSNN2xcsWIAJEyY0uB/HEjyAYto9/TJEPIC3RChj+xzCVRWdt0MrsyRPBHlnS2VwqyssnAuPsLrPjDpQh2R75I6jV2vAuPW98TO1SwmUe6SFJt4Nt28rTssxVUnX4N4iEVRuT4rSvsvwiHOmeMS+bH7hcrSnCJ2s0jena2Wjh4wEAHh/XieOrUd/035YQ4ph6qY1XHhM42AZA4ZhGIZhmAhhCxRzzOCOFwJxtKi32h2rfUfWHcJq/bFapAAgVgZjlxkCta1QPQoEN8oWGPcTbh/WfXdNiQ6pY7U41WYpo4Byyq2XKZXYkzzi8/YCPY9gaZwIKO3ZXVilgj+J5c2qtESR1QkAFLfoF6T7wX9YSB9EnX9TjX1hGMZMS1ugmMbDAyiGYRiGaWVsdhtsjRgENaZuS7Bjxw4sX74cubm5CAbNE8lHHnmklXrVOHgAxTAMwzBMs/Hqq6/ipptuQmpqKjIyMqAourVdURQeQDHM0Ya94ojhU6LYVkPweIxLf1TsskhVQMyiuiYJF1ayVDrfkqPnoiIXm/U1nEuwriDycOWsZchFWFv7OWUiaNwjXXnegAiqrw4Y3InyB86fKIT1nF16AwCCpeKc2fuNDGk/+rhTQ7YxDFM/FJvSuFV4YZ75tsKMGTMwc+ZM3HvvvQ2q/8MPP8DpdGLgwIEAgE8//RQLFixAv379MH36dLhcDU/C3Bjats2PYRiGYY4BKAaqMX9tlSNHjuDPf/5zg+vfcMMN2LFDrJr+/fff8Ze//AXR0dH44IMPMHXq1KbqZsSwBYo55vCtFurXjswe2rb4KGE9KveZA8LJSmPEJmd6naJFgHWCzEdHhqG0GD33VF6511S3pkDxxlKT9SrcvshKta9YqI1TcHkPaUkTZcVrqV/USUoQ8gXBA7+JNlbrCuKuEZc1uv8Mw7Rf/vznP2PJkiW48cYbG1R/x44dOPHEEwEAH3zwAc444wy88847WL16Nf7yl7/gueeea7rORgAPoBiGYRimlWnPq/B69uyJhx9+GGvXrsXAgQPhdDpN30+ePLnW+qqqaoHnX3/9Nf74xz8CALKyspCfn988na4HPIBiGIZhmFampZXIW5JXXnkFsbGxWLFiBVasWGH6TlGUOgdQQ4YMwYwZM3DOOedgxYoVmor67t27WzWvHg+gmGMOW7RQ2fYn6ZnHo4vCazlRwHi1wSVW6g2YylCS4r6pQleqMEyi4JpcdeECwmvTcqqpXapr1ZsythUrXY1UttJnPo6Kav1zmU/Wp/Zj08QXNuHStKdkamWrc/cAAJzp3erd78ZQ+dnfAQCecbX/6DLHJsEdqwEAtt4j6l2H7mGl2pxE219a1mT9qgvFbofNHhoyEEn9tsru3bsbVf+5557DlVdeiU8++QQPPvggevbsCQD48MMPMXz48KboYoOo1wDqpJNOiqhRRVHw2WefoVOnTg3qFMMwDMMw7Q9KIWOUMqiLQYMGYevWrSHb58yZA3srDhzrNYDavHkz7r77bsTGxtZZVlVVPPHEE/B6vXWWZZiWpGrJ6wAA26kXAgAKFT2nXHpMOQCgWAZUR0nLDVlljGrjNkVaYeQPQIIMQKegbFL4BoAj0hrl8wulc6vFKJwFyhoAXlvgOb0vq/LL/ZgF6sJZs2gblSVL1P5iffZN70m1vFeKOFd9TxMrafaX6+fDL/vba/cPok/dI5twRYqz03HN2j7T9jky/z7tvTs5AQDg6j0YAKCkiol79WFh9bAZ5EoUVdzzqnR3qS4PAMBeWQwACJYWaWWDVeUIluvq/M1Ne46BAoA333wTc+bMwc6dOwEAvXv3xpQpU3DVVVc1uM2oqKi6CzUj9XbhTZkyBenp6fUq+8wzzzS4QwzDMAxzrNGeB1Bz587Fww8/jFtvvRUjRoyAqqpYvXo1brzxRuTn5+POO+8MqZOUlFRvK1VhYWFTd7le1GsAtXv3bqSlpdW70W3btqFjx44N7hTDMAzDMO2D559/HvPnz8fVV1+tbbvooovQv39/TJ8+PewAqrWkCSKhXgOorl27RtRoVlZWgzrDMM1B9frPAACunicAAEqdcQCAgE93d/VKEaZ88p5JNz18Up07v0JPNlwlXV8UPE6fS6qEu84YcF4dNLvJPC7p/pOuN6OLrSbXXX3Uy4sqxL5zpOstI0EcT21Od2t7+YaEyvQdaUSRSPmBkioAumsPALxSkT2YLAI7e1SKPkR5PLXsPXLIBUsrlXgFzLFH8esPAQDcqcnaNltCCgDhcgMAW2E2AKBiw0oAgCslRW/AIRSrbVHRprrVxQWmzwBgT0qH3Vne5MdQE4qtkavwGlG3ucnOzg4b7D18+HBkZ2eHrXPNNdc0d7caTYN+g4qKirBu3bqwSQGNI0yGYRiGYeqmPbvwevbsiffffx8PPPCAaft7772HXr161auNXbt2YcGCBdi1axfmzZuH9PR0LF68GFlZWejfv39zdLtOIh5A/ec//8GVV16J8vJyxMXFhSQF5AEU01YI7NkMAFA6igc0KANIyfCS4NZ/cBwyqNTmEzNOr1METZd4aYKg51oKQphjyqVVaU+RsLhQbryKstAFFD1SY0yfA9J6lVuql60reDycujhtc0tL1r5DpabvU2JDc0RRuzVJIBjfU5mcoLA8xbrFT0aCW//pIGX2/cVVso7Y3kX+NngaEOj52626unmXKy8HAKgVIsegqx/n3DtWccaK58gWl6htc6SJoHHFI75TK8UzrMrn0V9SrNfPEN4RR+eepnYVl7hHA0fytG02Twzg94FpPI8++iguv/xyrFy5EiNGjICiKFi1ahW++eYbvP/++3XWX7FiBcaOHYsRI0Zg5cqVmDlzJtLT07Flyxa89tpr+PDDD1vgKEKJeMh69913Y+LEiSgtLUVRURGOHDmi/bVWIBfDMAzDHM0oNqVxufDacDLhSy+9FN9//z1SU1PxySef4KOPPkJqairWrVuH8ePH11n/vvvuw4wZM7B06VJT4uBRo0ZhzZo1zdn1WonYAnXw4EFMnjwZ0dHRdRdmGIZhGKZO2nMMFACcfPLJeOuttxpUd+vWrXjnnXdCtqelpaGgoKCxXWswEQ+gRo8ejQ0bNqBHjx51F2aYFsb79QLtPQWE2tK6AACC0YkAALdXmvRthttfuvcgXXnuauEGiHKIiQK53AAgI0bU21ImzPvVMsJaezXEBVLwuFXjKVxAeH1cdjXVSYsX2lNjTxHq6lbV8Zr2WdN+atKrMuphET7pKiHNK6obLwPm/e9P18r+9tF3AIDBnywxtbH7HqEF44wRrpRO552u9yWjOwCg6tcfAQDqVjHjtO8T2dnd51wb9riY9kf05fcDsD7nqeINaTxJF56nZ18AgN0QGI4O3QDoyvqq/A1QfFLvqbtuGPAD8JeUNGn/jyVKSkoQHx+vva8NKlcTiYmJyM7ORvfu3U3bN23a1KqC3fUaQH322Wfa+wsuuABTpkzBtm3bwiYFHDduXNP2kGEYhmHaOYrNDsXWiFQujajbHCQlJSE7Oxvp6elITEwMq+mkqioURUEgEAjTgs4VV1yBe++9Fx988AEURUEwGMTq1atxzz33tGrcdb0GUBdffHHItsceeyxkW31OBMM0J8YgUH/eQQBAlLRg2KTaMCqKAACqU1cMV+3Cr6469G0AECtVxhPc+o9TfqW4x90yWvrETCGLsDlbBHDbFb2sW6qSk7TBISkDYFUMB0ItRGS9sgZ9G6F29haIGfSgLKHKHCX7ZjPU8ZLyeLX5GbVam4xYlcxpf8VBPd9fsZRQoIB4slKlx4hzmtJroFY2GBB5yrb+9XwAQOogcW3iu2UAAI78uhcAUL5nr1an6OftAICEnkJOhawC9Gq+Ykx7pmTBIwCAmKFnads0VfFSEYOr+uRiBml5UpL1vI1Bl1zMQYl35WswRpT1Gx4Bb0BFudKCQeQ2u5ZrssH12xDffvstkpOF3MSyZcsa1dbMmTMxYcIEdOrUCaqqol+/fggEArjiiivw0EMPNUV3G0S9BlBWqQKGYRiGYZoQm038NaZ+G+LMM8/U3nfv3h1ZWVkhVihVVbF///4623I6nXj77bfx+OOP44cffkAwGMTgwYPrLYHQXER8xt98882wee58Ph/efPPNBnVi9uzZOOWUUxAXF4f09HRcfPHF2L59u6mMqqqYPn06OnbsCI/Hg5EjR+Lnn39u0P4YhmEYhmkZunfvjry8vJDthYWFIXFN4fj6668BAD169MCf/vQnXHbZZdrg6eWXX27azkaAoqpq3ZGqBux2u+bXNFJQUID09PQGufDGjBmDv/zlLzjllFPg9/vx4IMPYuvWrdi2bRtiYoTJ9cknn8TMmTOxcOFC9O7dGzNmzMDKlSuxfft2xMXF1Ws/JSUlSEhIQHFxcZ1Ba0zbpvxfMwAAjg4iQJzM9lFj/k8rE9grgo6DUeJaq25xL2kBowYUn1lxWHWLe0p1iqDmUruu6Z1XIVxUpEBOrxREHmVwe8VJ11+pVzwXP2QLt9ORCnNyYaD2AHMjRvdfgQxkj5YB2wnRwuUYL12PVX79eaR2E9ziu04y8DxfuuAKDGrr5OajfdWnb1SW+tBbJiAe1ll/Pj3rhF5LxfZton9Fwu0ZkyED/l3CKO49outZBavF+XYnxpk+J/7frBr7wrQv8p4VqT7iTxAJg53d+mnfUSA4qsQ9EywVyYNJ2wkGD4qSKP5vBRKEy1hbSCJdeQeqdYdwWrQDJSUl6JyZ0az/M+j/Us7bsxAf3fDkuCUVVci48oE2+f/NZrPh8OHDISnh9u7di379+qG8vHbFd7fbjVtvvRWzZ8/WZAzy8vIwceJErF69um3nwjNCQV9WDhw4gISEhAZ1YvHixabPCxYsQHp6OjZu3IgzzjgDqqriueeew4MPPohLLrkEALBo0SJ06NAB77zzDm644YYG7ZdhGIZh2gTtLAYKAO666y4AIj764YcfNskfBQIBfP/99zjxxBPrbGflypW46qqr8PXXX+Odd97Bnj17MHHiRPTr1w8//vhjc3W/Tuo9gBo8eDAURYGiKDj77LPhcOhVA4EAdu/ejTFjxjRJp4qLRbAvBaDt3r0bOTk5OO+887QybrcbZ555Jr777rsaB1Ber9fkbqxrKSVz9FCRI7Q/YuSPhqOjMAMHf9+glQnGiuXN1qXK3tgOAACnv1Ira5cWKJsMMA9ScGl0EgDAV60bainWusoSCN4zWcweyww59jwOxVQ2TlqKqoOiTxQoDoQGbMdIawwFY1POObJ0hatDufacdtqv/t3BQnG8xVGUs0+0t3JHPgDg6lP1HJYHS8Rzk1cuXq1yBtb9AkCCR1ieKIi8WL7+kKPPLtOOvwgAcHyfU0R/t/5PtHskFwBgixPnO8oQz0Gri9RgQL5yTOaxwoFp1wMAEo4TS9UdGcLiHJDPJQDALleCe+QEPlEkslflfWPz6tZM1SGe0aBH1FeqK01tBA0x4/kVfpRWhsp2MPVn06ZNAIThZevWrSYRTJfLhRNOOAH33HNPne0MHToUmzZtwo033oiTTz4ZwWAQM2bMwJQpU8IadFqKeg+gaCXe5s2bMXr0aMTG6i4Nl8uFbt264dJLL210h1RVxV133YXTTz8dAwYMAADk5OQAADp06GAq26FDB+zduzekDWL27Nl49NFHG90nhmEYhmlWbLZGWqDaVhA5oK++u/baazFv3rxGuRa3b9+O9evXo3Pnzjh06BB+/fVXVFRUaGE+rUG9B1DTpk1DIBBA165dMXr0aGRmZtZdqQHceuut2LJlC1atWhXyXbgI/tpGn/fff79mQgSEBSorK6vG8gzDMAzTGrRnJfIFCxbUXagWnnjiCUybNg3/93//hzlz5mDXrl3429/+hkGDBuGtt97CsGHDmqinkRFRDJTdbseNN96IX375pVk6c9ttt+Gzzz7DypUr0blzZ217RoYI+MvJyTEN3HJzc0OsUkbcbjfcblaJaU/kPn07ACB+gMi+TYGi9s69Aehme/Fe3N42MtNLpeKowt/FZ7tuTlbKRBBisFy4eRWPeaZk1EiiZRdBldxa4nOJdMfFOvU+xLrEj1q+dAXEus2PXIUhgzppNkXL+qnRLvkq3AsUwL37SKWhBXn8ch5BCY3TY9ymNgDAJfdFLrZfpW7V4K6JAICth3VXR5qsR25EcvdZkwwb26V+x8o6tB+vwdVZUS0TOicKl0zH3eJauFOTjacFisNwbWSSWEW68JyO0ATJzNEHJfu2dzsRABDctU77zn9I3BfJ/UTGC0cX8XxDPpfkngeAapu4H8iz7VbEPabI550WkQCAEvCZXokq+a8wyq671IMA7K3oHmpvrF+/Hh988AH27dsHn898/j/66KNa686bNw+ffPIJxo4dCwDo378/1q1bhwceeAAjR44MqwzQEkQ8ZB04cCB+//33Ju2Eqqq49dZb8dFHH+Hbb78NWdbYvXt3ZGRkYOnSpdo2n8+HFStWYPjw4U3aF4ZhGIZpcRS7HkjekD+l7QWRE++++y5GjBiBbdu24eOPP0Z1dTW2bduGb7/9tl6Lz7Zu3aoNngin04k5c+ZgyZIlNdRqfiJehTdz5kzcc889ePzxx3HyySeH+B8b4uO85ZZb8M477+DTTz9FXFycFvOUkJAAj8cDRVFwxx13YNasWejVqxd69eqFWbNmITo6GldccUXE+2OOXlLGyFRBCVJGQ1pGKBg0WFSklbVXykUDUVKSwCGDTUmFOKgHiCouj3hDM1yXjPEL0oxUf1SCEFNdpzSZV0vpjjKv6IvHEGCdU64rdgNArAzyJmtNhUEV3G03z2eineKzpkQuZ8PUhrEdaxv7i8X5SPLoqZa6JYpjpJn6yZ3ED9eeIlG2qFLvK/WLJBmi5Y9zmSLOmVHN3AcpdSAtcqSCTtawEkP+vFKfOSjXcekDAIDuNnGtAms/BQCofn2GqkD8xlCOM6Z94E/pBgDwVgoJEof8DAA2KTni7iYszUEpKxJwi+eSrE6AbtX0yRvbFiXuVZe8L41xRUGHWfKmQqWFDwFTGwBgUwB/ZCo/jaMdrsIjZs2ahWeffRa33HIL4uLiMG/ePHTv3h033HBDvcKBUlNTa/zOKNjZ0kQ8gKKVduPGjTPFH9U3p0045s+fDwAYOXKkafuCBQswYcIEAMDUqVNRWVmJm2++GUeOHMHQoUOxZMmSemtAMQzDMAzT8uzatQsXXHABABFaU15eDkVRcOedd+Kss84Ku9jrkksuwcKFCxEfH6/JF9VEXS7A5iLiAVRjc9qEoz5anoqiYPr06Zg+fXqT7585erAPOBsAUJ2zC4Ce3y5YLGQNFLdBiE5aj0gkk9JaBaUlI1ihx/z4ThQPt8MrLCGUGw9ykuA2WJVs0tJEUgGQhhuXlCwoNCx9JkuONa6pWOoLkJUJ0C1aZMkhuYJCKXRJbRitThRfRPuhWC2yPBkm1Jo1KUlasMiidUIHYXXLNwhpHqkyW86o3xXV4idjX7Eeh2UV2ySon+HiSHKlPALFkXkyEgEAHTsdJ77//FOtbPJJQmQT8trS9St4YQoAIOXWOSHtM22PnGJx3aLkc1Otinsqp0jcCzFOj1Y2Ll6EcdDjYbXCIsz/DJrQkxXJKaV2VMP9R3F0QWlRJYso1SHrstiFgpZUzGjPQeTJyckoLRW/t506dcJPP/2EgQMHoqioCBUVocLGgPBA0TVtqMZkcxPxAKo1zWUMwzAM0y5pxy68P/zhD1i6dCkGDhyIyy67DLfffju+/fZbLF26FGeffXbYOsaVe41dxddcRDyAAoCioiK8/vrr+OWXX6AoCvr164eJEye22VEiwzAMw7Rp2qEOFPHCCy+gqkrEut1///1wOp1YtWoVLrnkEjz88MP1bic3Nxfbt2+Hoijo3bt3SEq5libiAdSGDRswevRoeDwenHrqqVBVFXPnzsXMmTOxZMkSnHTSSc3RT4YxQ0rhcjmzTf7wGJcs62WFGZgUiRUZiGoz2Odt0nSfp4rg1bTqYtN+4l2GH6cY8dgUSjdcdcD8o2cMDLfJfVtdEJlx5BLT+6DJIvgp75zYboeoQy5DJ3SXRJmUTtBdddL9Z1EOBwCn7AO5Cqn97FLhQjEqqwdlPToW+uyRbrkoQ8C71XVHn8m9aHR/Ujt0HmifB6TyeVIfYeFOT9P12pSAdImWixxnvh1C3djuCm/6P1q4UemmvX9J3dNq/WhOtufq2R/omlfI29dncVHbDJIbZb5qUx23dI93jBWuaZvBLeewkesuKOvSvS/vsYDRLSdeg6po3xswS5GY1nGwgkGT4Pf78Z///AejR48GIPLiTZ06FVOnTq13GyUlJbjlllvw7rvvanHWdrsdl19+OV588cVWM95EPGS98847MW7cOOzZswcfffQRPv74Y+zevRt//OMfcccddzRDFxmGYRimfaPY7Y3+a4s4HA7cdNNNjdJquu666/D999/jv//9L4qKilBcXIz//ve/2LBhA66//vom7G1kNMgC9eqrr5py4TkcDkydOhVDhgxp0s4xxyYV780GALj6nqxtC3YZJL5zCgtTtFzmrHhFYKo/VQjuBWz6sn2bKmcqZXkAAF9aL7E9IGe8BmuVo0Bom6XFCWFWR94+AED5dyLRdfQfxmllk0pE7riDqacCAKJIbkDOiuMMYplkjSn3mYPJtf3ajNNcRdYRn7xyppVMAeFhZslkVSqsNq9+DdayMKNMBs4WStkCsmKFq0PinmSJKq2lLOX1o3x8JHVgtBaQFY22eS0WKDp3GfG6Flw8hOnf7hRB5LZ4cW2UgoIaj/FooL1anYx4/fp9oijivU9uo/uw2JI7EQCqA+bobbdD3FO55eL+SIzSn3OX3WwqIhmRvAq6Z/V2rVZRqzXWYXi47LYW9orZGrnDCOuuXLkSc+bMwcaNG5GdnY2PP/5YS9nW1FAuu65duzao/ueff46vvvoKp59+urZt9OjRePXVV5ssB29DiHgAFR8fj3379qFv376m7fv372dJAYZhGIY5CigvL8cJJ5yAa6+9tkny2NbGzTffjLvvvhsHDhwIqx85aNCgWuunpKSEddMlJCQgKSkpTA1gy5YtEfezX79+JuNQXUQ8gLr88ssxadIkPP300xg+fDgURcGqVaswZcoU/PWvf420OYZhGIZhWngV3tixY0PUvZuLyy+/HAAwefJkbZuiKPXWj3zooYdw11134c0339SEN3NycjBlypQag9BPPPFEbR/1wWazYceOHejRo0e9ygMNGEA9/fTTUBQFV199Nfx+YRp1Op246aab8MQTT0TaHMNoBH79HwDddWeL0V1sQRnMXV4tHoaYahFATEHk5LojdxSgu8diosUMxV4mXG+qVCYPxOkrOBTp1nMU7hXtyjpRYyaIz7s3a2VVn3Apdewm9hkvvQleVfTx5zw9uNkt4xLIVUAuhKB0O3hMOlDShaeK16Bsj4Jt6XiMMduUd440nOj4Kdjbb3CFBG0yaFe67qxuuIDhM/XTZtFwIm+J0+DqILckud9KvWa18aCpXdXUF3LNEOTq9Lr17ZUy36EnXuTEdKSLPHqukqPbhdee+fY34TaPctTsVjpcLu5Zuj/MORPFfUBu4DK5YIMWYyTH6AHnVndcQpS4D8l9blTNp1yU0UHK2yi2UzC5McejqupabC2BYrNDacQAiuqWlJSYtreFnLC7d+9uVP358+fjt99+Q9euXdGlSxcAwL59++B2u5GXl4eXX35ZK/vDDz9o77///nukpaXV2b6qqhgwYEDE/Yp4AOVyuTBv3jzMnj0bu3btgqqq6NmzJ6KjoyPeOcMwDMMwTUdWVpbp87Rp01pdgHrv3r0YPnx4iHvM7/fju+++qzM2qiGxWWeeeSZ69uyJxMTEepU/44wz4PF46i5ooEE6UAAQHR2NgQMHNrQ6w4TgPyRmKWThcQwYoX8pM6unKSJovCJGBHuTRcRVWSjqOBND2g06xOxLMcxaAV3WAAD8bmHtOpLYEwCQIC0gziP7RYFOvfR6cll9YlDUtxUKS4hNBqAPStf9+9llMnecnF1bYr1RaZAx8EprDxl9YmQwNi3PpsmwLcz6arJEEeEmziRtQAG6mmxCGAsA7ZNm5DSbJyuTUV2crF3UnrZc3XqwCLVoEWTF0tXY9e/KfKIvVXax75QO4lrYS4vCtsW0HjtzxTORESueuYKK0PyKudLyVOw1K+wb76kQy6e8D4tlewVlumo+WaDo/k2RZqWEaGEajnOFLuqgZyC3nPJYyoUVBgX+BLcTlWX6b0SzozQyiFxa6ffv32/KSdva1icAGDVqFLKzs0N0m4qLizFq1Kg6XXjTpk2LeJ+RZk354osvIt5HxAOo8vJyPPHEE/jmm2+Qm5uLoEXr/vfff4+4EwzDMAxzLNNULrz4+HjTAKotQLFOVgoKCkICyo8mIh5AXXfddVixYgWuuuoqZGZmhj0pDMMwDMMc21ASYEVRMGHCBJM1LBAIYMuWLRg+fHiz9uGXX37B2rVrMWzYMPTt2xe//vor5s2bB6/Xi7/97W8466yzGtx2xAOoL7/8Ep9//jlGjBhRd2GGqQfl/5oBAHD1kEF8MnhcKcrRC0WJJayqS8TaeXxCKdxWIdSpS+KFD90oq2R1P5FbiIK1qxyxemGL7gy5jeISOoq2yvWA5ZIoEbi+o1C4Gk9KkEGKQeEGcJfq/XY5xHdVAeqT3C7fFBlcBhRwTq4wck247DWb9a1fURJhcocYtXVI9btTvHBx7CmqRE3QOaNEwXQuKag21qP/dCRItx7p+sASOGxUOKegYnKhVEsLttdP7h2hB2VMZtwjKUqWFfum8x/f85Qa+8+0DP/84QAAoLBSuNToXk2X7nKjK04LCJf3CQWG072W7NFd7KQXFiPdb3T/kVuO6gJArAwa/z23POQ7wOwaJHc1KeKXyz4VSpeg3WY2CFT6zEm1m5UWTuVSVlaG3377Tfu8e/dubN68GcnJyVqgdmMh6QFVVREXF2eKMXK5XDjttNOaVQhz8eLFuOiiixAbG4uKigp8/PHHuPrqq3HCCSdAVVWMHj0aX331VYMHUREPoJKSkpCcnNygnTEMwzAME4YWFtLcsGEDRo0apX2+6667AADXXHMNFi5c2PB+GKAkwN26dcM999zT4u66xx57DFOmTMGMGTPw7rvv4oorrsBNN92EmTNnAgAefPBBPPHEEw0eQClqfUUSJG+99RY+/fRTLFq06KhbeVdSUoKEhAQUFxe3OR9xe6V6/WcAAFu6sBAFDukznuo9vwAAHJlCddqZJQO1ZTBkIFoXSFOkdUepFlYfyouG6ETxWiYsRIFO/bU6qks8rKrNPE9wFB0I2V4RK5bIl3rFjJTyZ5GqcYLbqFAsZqnb8kRfXDJPV5KblkbrZUmCoNgbtHwWM1ujdaZDjDBvk3IyWaK0IFu536JKfYZN35ElhwJmadKdV64H25LFiSxwWr481Zz3DtAtT9Y8d1arnnEbWQuoT7EyCP5gaZVW1mrZijcoShvrdorXTf3dE4UFiqwblD+QDF2Z0fr5joo+euMpjiZIpoACwo9IaQyyRpb6QoOCyfpI9xktVKDralwIQRaoYmlNorr0vFQbYm935pSZ9qMteJCWKVLGN35XJIPRtQUaYXJH9uoQi6ryMjx64UnN+j+D/i8VrvkU8bENv39LysqRPOwi/v9mICEhARs3bkTPnj0RDAbhdrvx/fffazl7f/rpJ5xzzjnIycmpo6XwRGyBeuaZZ7Br1y506NAB3bp1g9Np/gE0ajAwDMMwDHNsc/jwYdxzzz3a4jOr3SbcKjyyiNWHuXPn1lnGZrMhKirKJGsQFxeH4uLieu/HSsQDqObKlcMwDMMwxywtrETekkyYMAH79u3Dww8/XO/FZ5s2bTJ93rhxIwKBAPr06QMA2LFjB+x2O04++eRw1QEI1+Fvv/2Gnj2FPM2aNWtM8V379+/XlM0bQsQDqPrqMfzrX//CuHHjjuolikzjUTqJmz3gEcGErq4naN/Zuu0Ub4LkshLmdNUtlMIVX7nejiyDoHmmohYcFG8cMni66JD2nTejn9i3RZ8o6BSBjI5ivazHKVxG0VLjaWOFCDAnl1KCWw9wJb0ZUhEnLSe7h1xjev9IPTxalvU4RF+yy0ShdIM2Fbn+qoMUaC3KkouDJm1OQ/JUq5YOQbGwxrJJWlJiqWxuUWqOChOs7vMHQ7bVtF1PnOyXx2Hen7EebcsvE0HjWpC6dLvYDfI7pA2VFmO2dlN8b5EhzjcjbG+ZpuCdTQe096WW5NjkuqNFC1bXGADYFVlGuvvoO5fDZqoD6MmC6Z4lFx4FpRvV7cNpQwH6c0qB5wCw87Bw9/nkogW7lkw49B96WZUfXouqfrPSjgdQq1atwv/+9z+ceOKJ9a5j1HGaO3cu4uLisGjRIi333ZEjR3DttdfiD3/4Q41t3HTTTSbrllVt/Msvv2zZVXj15YYbbsDQoUMjyivDMAzDMEz7Iisrq9456cLxzDPPYMmSJabEwUlJSZgxYwbOO+883H333WHr3XjjjbW2S8HkDaXZBlCNOVlM+0EpyQUAOGQeOq9Lt0g6qoSZobqDsFIpfmGNsFUKn3RQWqIAwCatUQrNJmLkg1QtZp2KlABQnXrwsT0oZqaVMu+VAplHT+bCU8sNZXN3iTfSwnVSZl8AwLYKEcC8u1if3ZJKuUtad5w2kh+QXTPkt7P7RQC1T+bqq5S5/GjGTjnsAKCi2jyDJMsLPUpkIDIqK1PuOwrMJYtAhZcsAKgRCiYPytm92yA/YJPtkdXOqkxuXCoebvYOAAUywNjlCA3At1qirJ+LDQrWbkvwcWacuG5k3cur0PuSEZqwnWkg3hKh7r82T1ybrAR9CXq2tBwelyQWEpH8xO5CkQeyUt6XRktlnmUBQoUs4wqTL68wyvyvKVmqiw/sIJ7dnQV6vkm6p6yK5MSBQl2uQ7d6mRdmUD/JMgUA2cVV8FXoCyCaG8Vmg9KIVXiNqdvcPPfcc7jvvvvw8ssvo1u3bhHXLykpweHDh9G/f3/T9tzcXJSWRqYW35TesWYbQDEMwzAMU0+URrrwlLbrwrv88stRUVGB4447DtHR0SGLzwoLC2utP378eFx77bV45plncNpppwEA1q5diylTpmhinfWlKb1jPIBiGIZhGKbZeO655xpV/6WXXsI999yDv/3tb6iuFtZph8OBSZMmYc6cORG11ZTeMR5AMQ3Gd0RoZ7iSQkN3c5++HQCQ8qdrAQCBw3tEnc76LadK1x1BquL2MqExE/To/hgtiFy66hSfMMsHM4R2lFJVIl5V3XxfLYNWSTMmSZEByyWHRVmvrh8TjBPq1qRo7pOmfpsig2L9hqBVmAPZyZVHD6ZN1b+nfie6hNvJZ8nya3Q3UNC45pKwS9VkizK5EdJaIncf6eZQncMGHSi/dMNZ2yFVZpvBFUcB5fRaRcrhpI9l0Naxut+o//RKCYiNx2sNQq+pDUB3F9kVcSz7i8W1pwDj1Gg9ED+nWLh6MxJ48UpDqfzviwAAe0IKAGDEcYMBAFWJhtVL28U1sCYItrrnjNA2StxL7jKq4w+G/mPrmiKuI7kEu0g3Ypzh/iv3yQUacpsWlO4nvbBQNXTrPUp1jPd1pS8QooPWrCiKpoHX4PptlGuuuaZR9aOjo/GPf/wDc+bMwa5du6CqKnr27Nnqi9TartOUYRiGYY4VFFvj/9owu3btwkMPPYS//vWvyM0VsbGLFy/Gzz//XO82srOzkZ2djd69eyMmJqZB1qQvv/wSHTt2jLheOJrNAtW1a9cQPydzdOI/KBTDA3EdxKtTBI7aZH66wLblWlnfDqHdkTr+SlE3QVinbNJa5a46opXNU0R9Uvl2BKS1RP4Q2Ly6jIFaJaxFipQrCEoF8qBUKw/GCguSUq0HjNKMNqVS7NteItVmHdIalHWSVlaR+6bA6kppcSKLyYESPZiUArW90irTO0WcD1IvL6nWZ4IJcl9kwKKg7KwEYTUxygyQyjKpOlNfaOk2WbqME80Ujx4IDwDFXnHu9krVcaOFi6xSsRa5AgpEh2G2TdIPZIEiC1eU3dwWAJRBWBSsgcM0my+q1APC46U1imb8VKemQHRAD1inMtQuHZvRoma18DGRQ5Yn9YTzAABVDmH1yS7Tg/VTos35FKssFsVw1lK6L4rkwglrzjpjMDm9L5SWrR5pwtJAli7DYxNyD9F+rMHkABAr7z+rZSkAWrygW2w9Lket9yVTf1asWIGxY8dixIgRWLlyJWbOnIn09HRs2bIFr732Gj788MNa6xcUFOCyyy7DsmXLoCgKdu7ciR49euC6665DYmIinnnmmXr35fTTT2/s4WhEPGTdv38/DhzQ9UDWrVuHO+64A6+88oqp3E8//YSsrKzG95BhGIZh2jmqYmv0X1vlvvvuw4wZM7B06VK4XLrLfdSoUVizZk2d9e+88044nU7s27fPlELu8ssvx+LFi+usX1BQgFtuuQX9+vVDamoqkpOTTX8NJWIL1BVXXIH/+7//w1VXXYWcnByce+656N+/P9566y3k5OTgkUceaXBnGIZhGOaYpLFuuDY8gNq6dSveeeedkO1paWkoKCios/6SJUvw1VdfoXPnzqbtvXr1wt69e+us/7e//Q27du3CpEmT0KFDh3opodeHiAdQP/30E0499VQAwPvvv48BAwZg9erVWLJkCW688UYeQB1l+LOFGritXCbjTRC+YaMKuCqVu+mV3DcOn9Tf8OiJK53dhU5HUGrI2L1SryUxXbwakoC6XFKl+9CP4qvSItEHn3CXBQqy9T7IbfYOIpDVIV1jquz3EY9wFbqdunaUR5UaUfIYVRnsHogXfakwBIaTBlOVVCKPkj4CSuzbIVafNVGgNrnaKAFxofxsNPv/oaPQkfIGzIGy5F3wGDSjnBYdF1JfpjIxYdwi8dL96ZS7pJgACratCufCky4wCgjXPhvcGvQdecTI1UgB51blcyPWxKzGwFybJWi30qIFFM5lYnXdERTYXmYIWDZqcDGRUfnJswAA7zk3AADyK8V5LS4WQfx7inTtJbr+FMh/UAb20/Wka1VpuDYUPE73hSpfFYvrDdCv+QGpKxWQvxvZxeJ3oH8n/TeH6pVWhVcNLza4kBNkf61JsT1SPsDYh7KqalR7DTL3zY2iNC4QvA0HkScmJiI7Oxvdu3c3bd+0aRM6depUZ/3y8nKT5YnIz8+H2+0OU8PMqlWrsGrVKpxwwgl1lo2EiH9tqqurtQ5//fXXGDduHACgb9++yM7Orq0qwzAMwzDHGFdccQXuvfde5OTkQFEUBINBrF69Gvfccw+uvvrqOuufccYZePPNN7XP1MacOXMwatSoOuv37dsXlZWVdZaLlIgtUP3798dLL72ECy64AEuXLsXjjz8OADh06BBSUlKavINM8xDY/YN445LWpSphcbJVSWtNir5kORgjrmuJT8zO4mXONrJaoVwPDFerxIzRniosWaq0FJHCt80Q5J3oFwNu/+F9AIDSTesBAN4iETAek6nfT85YEUTqP7RbtB+XCABQZP+Ty0VcnmrTb2lbtZwxS8uTplIuyxgDuMsrxbEVVJitSjRTzTRYoDpJJWzKB0Zq4p3ihbVpZ4FuvduYJ86VMeedkTKvcdYtXmPk7J0CzimQO80pg7UVva3yanOgbJVmOZJB4GGsVrqlS9SNdYWej3x5HvwW+QIq4jFYoJwWq5E115nRCqEpm/vNyuYEWaKMAcU1SR5oEgsmK1vI4TIGSt+cDgBQ5LnznDFe+853rkx7Ie8dD10DcVvjpEzdultYaZYpqJByA3ttZDEKvfaBoPk6BkgmP1TxAEfKpTXXYb4/yqrE9n35ujUsXLA4YLBcGu5VsoJRfslo+axlSwua8V6r8AVQ7atFyr+psdnEX2Pqt1FmzpyJCRMmoFOnTlBVFf369UMgEMAVV1yBhx56qM76c+bMwciRI7Fhwwb4fD5MnToVP//8MwoLC7F69eo66//jH//Afffdh0ceeQQDBgwIWeAWHx9fQ83aiXgA9eSTT2L8+PGYM2cOrrnmGs0k9tlnn2muPYZhGIZh6k9jA8HbchC50+nE22+/jccffxw//PADgsEgBg8ejF69etWrfr9+/bBlyxbMnz8fdrsd5eXluOSSS3DLLbcgMzOzzvqJiYkoLi4OSRysqioURTElHI6EiAdQI0eORH5+PkpKSkyJ/f7v//4vrI+SYRiGYRimR48eDU6hkpGRgUcffbRBda+88kq4XC688847rRtEDohR28aNG7Fr1y5cccUViIuLg8vl4gFUG8f/4xLDB2EKV6VrTYkRJkyVkvMW7NOK2uTMJiFOBF8r0mVnk8mAg4bRuz2FArXF62G7WCJKujDRn8/VyyaJ9g7892tTP6uOCBdYYi/djZj7w68AgCPbhduv5yXSzTfifNFv6cqDQYmcZmSUIkq1C9eX5lY04LK4ksj11VG663Yd0XWg3GT+p8S9Ut2YXHdGlwK5wtx2UkkW+6GExMYg8krpjquSCs2JUaSkLtwhedXic7LHUEeWJf0jei2Twe9Og+ZTtXSZHJFuEPqcEOUM6TcdPx11tTxGt4MSJxs1o8QraQOR2jMlBDZq7lgDzK1YNZ8APSDZqhsEeRm9hgSw5FZNC9t62+Lr/qdo78/5eX2z7iv4+wYAwHdDbwYAxMn7L9HgylBLxPUqloHThZXyHgoT2E/u3k7x4iKQFhrdQ/uOCBcbBX0DepA3ucnonxgtfAiEccU55DOW4BH3VrRFbdy4z2jLIgPaX8Bwr7osGmiU8NpucWu3Cu14Fd6f/vQnDBkyBPfdd59p+5w5c7Bu3Tp88MEHdbZRVFSEdevWITc3F0GLO7iuOKqffvoJmzZtQp8+fWotFykRD6D27t2LMWPGYN++ffB6vTj33HMRFxeHp556ClVVVXjppZeatIMMwzAM0+5pxwOoFStWYNq0aSHbx4wZg6effrrO+v/5z39w5ZVXory8HHFxcSYLkqIodQ6ghgwZgv3797f+AOr222/HkCFD8OOPP5qCxsePH4/rrruuSTvHNC2BghztvU1anDRlbykhYE8Sc/dgpUHGQFpsbKVCft8mc8iRRUdJ7KCXrRQ56dQdawEA0YP+KF5lXjd1/D1a2b0lYvbXq7dQBC/49G0AAGXA81foAedJvYUoqzsxFgDgLRLWL/sPywEAUYPPEAWl1AKg59Kj+afqFNGwVTIIO6dMX6J8RM62adYd7TTngEsw5HMjaQOy4JBSuDdMrjmqRxYhSKHjw2XijTG4nCbHTmmtohjbwkpRNlFaigqrvFqdWBnQT8HkNNkm65gxwJq20Yz8iAycJwua2zA7J6MD9Z8sTjTbNwacExRw3lEG05OlwRiYW5MFqrbP4fLjAfq1MYqP03kI7BXSGPauTbtsuSlpaqtT9fefAACUKN0T4JBq4qUdhLzI8XJxxIEScQ9tOVyqld0jJQOyi4TVyCfPb7q0wvZJj9XKkrWRnpt90tKUVy7aPXBEPLulVfozRgHlmoyBJQ2HGsb4QxIHcdIamyYtXsbgdKsEBlkqySJlvG/IKkVWUpI10HMxmqUUqtWa5TqY+lNWVmYS0CScTidKSkrqrH/33Xdj4sSJmDVrVoM8Xbfddhtuv/12TJkyBQMHDgwJIh80aFDEbQINGECtWrUKq1evDjkZXbt2xcGDBxvUCYZhGIY5pmnHFqgBAwbgvffeC9GJfPfdd9GvX7866x88eBCTJ09ucJjQ5ZdfDgCYOHGitk1RlJYPIg8Gg2F3duDAAcTFxYWpwTAMwzBMbaiK0shVeG1XSPPhhx/GpZdeil27dmkr4b755hv861//qlf80+jRo7Fhw4YGB6Dv3r27QfXqIuIB1LnnnovnnntOy32nKArKysowbdo0nH/++U3eQabxBPZsBgA4Ox+nbVNdQreFtJFU6e4K+GVQpSNfK2sr3CvLSiVymcBX8VeZ2gIAmzTL26KFCzBumwhct6WLgHC1RG+3h1QXh0xemjz+GgCA//ctAABHR4NqbZQYnMfI/ipB6RIrFVpU3m3rAACugYZEkTJA3jozIzfdxoO66TinTLgeEqVJPz1GJhz2hwY7k3cpVboxNPecJM7g7tOC56X7LC1afHdY6tz0idUnI7+Vi+9knLamc3Rcoph1bc0T58volrMror+lUt+G3Ila8l+TO9Fpap8UvKk9Y7AwvS+QGlcUnE2eO7uiuzZoW5VF16cm11s4rGXCufCskBunQNETwO4tEv06rpuIdTgWlrXQ4hCli8wC4Nafx4pKcc9EyYTPB33iXNIz8O32PK0snWdy2dn98h6Q7uZ9Lt2lnldBwdeiTKEsQ0HjxWESBvvlfUZq9hTHQur0ilu/B3yyHrnnqG+uMLpmMVLH7IjcZzgVdCIxWjwDiRCvFZZExC6Hfl8HgipgZxdeUzBu3Dh88sknmDVrFj788EN4PB4MGjQIX3/9Nc4888w6619wwQWYMmUKtm3bFtYFR4LeNdG1a9dG9b8mIh5APfvssxg1ahT69euHqqoqXHHFFdi5cydSU1Pxr3/9qzn6yDAMwzDtm3bswgPEIOiCCy5oUN3rr78eAPDYY4+FfNcYF1xjiXgA1bFjR2zevBn/+te/NEGsSZMm4corr4TH46m7gRpYuXIl5syZg40bNyI7Oxsff/wxLr74Yu37CRMmYNGiRaY6Q4cOxdq1axu8z/YK5berThKB14F0MRv3GqJt8yrEDG9HgQgcTa0WI/quCcISFZOerpUldWu/fO3gOwwAOBInRvUJqq4KrJLSeAdpPZKq3ypFiEYZ3LzygVdlUHowV1i6AnkHTa8AYLtwsii7RFg+VfnA2OKENczZSVjXFEMkqq2yWJSVVqvqeCG4VnpEWJuyEvT79cxuop21B0QdLWg6QAHW+kw01qIUTo9RtFPUMQZYkwWIArV3FAjLE+XWyw/oM6mMWFGPrk2lnLEflqe3Q6woe9gQ/N4jSbTzuxSDJ2tSdTBo+izei+Mm65RurRKvxuB3MvqQdYCOgwLQA2GMQnQ+6FjJWmBVEg+HNTdZbTnxrCrXRgsVBb3TOexYJuQ4nGm6JEZ7I9j1RADAvmpxP6calvOXSUvT4XJxruh+7p4oyqYYFjHQkn59ab/5GuSWeGGFLDpkpaJrQsHaXq9ugSKZAru8L8gCRYHisVH6v6OKGhTqrbn2gFC1favVKtz9R0Hu1E6htED7DfdSXJQzpF6z0o5z4RE+ny+sDEGXLrU/n9bybYUG6UB5PB5MnDjRFJDVWMrLy3HCCSfg2muvxaWXXhq2zJgxY7BgwQLtc7iofoZhGIY56mjHFqidO3di4sSJ+O6770zbGxvE3do0aAD1z3/+Ey+//DJ+//13rFmzBl27dsWzzz6LHj164KKLLmpQR8aOHYuxY8fWWsbtdiMjI6NB7TMMwzAM0/JMmDABDocD//3vf5GZmdkgJfBvvvkG33zzTVgL1htvvNFUXY2IiAdQ8+fPxyOPPII77rgDM2bM0EaOSUlJeO655xo8gKoPy5cvR3p6OhITE3HmmWdi5syZSDe4mqx4vV54vbrZuT56E20d0noJFGRr2wLFIpDa1WMAAEDtMxwAUCw1X4qqyA2l37R7pdZLN2nK7wehEeVf8y0AQInWkyvGpWbQGwCAV7oEK6SbJMFucBMlClNsdPZWU7/Vamkiz9EVziED1pUU4Vqzp4gExPbkDFMdAPBJ151DuurIdafKPmlB8WV6kDoFu5dGC52q7CKxvyMy2a3RvUVB0hRYTbmDSS8n2pCQtEeSOGekkxPnpkBuUbfa8HDHS8VnaofcZQ4bubv0soVV4n257AO5Ea2aTp3jDG4XeQ1ID4qgJKjVBl8bBcpblaVjNa0nfVuSdF/QPt3yGmsq4wbXDLkCqb90XnRtnZoDwsMFBRvrAroryeqKCRdcTteR7v0OUteshZ0xLUp2QITKk+v0kOGak0vqx8Pit++4JFH2QIl4/gdnJWpll+3QA8oBXbVbc5lW61YCStBrdZeRjhJdM4czNAhbJR0oWK6fwS0XJ12D5FYmlxthdC/m+rymPlhdj6aypaJskQw49/llRgAZiG7UrcouqoS/UldSb27acy68zZs3Y+PGjejbt2+D6j/66KN47LHHMGTIkAYPwIiysrKQAViLJRN+/vnn8eqrr+Liiy/GE088oW0fMmQI7rnnnlpqNo6xY8fiz3/+M7p27Yrdu3fj4YcfxllnnYWNGzfC7Q5NzQEAs2fPbnDuHIZhGIZpMRQbYGufLrx+/fohPz+/7oI18NJLL2HhwoW46qqrGlR/9+7duPXWW7F8+XJUVemD4hbXgdq9ezcGDx4cst3tdqO8vDxMjaaBhLAAIco1ZMgQdO3aFZ9//jkuueSSsHXuv/9+3HXXXdrnkpISZGVlNVsfmxLv8rdNn+1xiQAAm1zyb4sxBGPv2yHq/CaW/7u7CfXlQlUoQneIEZc5zluoVcl2CytKX4+Y2dkKRfC0q8/JooDhYQzKPHOqW+wzav9GAEBnmU9PidIVirMTxAzD0XGgaNcn7wkpO2BL6qyVrV7+rviqQqoh7xfHQTnyjFY214mjAAC+DNG+rVo8BI6CPeKzDBivTu+t1ckPiIF1RaUMPHWKWUuaDJwlSwmgq373SRWWLMphRxitNr/L2XAcBaBKywsFsxYblm7vlEH6ZKUhIyBZcIztkqWJFM1J6ZzkEojdRbplLi0mvG0lXlqVyNpmhHLrUUC4TVoWbIZZXb6coVsDdMlCZzx34RTHjZ/DWYpqskTpy8n1/VrbsZY1tkVL2UkZOzlKnNPMfGERtWcNDOnL0Q7dUy75ptynX4dteWKBBsly0DX/OVc8cymGe4sCyimInKw/RfIeMuaRo3NO+Q7pmpAMgNtBi0b0fzEB+bxY7xMKNA9ndaT9xEqLKFmQjFYla4A5tUPWtzhDHyql5AgdW6n2rIbmYHQ5bFBqsJAykfHkk09i6tSpmDVrVlgZgrosQD6fD8OHD2/w/q+88koAwtXXqsmEu3fvjs2bN4foKnz55Zf1UhRtKjIzM9G1a1fs3LmzxjJut7tG6xTDMAzDtBnacRD5OeecAwA4++yzTdvrawG67rrr8M477+Dhhx9u0P63bNmCjRs3tn4uvClTpuCWW25BVVUVVFXFunXr8K9//QuzZ8/Ga6+91qSdq42CggLs378fmZmZLbZPhmEYhmkW2vEAatmyZY2qX1VVhVdeeQVff/01Bg0aFGLBmjt3bq31TznllLaRTPjaa6+F3+/H1KlTUVFRgSuuuAKdOnXCvHnz8Je//KXBHSkrK8Nvv/2mfd69ezc2b96M5ORkJCcnY/r06bj00kuRmZmJPXv24IEHHkBqairGjx/f4H22Faq+mA8AsKd10raRargqVYV9m5aZyjgMZQm7dOvZ8n4HAERliABrMu1r6t0ATkoX7j113WIAQLDPqaIMqYs7orSyQandFIwSGlEV0Wmm/boNz22mV7gGbAUiILU8SUjva8HThofcMXqS6PcBGXBuk0Gk0Yni+w66u5XSFDhKcmT/hLtBLRYJjqt7/wFWymRAqNeiJk7BzkZzPQVLUyAuuc+c0m3hNbn7RP19xdWmOuTSqzAE25KOErlOvORuogS+BuVjq9uiTAtsr5RlRV9iXfpjaw00j5JJkOPlZ6P7j46R6pArj5ShSwwBtBQkbO1TdRg9FnLj1BTEW5OSuPE7cruECxi3BipbtxvL0vtfpIuKXJBpHbuJAtuWa2Xt/UbW2K+jCbqOdH3J/QoAqTIYm1ya+WVmF1ipQUVfU+WWzxq57uyWexgA7DBfY0rc69Cun1nh2/ieArZJrTzHsh9RRrRHSubWe6vI4GKn70iTiu4LTxgXb6bUfvslu8TU7wqL+4/q+euhYcbUTX3Uxmtjy5YtOPHEEwEAP/30k+m7+rjjXnvtNdx44404ePAgBgwY0DrJhP1+P95++21ceOGFuP7665Gfn49gMFjrSrj6smHDBowaNUr7TLFL11xzDebPn4+tW7fizTffRFFRETIzMzFq1Ci89957nH+PYRiGOfppxxYoACgqKsLrr7+OX375BYqioF+/fpg4cSISpHhzbTTWgpWXl4ddu3bh2muv1bY1RTJhRVXVmqeHYYiOjsYvv/zSbLllmpOSkhIkJCSguLi4wcsWm5Ij8+8DAHjkuXR0MKixkjVGrspQfebltIEjhiXHMueb4pC5zjr3FNvJckR57uL0ga7jl+WiTrJwgZJaNyl5Gy1QJbHC2lUml9yTRStGWjt8hmXT1pkiSSe4y4R6eYFbt16lVhwS+7I++PIzKYcDgMNXJo9VBqNXSOltqXSu+ESw9u5oPdkkWb12FgoLToUlWNqg6qDN4stkQCt9JqtPkkGV+EiV2fJEM3ayABgDr8NtMxJvyJtHViSyEFEAOPWF+m1UDKc60fJadJDBwiRrUG2YfVtz39FnyqNntLIFtUBzyGOEqb0Cg5WDgndpqTnlAgwXEF6bNcqIsVxNQeO15dijOj1ShAV3aCfxvHcM6gsp2os6+e58YW07UCKuifE6kiX1oJQtOCQtUXR+kgwWyjW7hBwK5cIjKsIsHCDIUpmZKH4v6NrQvWC06FitmjnFoowe7K0/Y9SHHYfFsZGliILUjfcUBbcbg8VFHypMfTLuuyaLlvW+q64sxxeTz2nW/xn0fyl3/+5G7aOkpATpWd3bzP83Ixs2bMDo0aPh8Xhw6qmnQlVVbNiwAZWVlViyZAlOOumkZt1/v379cPzxx2Pq1Klhg8gbOp6J2IU3dOhQbNq06agcQDEMwzAM07LceeedGDduHF599VU4HGLY4ff7cd111+GOO+7AypUrQ+pccsklWLhwIeLj42tcaU989NFHtX6/d+9efPbZZ+jZs2fDDyIMEQ+gbr75Ztx99904cOAATj75ZMTExJi+b6gvkWEYhmGOWdqxC2/Dhg2mwRMAOBwOTJ06FUOGDAlbJyEhQbMU1cfNVxtnnXUWfvzxx9YfQJEe0+TJk7VtTeFLbG9ULRbK2VFj/i/kuz33XgMASOkvEu5qrjuHbsImF53iFqZxR4pQ567oLEydUcUHtLIU+B2UOk1+qcCtSveW8/B28f3P/9Pq2GSQetBtHgBDBizDoC5OJvYoOwWTiu1lPgpKDjlEVAVIuVp89niE+zDJpt8f5LpTpc6U35Ms+qaG3kM+p+hn1JE9AIDqFHHuXNnbRB9iRN0uDl2LbJ9f1CEXVed4cS4PS50bo3uL3HGlmptLBoZLd5TXH+oW2bivCADQI03sh9wKVBfQ3QtUx63p5JjdUoDueqmyBK5qAfj20B9IajeoBZib3apBg9qz1Y1IrkfqglG/CtKDTG4+q0szLUZ38+QExf1nTEwLhA/+tiqPWzWetEDmMAHFNQWnhwtUJsgNuku6lJTkZO279uHA013pdH2PGBYD6MmlSSncrKVlXDhAKuJeq+K7dCkbdaDI1U3tZcvMBnR/dJZq/bTdSKUl2TTdNQke/fePntlE6WIk/SZ6LSjTnzEKHs8rFfuie4jcfsYEwQXShRkt92V16RnvVZ8/iOqWDCJvx8mE4+PjsW/fvhAl8v3799cYx2zMe2t83xAuvPBC3Hnnndi6dWtYHapx48Y1qN0GCWkyDMMwDNOEtGML1OWXX45Jkybh6aefxvDhw6EoClatWoUpU6bgr3/9a73byc3Nxfbt26EoCnr37l3vBWw33ngjAOCxxx4L+a5Flcg59ql2/Ad+BgA4jx8qPm9arH8pA8I7/elSAECwtEi8ygDxktXfakXdiWJU7hl4GgBAlbNDV7WwsARi9WBsW7kI/lSk6rc9IGeVMiDcn9JN7CdTFzqtkDOt6AM/iO+kBYdmMTZDTrnUKhHI6Y8XVrBilygrJ76mIHJK7UbSATQpCkLOhA2z2Jh4kfvOLY/JWSKUx1W703wc0K1U5YniWGIK94p9y2OyySByo1TDkUrxnqxItAQ/nNwA5YwzWo+MZeyG2R3JCJzSLSmkHQBwGtIxUEA4nSL67JeWo2LDDJcCwSst7ZEVwa7IIHhbaF/IEkWWlmQ5wzb2JVGqcpM6d4JUi95X7pB1Qs9Htlz2TtYp2m4MwI+1BI0TVsVpINRqRAHoZDWgY481BNfXlNssXBC5dRtdc1KWTzZYOdIrxH0XFW2xwh5lpCeI/ueUi2tktGD+XiCOMVfmYnRbpB9oO6AHaNM1sEpLGC2MxZWUS86yaIQsoTKgu7A8tH2ydJGcAVmVyIIk6ovrRFYpslaR9EG0IW8eod1DYSQJCLflXg1neSJ8/uAxIWPwj3/8A3PmzEF2djb69++P5557Dn/4Q6gsTGN4+umnoSgKrr76avj9MguD04mbbrrJlBKuJkpKSnDLLbfg3Xff1QY7drsdl19+OV588cU6XXzW3HdNRcQDqM8++yzsdkVREBUVhZ49e6J79+6N7hjDMAzDHCu0RjLh9957D3fccQf+8Y9/YMSIEXj55ZcxduxYbNu2DV26NJ2T2+VyYd68eZg9ezZ27doFVVXRs2dPREdH16v+ddddh82bN+O///0vhg0bBkVR8N133+H222/H9ddfj/fff7/J+hoJEQ+gLr74Yi3myYgxDur000/HJ598gqSkpCbrKMMwDMO0W1rBhTd37lxMmjQJ1113HQDgueeew1dffYX58+dj9uzZDe+LheLiYgQCASQnJ2PgQD0fZWFhIRwOR52yC59//jm++uornH766dq20aNH49VXX8WYMWPq1Yfy8nKsWLEC+/btg8/nM31njOmOhIgHUEuXLsWDDz6ImTNn4tRThXr1unXr8NBDD+Hhhx9GQkICbrjhBtxzzz14/fXXG9Sptk5haYX23hckl4wM2o0WLs5Y6Y5xpenJbSmYsUqWraimQGvxOaHPaK1scv6PAADVJd0L0h1X6RCfPdWleoekZlRQBo+TYrizQCiSU8JdeA3Jnv1SM+Z34XJ0DxCJGsl9prr1BMGqXd4mThGEneAvEv13JYr2jQk4pWU9oEoXjZ8CU8V2o7uP3Hweh3DPuWKiTWU80foPQlS5CKqPLRYB8f7U7rINGUStiL5VGEy1AVUcIwWkZklXR4F05xSX6e6+Ym8datqGCQO57EiDyWkLdWsR5Bmg78i94iFXkkFbhwK2aV+/54nr5XGZtW+SPOYASFFHvJKLrbAy1GVlU0Q7cW7xWhUQ7SlKaCLVZI/DdKzkwiMXpNHjQfpA5DKxBoqHg9wsdP2oDVeYQPmargntJ96gH0QuO62ORfPL1oYDbRtLhkwavma/7vqmIO5KTfleuOE6SUXuLfuLtLJWpXBytdltodpLPdLE78OvUtGbNJ7IjbYzR+i2JceE5iKlAHRyx1Edq46T6IN5oh4ugbTdRomMzUmFw2F1/9I9SwmNA8aExg4b/P6Gxca0JiUlJabPNeWE9fl82LhxI+677z7T9vPOOw/fffddk/bpL3/5Cy688ELcfPPNpu3vv/8+PvvsM3zxxRe11k9JSQnrpktISKiXoWbTpk04//zzUVFRgfLyciQnJyM/Px/R0dFIT09v8AAq4iHr7bffjrlz5+Lss89GXFwc4uLicPbZZ+Ppp5/GlClTMGLECDz33HNYunRpgzrEMAzDMMcaqqI0+g8AsrKykJCQoP3VZEnKz89HIBBAhw4dTNs7dOiAnJycJj2277//3pRphBg5ciS+//77Ous/9NBDuOuuu5Cdna1ty8nJwZQpU+qVYPjOO+/EhRdeiMLCQng8HqxduxZ79+7FySefjKeffjqygzEQsQVq165dYc1t8fHx+P13YfHo1asX8vPzQ8q0ZQJ7Nusf7GI2pdrFbK08QfiCc2WQpjlo2qw0fUAGZdLS8+5JuqI3KXiT0aHKTwHG4jW/UreI+JKFnlZnu7QaBfymNlCpmyApL1yRXYzQU3J3yi/EjjR18aA+m/L9tkW8kXVJrTzHLdS/KeAYAFzeYlFfyiKQ+rdHBjVXKfptRDND68j8dxncvCVHnx2d3EnsMyNWzI7IyENL750Gi0OCO0W8SRSvKX5xXqKD4jVPEW15nKFzAro26w6IfZf56DoaZpuWmWmUDHil62sMxqZLQK+ZUjU5u1Rc+zhDgCstH4+V24pJ9VsLDNf7Scdb4RXnNTlWXBvKNUeWKKP8QrCORAKlXv2axzgpiNdcp9IiJSD6Z5YtcFuWvRutPqSmvj1PWB3CBe8S1tx3VhkDOynXG6wdNQWRE07DSYxzma1zVhV3l6Gs4qcA56M7iJzYkiss45TvDtDv8dA8i35YKbXknSPIulRaFVqHgr0pWJw+k+UvnFUpRd7XewtEf+lZqDBYjtLiokz9J8LlwiPLPlmeKIA9nLXKev9ZLU+2MAsTWgpV1X8DG1ofENIAxv/R4axPRqyq3BSK05R4vV4teNxIdXU1Kisrw9YZPHiwqR87d+5E165dtdisffv2we12Iy8vDzfccEOt+9+8eTNefvll2O122O12eL1e9OjRA0899RSuueaaOoU6ayLiAdTJJ5+MKVOm4M0330RamlgJlpeXh6lTp+KUU04BIA60c+fODeoQwzAMwzANIz4+vl6pXFJTU2G320OsTbm5uSFWqcZyyimn4JVXXsHzzz9v2v7SSy/h5JNPDlvn4osvbrL9O51ObTDWoUMH7Nu3D8cffzwSEhKwb9++Brcb8QDq9ddfx0UXXYTOnTsjKysLiqJg37596NGjBz799FMAQFlZWb3MagzDMAzDCGtyXRbluupHgsvlwsknn4ylS5di/Pjx2valS5fioosuanA/wjFz5kycc845+PHHH3H22WcDAL755husX78eS5YsCVtn2rRpTbb/wYMHY8OGDejduzdGjRqFRx55BPn5+fjnP/9pCmqPlIgHUH369MEvv/yCr776Cjt27ICqqujbty/OPfdc2KSboylHjs1FxXvCL6x4hPneMexi7TvSWDrilQHKUnG7RLpDKOAY0PVlCNJdIf2SXUf0gHMKOj4uSQRLd4wTpuxDpcIdR8G9xn2VyplEnE2048zfJfpoSLSrOkVAaEJAtBOUSYRtXuFSUVVxXYKp3bQ6Tq8ILvXt2CQbEceYbhfb7Xt+0g9KBpGq8UK0jFybpdFilmIOsJbnigKiLQHAhWW663GbdPkQqVJ1mH4IjC48cm+S6nKuTZxD0k5KsYs6XlWv0z9NnJetueF/WBIM7gUK7jYqMwNAMIwpm65jhnTdlVmCVo26UCnymKhMugyqJd0mY5C3poIeILeh2HfHeN0NDOiJfk3b5DkjzStq97DhfOfJoN2UaLObi66R0d1HLi9yXdIxk+vHeJ5Is4nu+eJK8zkM50KpKakwBTsnGvpo1SOy1vW6Da5Yrd/m60btFhr6lhEj7g/Hr0Kh3963abVvWhpNs8xw7F1TxHNyQCbU1vSULNfIiFWtnM5duKS8PkuQNQWGk4st3XLvArruU75BgwoAOiZ7tPcUaF5XHwGgTLoWycVN7l9/mMUHmuvO8szaSTXfH+rWbylU+deY+pFy11134aqrrsKQIUMwbNgwvPLKK9i3b58mPNlUjBgxAmvWrMGcOXPw/vvvw+PxYNCgQXj99dfRq1evJt1XOGbNmoXSUrHw6vHHH8c111yDm266CT179myUynnEAyhA+EzHjBmDkSNHwu12N7m/lGEYhmGY5uXyyy9HQUEBHnvsMWRnZ2PAgAH44osvmkUw+8QTT8Tbb7/d5O3WhaqqSEtLQ//+/QEAaWlpda76qy8RD6CCwSBmzpyJl156CYcPH8aOHTvQo0cPPPzww+jWrRsmTZrUJB1rblx9hd81v9sIAEBRlT4jCRSJ2ZO2hFvOhtKlEu/Ww7qEQLJHbNsnLU0FZaTQG7qkm4Ibaak5zeqjpBWl3KfPfrxSbZXyzcX7xT7J8rTfq8/Q7XJGlxkt2lekJSoQJyxpJDdgnLgnePabzgNZsexSDVyzTAFQooUVzNlRtHswU6isQ/bNKGNAAclV0hJVYZm9DumSqJUlK0ecy3wb0vaiMEGrZOzyyPNaLQPj7Z7QnHUU6z8wXczCK2Wf8ioo351elvpJAecUEE6EM48fscziE8IEzDrtJD0gXgvkDJ0Cc8PJI5C6OPXFLdugYGnj+SKl8GpLHj2yPBktLtQ/knFIk9axeHeoMjudR8obmBodKp1A7CoUVldrQHg4a5M1ULmmIGFjQHFNMgaEMWidAu9rCjx3lOjPIz3P8baIFyO3SfYVCytTpsHqQ/dbj3SpVi5lDchqQ+rggH5tSrXvKF+j/B00WNspEFzLZyfbKasyL3goMAS0p8jFImQZcssyVNZ4zcmCFa2VIWkF1VRH9E9eW8s1d1gWhgCGe1TedzT5d1HePEMOUIfDBnuwQTaGBhFUw+cVjaR+Q7j55ptD5AXaE6qqolevXvj555+b3NoV8S/HjBkzsHDhQjz11FNwuXRp/4EDB+K1115r0s4xDMMwzLGAqqqN/mNCsdls6NWrFwoKCpq87YiH12+++SZeeeUVnH322SY/6aBBg/Drr782aeeai+oN/8V/0oUmRclvhQCAAel6RmiakSdGiQEizfzXHSgCoC8HB/Rl7jSjoxmTdSktECrqR3XJIlVqWFpMsSfJHhl/VCVmb2R52npYjx/qrM04xT47O8RnW8URAIDLI3LX2VR9hufvLGQSSL023yetHPFCJiD94jtRE2Tc3Z0vrGKVfv3BJQtIlWUpO1lTop36klqvnAXScdsUGUMjY8yM0gEUe0OxRElyuXSUFu9AYpD6Pik+6rCUn6C4mDi32G6YfGvWF7L2UE68cFYPTbSyhilfgiGPG4leUj/JUkSWKaPFjMpYc+tRPFN6jHhN8egdJwtTvrQ0ULuZcrZvXOJfpVmIxOdyuR+ytvUwxKDQb3GpvC82ScFEii8pNcSo1CRJYN1eGzXFRBmhuBirRcrYvjVeiiwkZLGIMtwge6Q1pqvM8Xi02qHW7xPP+eldhKDgcUn6M/bkij0AgOxicax07qw55gBdBoDigLzyHCphnoEKSw7DQFDcf3TeSb7AmLOuVFqn6BpVVJrFa419oW3UvlXk04iWw88izeC13AvGfTicZnFQ2l+0wYpstymoDoTm3GsuWssCdTTh8/mwe/duHHfccXA46j98eeqppzBlyhTMnz8fAwYMaLL+RPybcfDgQfTs2TNkezAYRHV1zYGJDMMwDMMwkVJRUYFJkyYhOjoa/fv316QHJk+eXK9kxH/729+wbt06nHDCCfB4PEhOTjb9NZSILVD9+/fH//73v5Agsw8++ACDBw9ucEcYhmEY5ljmGDAiNYj7778fP/74I5YvX27KfXfOOedg2rRpIelorDz33HPN0q+IB1DTpk3DVVddhYMHDyIYDOKjjz7C9u3b8eabb+K///1vc/SxydnSYYTmHjpFqmF3jNVPBQUWrtgrFLjJxdEtUbg4KDDTiMfiutMCMA0rFClonJZ9J8myu6RKd7VB4TwrXroPZfXffCL31JbDwpViCviVPplop3BDBuNTAQC20lzRl8LdoqBNP0ZSHicXXoJbBJlSMH1xua4OS8rr5GMPWJ5yo+vd6vIilw8FYRuP0RocTW46KuM1KNfq7jJxrOTmK/OZlauNAdYUYE4uKwrY9jhqNrweLBWuDsrJZrO4XUW7osFCKa1AquWkQO40uInoPqM+dJE5yKj/ueU+Q1nFdPyQcdvWPuwt1i29O2UAtzW3HLkRow3uZnraqS8kW0DyEV6DK5ZcdlZ3YpF0u8Qb3JTW3GPW4HG/wbdAgb1ui+ukMmhuo7A89BkjFw0do1tzzxmU8OU1DpdTDwDKXfp+yJ1aGiMWZpTcew0AoNuTi8LWbauQa5fIr9CfG2seRWvwvvF59ctr7feZXa52hyhjM5xTnyVA2+pWDadqbi1bkxuttnZp8YXRXUc5+6gdq8s4XLvWfI2xYRaAJEa74LO1nFelvbvw1q9fjw8++CBsMt+PPvqo1rqffPIJ3nvvPZx22mmmVf/9+vXDrl276tz3Nddc07BO10HELrwLL7wQ7733Hr744gsoioJHHnkEv/zyC/7zn//g3HPPbY4+MgzDMAxzlPLuu+9ixIgR2LZtGz7++GNUV1dj27Zt+Pbbb8MmCbaSl5eH9PT0kO3l5eX1klEqKSkJ+1daWhoymIuEBq3RHD16NEaPHt3gnbY2bocNp2TJpfl+YWlR7fosrkjOwMjy1EuK0ZE1ocwwe3FL60PXZFGm1BLIaLQA0LJpyp1GQawUPGxM40ZCmjvlTHG3tFKR1YasBqIezQbF56A8FsUhlw0ndhKfDaYiygNmL8uTxyFkGDKrhNUtz95DK0sWKOoezeIov5tx9Yci78XDst+55WIGR1YU4/mwSgNQGavVw1g2EJQzU1mVrDJkeTAGnjtV8/JmkjEIR6KUQRjZTQTibjhUKvsvzpNRUNNNs1g7WRnldgdZrfR2SY6CjpvuKbp+RikEsrJ1SYgyfSYL3a4j4n4xnh/tnpRB9NbcdbS03bjPNHkf7peBxSTTYRTHzC6Rgqpa8K7oP83u8/36jw59R5aomiwBRrTg4xpWDsUaLFwHpERITfII4YKE7c7wopvGz3R+ffK1058urbG/bZGisgrT5yPS6rNKBpUDQLYmWyCurd1GsgNSkFZeZ0C3PNES/6C25F/eU56a/1HRPUCLaRKk7EVteejUMMHjNUH9zis135fWfRi/q0l4tbYyxqD3sqpqVHtbzgLV2JV0bXkV3qxZs/Dss8/illtuQVxcHObNm4fu3bvjhhtuQGZmZp31TznlFHz++ee47bbbAOheoldffRXDhg2rs35iYmKtA63OnTtjwoQJmDZtmiYIXh9aTuSCYRiGYZiwBEEBCg2v31bZtWsXLrjgAgAiuTFZju68806cddZZePTRR2utP3v2bIwZMwbbtm2D3+/HvHnz8PPPP2PNmjVYsWJFnftfuHAhHnzwQUyYMAGnnnoqVFXF+vXrsWjRIjz00EPIy8vD008/DbfbjQceeKDex1WvAVRSUlK91cYLCwvrvXOGYRiGYdo3ycnJWiqVTp064aeffsLAgQNRVFSEioqKOmoDw4cPx+rVq/H000/juOOOw5IlS3DSSSdhzZo19cplt2jRIjzzzDO47LLLtG3jxo3DwIED8fLLL+Obb75Bly5dMHPmzKYfQBkj2AsKCjBjxgyMHj1aM52tWbMGX3311VGTQDgr3oW8CsqtJtxcdkMA7f5i4Z6gYGFysZFCdJnBTUdupxMyRAB3sTRhk+aOUYeHoOBd0giioGGDF1HT9/GWB+W+hWn5rJ5pdR6ft7TI9NleKT4HPIn6RuneC8rgcUW6ZPwJwt1nXA5CBk3Se4pzkwsvVMuI3ImkE7S3SLiQwikIa7nv5Hc2mzmPmc0waNe1l8S+KD+Xw06K5PIcGupQ+1EOalfsmzwGUQbXwREZPK+3I7YnS72pKoNiNl0vcslSP0np29guudjI7Ub3xY85IkjbFOQt0dTb5THvlPkViYQo/UYhhXDSraIg7+W/C9G41BiXoax4T0rkOVIlmvL1HTS4c6xuMmuguNGFQm4bKqPlG7PoQgHQT75E14oKH4hupNKiCUQYFaxJEyjgNPef3EQpBtc3Xb8kh+iDLU64b33/e1fU+cNfQvrQloj2FQEAShQRjrBPumR/PaRnSiCXF+FxWYLJa3GzOlzme9OYJ44UuwM16G1pWk+GbAIOS745j3xewumFUVC35n63hEYY748Ki+tY2184DTdZj3ItUrC7O4wb0eWwhdyvzYmqmhfkNKR+W+UPf/gDli5dioEDB+Kyyy7D7bffjm+//RZLly7VkgvXxcCBA7FoUcMWeKxZswYvvfRSyPbBgwdjzZo1AIDTTz9dk0eoL/UaQBkj2C+99FI89thjuPXWW7VtkydPxgsvvICvv/4ad95ZswAjwzAMwzChtOdVeC+88AKqqsRg/v7774fT6cSqVatwySWX1NvwEgwG8dtvvyE3NxfBoHngf8YZZ9Rat3Pnznj99ddDNKNef/11ZGVlARDGoaSkpPoeEoAGxEB99dVXePLJJ0O2jx49uk4thrbC+kNl8DnEzCM1zOzbZnFXksWBlpynx+hKv2SNyq+gYGmxXQtSNLRF7VJANL2GW3GdJdXFexkU0usiuGsdAEBJlQHgdqmGLgPFbeW6lL3iF/1Vi4XUQVUvkYm+VAaSGg1ndCzRTvMxUVC6cfZmp/qW2V9ZmGXNZN3xhLHCWKH+0FJ7PQDdPBM2KqCTtSoadtknc5vGvpCMxb6SanlM5j45wlwksh5ZFcmN9w/1gSxRWvC4DOoNp2ZO55MsWdKwoB2b8dRa65OVhmbwJQbFcMqbR/07LUusfvnsF3EPhFP0thJuyTlB28jypC2VN5wPTa1cJQuI2Wrl14J59XbjLEvMrWrj4dTiad8U6E/nw2iB6hwn8+bJ/I/+HDH7dGR0AQAEd6zWytp6jwjZR2vjKDoEAEjoIH70t8kcnWWGa64v2xf3arK0ulGZcAHcqsX6SHIDNmPgNkmnuMQzrKmYk9K5tPBUhrk2di1/nnnfRut0bQsFjNuN762WLLIyGX+frPn+rBi3220KqqtCF7QwkWMUq7TZbJg6dSqmTp1a7/pr167FFVdcgb1794YEyyuKgkCg9uv09NNP489//jO+/PJLnHLKKVAUBevXr8evv/6KDz/8EICQWbj88ssjOKoGyBikpKTg448/Dtn+ySefICUlJdLmGIZhGOaY51jJhXfBBRcgOzs7ojo33ngjhgwZgp9++gmFhYU4cuSI9lefuOtx48Zh+/btGDt2LAoLC5Gfn4+xY8fi119/xR//+EcAwE033YS5c+dG1K+ILVCPPvooJk2ahOXLl2sxUGvXrsXixYs5mTDDMAzDNID2vArPyMqVK1FZWVl3QQM7d+7Ehx9+GDaNXH3p1q1bvdK+RELEA6gJEybg+OOPx9///nd89NFHUFUV/fr1w+rVqzF06NAm7VxzsSW7BDFxYrS+XwY5G10WqTIRK5mGyb3XLUmoSBuDyMmNE+UkLSdhai6SpuBEg/uhb4f4Jj4SM4HCHACAQ5Vq3Us/AQDE/0EInCoJuhCZEhDuSCVOmFbdZYcBAM7oJPm9rn9iqxS6MoEYYWE8oorzY/PJ1ROqIfjTJRTTKUCXdIjoXJYZTOQULE0uPFLw1jWf9BkVuZ0omJ5cV5rCObmPDMHe9Lai2qIFJOvEuXQDbIl0PSZGifaPVNpN7ccaXHjkfqOgcVIkJzddtVWqHUB1wKx7RPdNseF80IIDcgdbA8zJjWHUjqKFDcFo0W5hmbiudJ6NbpE9heJ69UoVCweW7xbX1ep+AQxBwPK76BoUrY1la9Pd0coGzD/zui6R+EwONpfBhUqaUKQ4TppG4d2I5MYxu3yob8YAf7pMvkQRA2Gr+FpsPyJcmvDr59nVu8ZDajV8GccDANbuF6470nwyusbouCl5sL4oINSl7nCZHRJk0SCFclXVv4+y6Dz55T0QJ7fTPeFxhbrnqX+J0p1q7ZOoZ/7XRN+FCxivSbU8XFmr29Dqdjbi8wdRXY9E2E2FikYGkTdZT9oeQ4cOxW+//RbRAGrLli0YMGAAbDYbtmzZUmvZQYMGNahfDdKBGjp0KN5+++0G7ZBhGIZhmGOTrl27wul01lnOOOi57bbbcPfddyMnJwcDBw4MqR9uAHTiiSciJycH6enpOPHEE6EoSlg3Z31iqGqiXgOokpISxMfX33pSWlqKuLj6Bz+3Bj7LEmtjLiTKaUZLxElugKwFlM8MAPpnNq9VKRKq9/wKAAjkHQQA2OQsTk3qKAoYcuHR7Lp65ybxWeYiU6KEdcKR1UsvKoPSKRg9WVqiymxCfd1liDiPkm+z4oWValseBXCbc2QBwCEZHU2WJ7JE6eriocdoVYWwSh64DZaifJmzkKwOyfJ66jn39NlxvFu8r7JYSKhdY7A2Wdc6x7vDljUqrJM1iXLTVVQHTWVJdRzQLVpUhix09ErWJmNfnHJfJElgDagNZ6U5IC2qZK0ijFbYuoJ3jdvp2SGrFwV9hwvUpXpWq5XL4TB9Ni4sSJfnmepU+qQcQzlZ2wyWIkvwPwWwk5XNqOL+4+EyAPpzfmpmdwCALUb8dvkLcrSy2bNvAQBk3v9iyDG1FopUn6f7gYKmA2WGa24xAFVaVP6N15yCxUnzzyevHwWV+wzB6Q5pcXfL30q7fC2V93tcmADuWLloZIhU+6e+xMj7mqRgAP239udcYV3bKa+VXT7T4SxGhNVKGs5aWtP9bcTnD2qWtZYgqKoh2RkirX808NNPP9WrXLhBz8SJE7X39F1NA6Ddu3cjLS1Ne98c1FtIMzs7O2wumnB06tQJmzdvRo8ePeouzDAMwzDHOCoa54Zra8OnutxmRsJZkBo76OnatWvY901JvQZQqqritddeQ2xsbL0ara5uufxBDMMwDMO0LWpzmwF1W5CMg56VK1di+PDhcDjMQxa/34/vvvsu7ADps88+q3dfx40bV++yRuo1gOrSpQteffXVejeakZFRLx9na0LBjRkyYPyKwZ1rLPvtb8J1NbZvh+bvWCMg1wO54aK6HgcACO7bBgCwJ+kWRH/WiQCAouQ+AIAyn1mHx6jimywVvGNdwvVjqxDBxzHStaJUe/V2ZRB5jNSM6pUs+kLK5EaTOblVfs0RZvo02R6Z9I0Bv+QKsNeQUkhLyGzw8VFZCtw+LF1W5PYjRXUAiJYuiSKLMrFVFVyUFedj/UGhJt4/XRwz6TQZtaiSpNuC+kV9ocS9ToP8fGIUKdNLJXyLO9ErNZOMOj/0ntxn1oDacC68vBJxvcgFRrgM7s+aAsHJdWK8P6xuEK0PtbgUrMG8WmJmmzkBtLEv9Joc60JNaC55t9klWCRdS5TMGdBd9XS98t0nAgDGHlkLAFAc+rVJO+/8GvfZWhQHxDHSogJNbT3M+dE1kij5tFmhHTCcZ3nOgvL+88vnVDW6wmQ2hRjxeGvnWSHNOBfpTulubtrXpn1Fop/SFZ6SITMSGO6XLOnajpOu9Z4pYkekdXWgUF/FVVzpMx2j3+KeM7opqQ/021NpcTO7DEHvdpsCtRYXX1PT3oQ0m9JtNmrUqLBesOLiYowaNSrsAOziiy+uV9vNHgO1Z8+eBjXOMAzDMEw9aGQql7bmw2tKtxlZqqwUFBQghkbxFqxq5c1Bg1bhHe2c2T0Zo/rX/+LWJ/9cWyDq/JsAAN7lYoWkKgPFleOFynieot9oZRWkEm1Whg5HrswbWGgTytUdE1MBAA6fCOw0yhjYVBmMroiZXs9kMZMslpaSXLduAaC8bWQ9Ka4wL0+PijUHaQOhwaNBmznI22YwFQXl5JomkSSBQHIDTsPssljOqEmOooikCaRlJNWtPypkTaLFBWS1ypQz/2xLcLax3yRxQP2lAGYAKLcEOms59tyWnGSGS1Ugg2qtFqPapARqCjT32YxK5LQE3LpvObs3/JiRtYFm/FbLlrFswCJR4Qonw4/wlkqizGo1MLRhd4a3GERr8heGQHlVKmzLPpF1KjBotGirRA8ix6HtAICSBY8AAOKvfSzsfloSstKR0TXBIiEA6OeKLC8U4K8ptRuub1GF2ZJDQeVOt5QMMQTrUxC5dTFAZqJ43gdlJZr2byxDdej5z5ULIM7omqiV7VK5BwBQkS6WrVOuyk5xov09RXoC2p35IlckWaUKy0V7XkvfgJots5pkg+HcuV127feFiZymcKFdcsklAISVaMKECXC79f8JgUAAW7ZswfDhwxvX0UZwTA6gGIZhGKYtEYSKYCPMSI2p2xw0hQstIUFM2lVVRVxcHDwefQW8y+XCaaedhuuvvz5s3b///e/17uvkyZPrXdZImxlArVy5EnPmzMHGjRuRnZ2Njz/+2HQBVFXFo48+ildeeQVHjhzB0KFD8eKLL6J///6t12mGYRiGaQLURrrw2pqKQVO40BYsWABAqIjfc889NbrrwvHss8/Wq5yiKEf/AKq8vBwnnHACrr32Wlx66aUh3z/11FOYO3cuFi5ciN69e2PGjBk499xzsX379og1p07Oiizjcltn/0OTAACpQwYAAOwpmQCAqhFXANADxI3uryiLoJJHmuRdYRK0UlFKNPzbEWEiT5GzgViDgjHVV+W+kmXS5nO6Cb2s7w6WaWVzpYugzG12l1EAtzEprz8Q/mGkMpqui8GFQy47qz5KQpRZbwoA8qWb8rDF/UR1SVMK0APjO8gAWZr5UXfjDe6+Iun2iJKB+OT221ko3Q4lukuTgsat/dX1n8T3lBQY0F0xVtdEbQrLhF6W2tC/q0lHqmuK0P6yutGM+yKXGgW4xxrORyBgdt1Z3X9EbFToT5M1wbHmejR03AWzq8pVQ+LacJAmF6nSJwf1Yyz/YRUAoKqgGADQ0upv1bl79A/SPR4rk4Wf3En05vPtYrFLbYmeKyzu0IDhn5z1GpDGk4MWaBhcyTZLWc0lK12CpIpu0mCS14l0u6gsuWg7OfX7enOlUIf3yOTeneLEc0OPRnVQ10+jIHotMFzTugpduFJqcWkGLIsu7JbFEezCaxp2796N7t27N7j+tGnTGrTP5ibiZMLNxdixYzFjxgzN52lEVVU899xzePDBB3HJJZdgwIABWLRoESoqKvDOO++0Qm8ZhmEYpumgVXiN+Wur9OzZE6NGjcJbb72Fqqqq1u5Ok9EgC9T//vc/vPzyy9i1axc+/PBDdOrUCf/85z/RvXt3nH766U3dR+zevRs5OTk477zztG1utxtnnnkmvvvuO9xwww1Nvs+jibTTRQ5CV08hRpabNhAAUFgqrR+O0KXhdksAKs1DSQXbbcoZpprKUg65SsqXVq3PYrPixC0VHRBBnl6nsNa4qkWA54h0fRa73ytmzjsLKuR+ZF/k/oyq0dWWXweyPFEAMOVUM04YSdqgUM5QyUKyTyqgG3PN6erk5v2QdIARKusNKKZ2fLKuMTidzk2HWHFeYqSl78xuIgfhD4dKtLIUTNspXsyu6RqQxYn2W1Fd85Jbq4XBiNXCoCs2k1p3qFWJZuZFlmB1o1WJrEhW6xepiRtlFzSJA2m181WarVbUJ4/heidY8q7RYoOajgswWMMslieTFUvGo5KyfHcZAJ1UJXLh2coLtKKuFKG+r9haZ85pqyjS3vtTpWK6lBPpFiXOb2WY3G9Wq53V4mf83u0wLy6wW6zRAcsSf+M+SQ6gQN6rdC8Zrw1ZnOyWc0jWzN1eXX7BaRd9qawmqyvlhxR1fy/Ug8jLq83HTXn/9HOgPxNui0o5QbI2xvPR0hao9ubCM/Ljjz/ijTfewN13341bb70Vl19+OSZNmoRTTz212fZ511134fHHH0dMTAzuuuuuWsvOnTu3QfuI+Nfg3//+N0aPHg2Px4NNmzbB6xUPTGlpKWbNmtWgTtRFTo5YDdOhg1mHqUOHDtp34fB6vSgpKTH9MQzDMExbg4LIG/PXVhkwYADmzp2LgwcPYsGCBcjJycHpp5+O/v37Y+7cucjLy2vyfW7atEkT9d60aVONf5s3b27wPiIeQM2YMQMvvfQSXn31VZNY5vDhw/HDDz80uCP1waoDUZM2BDF79mwkJCRof1lZWc3aP4ZhGIZhwuNwODB+/Hi8//77ePLJJ7Fr1y7cc8896Ny5M66++mpkZ2drZZOTk5Gfnw9A5MArLS2NaF/Lli1DYmKi9r6mv2+//bbhxxNphe3bt+OMM84I2R4fH4+ioqIGd6Q2MjIyAAhLVGZmprY9Nzc3xCpl5P777zeZ7kpKStrlIMrZfxgAoCBBKI8XlAuTuMeiiWMMHCevG7nGrO6nUoMryGEJtCQvF5mM49z6ODxb7ruzKkzs0YX7AADejH4ArCrd4rVfmnDz/Zov6hypCnWnuS2umGDQ3F8tSLba6LIwu+7IFUa6REZXG7mZrMmE42QA99DOCdo2cgmSsnmydBnQ9o5xulYJJRE+bNGGIned0R1Hx5An3WXk/siRAbm1Jeela0TnqdQbWtZlmS8Z3XCA2YVHrkDqEyWqLZUBwEa3iC9g1h/S3UMB+dnoUjJv09xDtpp1rKxaRlbXUpzhOKwuzFJLguNwwenkgiW9LdUvl0obkm/b4oULr3iDSIT6wxDxzI3csCakvaakOmcXALMqur1UuBgdmb1MZf/vFPFAfbgtV9tG14TOoXVRgcdl1vkCACm1FKI6b30GAUMgv0Xhm863x6WfQ+oLudgoqJz2s/Gg7iHIkM+Qpp9WKnXe5LNbaNCkIpeudd/UX6MumUfzEpqfMSLacD5qc4c3B+3ZhUds2LABb7zxBt59913ExMTgnnvuwaRJk3Do0CE88sgjuOiii7Bu3ToAgM/nQ0lJCVJTU7Fo0SI8+eSTES8Ya24iHkBlZmbit99+Q7du3UzbV61a1WzJg7t3746MjAwsXboUgwcPBiBO7ooVK/Dkk0/WWM/tdpuEtxiGYRimLRJU1ZAVuJHWb6vMnTsXCxYswPbt23H++efjzTffxPnnnw+bnEh1794dL7/8Mvr27avVGTZsGC6++GKcfPLJUFUVkydPNulAGXnjjTdq3X9VVRWef/55LFu2DLm5uSESCw31nkU8gLrhhhtw++2344033oCiKDh06BDWrFmDe+65B4888kiDOgEAZWVl+O2337TPu3fvxubNm5GcnIwuXbrgjjvuwKxZs9CrVy/06tULs2bNQnR0NK644ooG77O9UJokLE/FlWLGFC0tT/FyRk2BmMVe/aYhy9Mhqb5MS+hp1maMsaTATcrVRkHp0TKY3DgvpVl8UC70Vp1iOmv3CyuK3aYPaClnFcksJFuCP48YZplkLUqNFlNICmwvljNrKhtrmPFS0DVZq6JkoDIFNxsD00ssFhuP0zwz//5Asfae5BGOTxM58DZnm2PrrMcBAL/mC/mGmqwpgCEgV77GWpbi07XxG/rtsFhjaNZMVjbjEn/IQ7Iu/ycLTmyUwcphmZmTJcEVRhbBGnxul5INFDRcVlUdUsduMy9719qqNlu+AD23G0lAWAOAw0kqUDt0HelcJkaFXhu6h3yy3aBbzHJVgwWq9KcfAQC/fS4sUDv3iPthZEhrTUPwN5mPz5MQ5kvR38Bu8aNv734SACAtXkhM9EnVtXI2y/NQIC2gdF5clmfBCF17l8O8tN943mkbWfjSZR5Luk8GZYl+dzBkEyCLMj2XOcVmy+q+Ij2/HVmC6dktseR8NAbKZ8t26LkhC9dAKe9gvJetllW6d+k+NFpWK30BLQ8g0zjmz5+PiRMn4tprr9U8Sla6dOmC119/Xfv81ltv4dlnn8WuXbugKAqKi4sbvIJv4sSJWLp0Kf70pz/h1FNPrTX0JxIiHkBNnTpVS+BXVVWFM844A263G/fccw9uvfXWBndkw4YNGDVqlPaZXG/XXHMNFi5ciKlTp6KyshI333yzJqS5ZMmSNmfSYxiGYZhICQTNWmwNqd9W2blzZ51lXC4XrrnmGu1zhw4d8MQTTwAQFqp//vOfSJGrYSPl888/xxdffIERI0Y0qH5NNEjGYObMmXjwwQexbds2BINB9OvXD7GxsY3qyMiRI7V8ROFQFAXTp0/H9OnTG7UfhmEYhmlrtGcXHgAUFRVh3bp1YV1oV199da11GyuK2alTp2YxtjRYiTw6OhpDhgxpyr4wEeArPKS9r7ILczm5zyggnBLkkqsqt0x3pZCydq4MsCwPo9tCxEgzf7x0f5Bic3qM+Ow2JHOlGMwqRZr0Sc1ZunUM8eZaUt/0GEpwKsrEyEaMOk3b8oQLjIJISeOJ3E9k4jcGyZJyN7n16Ds65nyDoje5BNItCYxJVbzMYMqn+tVBsSqE3A3kSjBKSVHiYQpGp0BacjdYlY+NZTQ9JYtGja6Wo/fbqvdD7jmTi9Di1oJlxmpMyuuS0bZ5pVWyfZ9pf7UF2PosGkzh7indLUTnw/x9wKGfxFyp1m7VmbLux9guJaq1lq02TNPpfqZrRF8p8p5VfOVa2ehMsVjlpFvPBQCkfbsp3KE3GWqV2Lej52kAAP+Bn7XvbOWFAIDqQ3sA6C48wpj8fOPBYtN35Nq1hwkMD7lu4dzA1I6WPFjEpKRILS1ylUZJlxgl/wWAzDhRZp/2nJhdhEZXbEjCaEuQ+u95+rUh7Snd9SjKHpL7Md4fVh0zcuHR4ojaknAzDec///kPrrzySpSXlyMuLs7kQlMUpc4BFACsWLECTz/9NH755RcoioLjjz8eU6ZMwR/+8Ic66z7zzDO499578dJLL6Fr166NOhYj9RpAhVMHr4mPPvqowZ1hGIZhmGORoKpqg8qG1m+r3H333Zg4caIWuxwpb731Fq699lpccsklmDx5MlRVxXfffYezzz4bCxcurDMWesiQIaiqqkKPHj0QHR1tkmACgMLCwoj7BNRzAEUZkQGhvfTxxx8jISFBs0Bt3LgRRUVFEQ20mMYRiE7W3qtVYlaWXW5W6yVL1H45EzMGZVPgbIll5hVuBkazPrK0UF66/ApxE/ZK0VdGxLrENgp09ruEa5cmHEpQt1y4ig4AABwyUFZ1emRdMXvNM/wgUACxFvhtsbhQzjnjknar1IFTWnLI4lBtMCPT7JtkFhLkTJpmtUZF8kJpgTIGrBvLHizWg2EpoNWas49mxcaZtjVYl74jJW5XGBVlq4WFlmGTLIMxSNiHUKuUODZpBTJIKhRVWExC1EdN1sAVUpb64JbnrjYrlTX4PSDvC48r9CeJLCAUCG21nlitb0Co9USz6qnGMuKVLJ1eKuuWx9ZxgFbWGS8CX6NKhHBv1b+bVr6g+vtPAAC2BBHj4f1lo/ji53Wm7QCguKRS/Vl1z9preq7ps1Eag/55a3VQs6WPLDgkb5EmZQesFmLK+WgkX8oOkPwAWVgrDfeLNdib+kZ9KTX8llmfG7IqWRdjGI+hIowF2IrLYYNSjxyKTYVIx9KYAVQTdqaJOXjwICZPntygwRMgwoaeeuop3Hnnndq222+/HXPnzsXjjz9e5wDqr3/9Kw4ePIhZs2ahQ4cOLRtEThmRAeDee+/FZZddhpdeegl2u0zhEAjg5ptvRnx8S6fYZBiGYRimLTN69Ghs2LChwVJHv//+Oy688MKQ7ePGjcMDDzxQZ/3vvvsOa9aswQknnNCg/ddExDFQb7zxBlatWqUNngDAbrfjrrvuwvDhwzFnzpwm7SDDMAzDtHfa8iq8mTNn4vPPP8fmzZvhcrnqJZr92Wefae8vuOACTJkyBdu2bcPAgQNDXGjjxo2rta2srCx888036Nmzp2n7N998Uy9x7L59+6KysrLOcpES8QDK7/fjl19+QZ8+fUzbf/nll5DIeqbpCe4SJv3S1P7aNrJGuqU+05FKYcKmQHEymRtVr0s0Renwbh2jyZ/K0CuZ3jNlMLlR0Zss0LHSjUjfUPtRQd30rlRLbSj5GkgQKvMZUcKVt83QX3IJ0DGQ4DiFqGqmfYQGolJgeJIMGi6W7i2jC66AkuVaTOh0Do2q3fuPiAcxRwZYk3vRmrgW0F1pNbkKwgW4kkuD3CLkWqM2Cgyq5lZ3FrWRblFyBgA7JQ22aC2VhQmgrSmYllw+xuPRlOot/Qt3PqyB8uRy1IPhQ3WgrJCbz25zmtow4rKoUNNn48IEtyO0HqDrklX59f5HRQkXXnJ0EgBg0L/eE/389X+iL33rDmS1UrX4Fe199teincxzRDuOzkLbzS5dd74detB6sFhPclwX940SauV3ffpTveuEaoCJ82R0B5PrriMtKLEsvjhYIp6N4kr9ef9xvwhotyqak7vf6EIm9xvdD1adJmNidKuLkcqWWlzgxmOh9uleCufS9PmD8IdxDzcXbXkVns/nw5///GcMGzbMpNVUGxdffHHItsceeyxkm6IoCARq19u6++67MXnyZGzevBnDhw+HoihYtWoVFi5ciHnz5tXZlyeeeAJ33303Zs6cGXYA11DvWcQDqGuvvRYTJ07Eb7/9htNOEytE1q5diyeeeALXXnttgzrBMAzDMMcygUYGkTembl08+uijAICFCxfWu05TGlRuuukmZGRk4JlnnsH7778PADj++OPx3nvv4aKLLqqz/pgxYwAAZ599tmk75dOtawBXExEPoJ5++mlkZGTg2Wef1RL/ZWZmYurUqbj77rsb1Amm/uxJOB4AUFWpX/AYJ1kfxOcDcvZHS+9J+bfMG2qdoZmXdQmw0QJgXXJPszhath9lWP5OlqJqOeujR4jy8HmCBiVZKWOgVItlyKQAXVot9m1UCndaZsV6ILt4pWXUxvx5ZJ7aKpXCyWI2MF3sp9hwPjQFdrlPaic12igaIMiQ7dD5pOXSHos1xfoeCA36NgZAW68FKTUTuuKyMfCcZt3mgGqSB4gNo7xtDSym16KK0MDccAHE1rLRFpkF6/bagsm9Fgtobf21WqeMFgtrWYKsJtS+ceEABZHbtQB/8ZkWX2QbLH1krXTLZfkeqcKvZp0IAAjm7dPKOtO6hDvUELwH9TpkebLFiJmwI0WqNdulVEi/U7Wy2f96EwAQSThuZqLoN1mP6fqZrE3y+OkfMS3IoGtvzJvXQVo4SQpCy/koLX55MsOBcZGEVUmfrp/+LITmhbTmVSy1/G4Z+xcXZVaqDzegoGOgwHKv9rzIXJo+cx+ORlmDkhJzZoT2ktJs/PjxGD9+fIPqLlu2rIl7I4h4AGWz2TB16lRMnTpVu1AcPM4wDMMwDSeIxq2ko6mBNSZo2rRpbUKA+ptvvsGzzz6r6Tj17dsXd9xxB84555xm3/eZZ57ZLO02ao1mfHw8D54YhmEYppGQxasxfwCwf/9+FBcXa3/3339/2P1Nnz4diqLU+rdhw4YmObYXXngBY8aMQVxcHG6//XZMnjwZ8fHxOP/88/HCCy80yT6sbNmyJSI34s8//wy/PzSvZm1EbIHq3r17rRoKv//+e6RNMvUgsGczAOCIvRsAwGvw2eaViweHAjfJrF4oVx3Qg1VscLsYXTBAaMLacKbrmvSJSg1mb3KLkfstRiYTDkp/ia2qVCur2s3usaAMObcpqnzV7zNS/9b0oDQXnjgOCqA0BglToDy5AfrKJKvkZogzuCRITb0sQAmZbaY+GAM09SBYcwAqnZeuKbpzJT3GbDqnYPWiMAl2CXJpeEOC98NpM1GZ8M9kbonuBkyRgb7WBKqE0Z1jdaGESyhL6MG7Mum0dHuSPlScQYfH6hrU2zD3pTbXiVW93B7m98gaCE2fg4Z2A5ZdkOuukvSsDCuNaRd5coGGrVJsIBV9f1SqVja2tEjUj0sM23/SfIodMVrbFkzsKPaTLXKGBY7kif1kdBcFHPp9FN89M2y7tTHlTLF6aeY3OwCEXwxAkGo+ubOSZTJnWpgA6K5tcq3Tc59bLlx3pB5f2z1FyveaOrjBfWu9P0htnMp6Db85VuV+fZ+ij+G01uhVcz8HzIsaqN2W1IFqKupr2Lj11lvxl7/8pdYy3bp1a5I+zZ49G88++6wpX+7kyZMxYsQIzJw5s1F5dGti8ODByMnJQVpaWt2FAQwbNgybN2+OSGoh4gHUHXfcYfpcXV2NTZs2YfHixZgyZUqkzTEMwzDMMY/ayFV4teWSDUdqaipSU1PrLtgElJSUaIHcRs477zzce++9zbJPVVXx8MMP11u80+cLLx5cGxEPoG6//faw21988cUmM/cxOt6vhYhp2dDLxecCYVWqMszQKuSa/h7J4kbJlgGcFPxNr8YlujUtryfrSmw9rAbabM7QBFmGbJal5S6yADh11XJbtTiWsmQxOy6Ws/siqaweDKdEHjBbZ8iKRBYvY+AonY8jlWaVcjpfRlmHHDnDdWtyCZCfRftGaxhZlagvdC7p/BQZlm5TgD21S7n1qsIEZ9NMmY6N2rXOrEurQs3M1hk1tWFcMk4z/mL5XYXl/jBiDRqndv1hLEPUjm69NO/beI+RpUmXbDD/BFmD4I1lrerU1gBjAEiQlhE7zPc11XEaFjzQfUvXggLMyfJkKAqXLFzmFWXo3qT7zmV4CJQo0Yeq1x8CAGyctwQA0PeykwEAyUMGi3JddCmSgFQ6dwTEj7itNF9sjxEyBopfz9sYd/V0NJQHz+4NAJj6H5FbzyRzYbm/XJbfgpHdkrSye4qEZZOeJXrGiitqtqxqSufS0me1HBp/X+iahlOZBwDFaNkiJX1LGf14dMuWNT+jZj21h1qaWlqJPKCGWkUjrd9c7Nu3D4WFhdi3bx8CgQA2b94MAOjZsydiY2PrrD9u3Dh8/PHHIUaWTz/9NKxAZlNwxhlnYPv27fUuP2zYMHg8nroLGmhwMmErY8eOxf33329SLWcYhmEY5ujmkUcewaJFi7TPgweLScCyZcswcuTIOusff/zxmDlzJpYvX45hw4YBEPJHq1evxt13342///3vWtnJkyeH1A8EAli4cCG++eYb5ObmhsQ2ffvttyF1li9fXp9DaxRNNoD68MMPkZycXHdBhmEYhmFMtGUhzYULF0akAWXl9ddfR1JSErZt24Zt27Zp2xMTE03CnIqihB1A3X777Vi4cCEuuOACDBgwoMly2TWWiAdQgwcPNnVeVVXk5OQgLy8P//jHP5q0cwxQeZpw3f2YY07KSaZz8V6Yu7flCTM/qS8XSh0bcimFM5HXJ0iYsLr7yLRvDNxOkIGgFGRKNbzSvmyL0gfZ9mjxbYVUfj5UKvq7p0gY441uMwpWpW3k0iP3i0P2+0hlqAuhRLrCfiuoMPXXqDNF7VGQMSmPk74NBccCuhsoyuIOoNffc/VrlSNdHRlSh4dceOF+7KwaUVb9o3B6SlYVbt0lFurmy5PK6VryYItLTDWcD7elXVp0kCIDio0BvxSUrqvak+vH7K4zHktNyW3JdWe8V61aPdRv68IHINQVY3UjGsvSdSSdNPqcLO8F4280uaA7xYvv6H4sl89hYaUhUFnW63rmH0XZ14QGzXfPrwQAjF97PQBADegxF0pAnF/VJRY6qCniNSiVz10HNuvn49e14lhGXomGQufOa/pNkG5x+VzTIhEKKvcZfES0Lb9CPKu5ZWbdJ6u7LhwUuE2LI2pzTdf2+0SxP375O+hw2kPKEHrAusPUX9KkMi5mCARV2Bwt94+6sbpTbVmzavfu3Y2q/+677+L999/H+eef30Q9ahoiHkBddNFFpgGUzWZDWloaRo4cib59+zZp5xiGYRiGaT/QgDcSK5LL5QrJg9cWiHgA1RYEuY4F/Bs/BwB4eg0zbQ83yaDZkxZ8LGdVpZbgZmOwLc20tEBRaRmhmZmnlvxiZAGgYOpwcgAeald+R6roSS7dAlAuu/NznrAMUd45sjIZ1cftFgsUTWwpMJyONdWQ94qsYEZrnbGtQLV+Mklp2ivPEQXibzssZBeMS6E7JXlM/dPy8MkyPkNWT1+leE/nk2aJ1nNphOrXJy8cXfP0+ChL++bcYcbjtkpVVMh+G61O1N8yi1VAtwL5DWVJzkFYUUqlRIPDEqgbjpqO0ZqTDNCDha2rjYyWOXoW6H7WFM7lZ7fBQkXWS5KW6CNlLiiPo8MeagGlYHEKgI5x0DJ+vQ8V8r7KTRsIAPAkiWvzx0ViAU71drHYxjHIIO5HchluEZDrc4h7LKrssNgeo1tu1aqf0VhmjBUZDSiY3EhavHiuB2WIpfDpUuXf+P+OLEzW35wiLZhc5pAMoyxP0HX1WyyvQKg0hvW5MQWXS4sTWaACfrMV05iPz2rJ8lqC1I33amXki7IaRVt24TUFb775JubMmYOdO4VUR+/evTFlyhRcddVVdda9++67MW/ePLzwwgttxn0HNGAAZbfbkZ2djfT0dNP2goICpKenNzinDMMwDMMcq7TlVXiNZe7cuXj44Ydx6623YsSIEVBVFatXr8aNN96I/Px83HnnnbXWX7VqFZYtW4Yvv/wS/fv3D0kG/NFHHzVn92sk4gFUTVoTXq8XLldo3jCGYRiGYWqnPVugnn/+ecyfPx9XX321tu2iiy5C//79MX369DoHUImJiQ3Og9ec1HsARcsMFUXBa6+9ZtJ+CAQCWLlyJcdANSFqF2H+31EuzNNBVVj2CivNytuAbk4n1wyZ4AvKzDZoozmdXBrWhK+kOhznqvnWyJQJVcld5rTpZu9Ej8PUJ1IpT4sW2/eX6a6ZHNk/OqZMqZSdLQNSjZ43q+YUBYCT+jq5CmMN/d51RLgGNTeXlnBYfDZqAlEg/q+HdaV0I3RejMdmU83JlSnA2njeyaVEQdjkOqD2wilB1+Syi3aFBmVr+/GF14yqDc2l5zIn3DW2Y3XleS1ul3D90VzG8rPVTWKsYw0QtwbSA3pwe5Bcm9Jd5v//9t48PI7iTh9/ZzSa0eiWJR+yLcvYmDMGbAjE5vT+AuYIgRxcGzAEQtYhhGs5wpJggzmTcGSzy7kJdxZYYljIJtwEvoYYA3EIAWIwNr6Qb1u3RnP074+ut7u6pmYkWbIO6/M+j5/RdFdXV1dXj7vez1vvpzO7XoaOWE/MCB+2aOG+4sJguzmOOZMv0HYzHOlfqvtHkxqkYc13qjERXMiw/7wfAQA+uu1eAMCU09yM8OGWzV4ZisUd5ZPG2tKlrotyQcsmv517H4K+gh6q5+8Gn8PRaoyOUGF9fUhtU6J5Po+53MD1sWGGU9OFwXCwTTYQyTGO44ZjOJA7xKt7ivF5zJVxIStJ8RB0Ih+MaGhowMyZM7O2z5w5Ew0NDV0eP1jtkbr9AnXHHXcAcAfnPffcgwItzUE0GsXEiRNxzz339H0LBQKBQCDYxZHJOIFUQzty/GDF7rvvjieffBL/9m//Ftj+xBNPYMqUKQPUqt6j2y9QXIY4a9YsLFy4EFVVVV0cIegpUu+/6P2d3OMIAEC0OTijJnQXbc6cyUpRmMzlyBQlV8Z9BorL6lkvZ586m0SQcaEom0v7C9X0U7cxoNiWOj+KbVc3urPyf2xu0a7BbdcUlTuOZSkU18XpZIs6DDaj1HAi1/ulSjFuCXX9tB1gHW1Jnw17d9U2ANnuy6ZzMeC7iycN1sRW1mRWCJvDssdkqRxeCUME27A9mNtQP4asF9ut558z22IKf8269H2c1RcYM3a9DSZLYLIPNqG8Wca3QAguW9f3ecyTusdhVaaiOFuo3KKE7LwnI9UxusA/kXKvl2OL+SU70u73UMh/FshqsF0dKbV0Pp3tgM9TNFNoP2k6AKBYWRMkNrrMU5He4JR7/5LRMtVONZ5VXbGS0V7Rks6gpUlvoPcdxzWf83I1Hipi7nZmCAD8ZyleGFyMwt8YM98dkM0G8vsIxXhFtfyQ5vOSMMaHjZlKGwwWGduRZUVZ27hIwbT2MNvYny8lmV5qoAbx+xOuu+46nHbaaXjjjTdw6KGHIhQKYdGiRXjllVfw5JNPdquOp556Ck8++SRWr16dlXblL3/5y85odpfoMT/52muvycuTQCAQCASCbuFb3/oWlixZgpqaGjzzzDNYuHAhampqsGTJkm5pm/793/8d3/3udzFq1CgsXboUBx98MKqrq7FixQocd9xx/XAFdnSLgbrsssuwYMEClJSU4LLLLstb9vbbb++ThgkEAoFAMFywq4rIk8kkvv/97+OnP/0pHn300R2q46677sJ9992HM844Aw899BCuvPJKTJo0Cddeey22bt3axy3uPrr1ArV06VIkky69+pe//GVQ+TDsCmDC4NABR3vbNrS6/b2mMaE+3fANHbOLNGqctC9drhuUsNoUbepg0k+G7igaZx26S/fkqmA266jyvmllkmLNA2eDCiXR3blR+TPZqPC6CvopudeyTtHpDAMmA8eohK/p7NBXLjC0SGdpPbwHAB+uzxaMU9zNEMKmJrf/dSE0w2Msy3CXTbhthvUYjmpQDuW6kzjLUKDN0B19lVIUy2p9wASqjhEKo2jdFk5kSM10bm5u9Wlxhu7CxjW1qToiWqjDDLeY4bmUJVzZSfdz40ffsSR1ZRleo+cTFnPbXa9CYwAwSo3nD9c1uucxPIF0sB+qiu2rh9u1Y7gIwt8X9K+Ka/0RUgspuM0pcL/XnXQMACA65QAAQGvtVO8YhgQL1MPM8Dg/9T7OrPmH+8d4PxlxX4ChTP7GxNRzHu1ww9sF4QqvLO8B7/XYSvdZ3qZE/LZQrOmF5jmfq98cPdzX6GVPCPaz6byvn8N81rhoJmJ5BggzubX+nKczDpKWhQo7C2nHCYSCd+T4wYjCwkI8/fTT+OlPf7rDdaxevdoTocfjcTQ3u7/dZ511Fr7yla/gP/7jP/qkrT1Ft16gXnvtNe/v/kjQJxAIBAKBYNfAN77xDTzzzDNdRrByYcyYMdiyZQvq6+tRX1+PxYsXY//998fKlStzWiv1B3rsA3Xuuefil7/8JcrKygLbW1tb8aMf/Qi/+c1v+qxxwwWhg05w/0j5DMDokmDOrQ83um/cVRY2JRYJLkPnzM6ckekuu2YeO4qxK9T2AgvLuNmYXdL9W2eKzCXrrKfKIvTlcbQtoOibE9FPVe46wGfGCM6WiwuZz8ztD929nJQ2z8PP1Y3tMEEmjszc2m3tgWvVWTzOVrcaNhEbmxIwUWa0m3YRnC0WpPz2thjO8VtUv9Ap3Hda9vubS/nJxiS4gED1t03ATSaHTHLaWAYO+MxTiKyYOrejiqS0HGEsw/pM1kpHxmCe0uZ4sTFQbK/RpjJlS1Fb6YuEyQbSHZ1L5FdscoXXcW3BQ8xYMMBFDaPUdTRqomkKqJn7jiwhx7f+uJSoMcn8eZm4qxkNHebmtdycds/X2uaL+D1RtnLq97pXdXi8aa1/ggn7oLf4x4YmAMGFJQTZY7JuiSK3/U0tvsg7SfF8JsiY5WKD9G0c3+z3RsPiI1iPe7+Ko7ntOSq5uEVdi/n7p8PMJ2kyZTbLjf7Crr4Kb8GCBXjrrbdw4IEHoqSkJLDflkBYxz/90z/hueeew/Tp03Heeefh0ksvxVNPPYV3330X3/zmN3dm0/Oixy9QDz30EG655ZasF6j29nY8/PDD8gIlEAgEAkEPkUYvncj7rCV9j//6r/9CZWUl3nvvPbz33nuBfaFQqMsXqPvuuw8Z5ec1d+5cjBgxAosWLcKJJ56IuXPn7rR2d4Vuv0A1NTXBcRw4joPm5mYUFfmzvnQ6jT/84Q9Z6V0E3UO6yM05VdDR5G37ZKurkXlf6XTMGH25ZorZoLRDZFwqcrAP+jL1EXFlKpnhkn61tL0zqEMCgA6luTFZKeqRdMaBeiaTGSL7s03LSzWhokid2y3zudpHc766Cn+M8bqT3sw/0BTPWoEsGeCzVCQdlm9xWQgbI+dpkxo71HeVU62IehC/rJmfi2wVj9H1NvuOc3UjnpGmE9R/6PeIxydy6HaqVH90GjoNW5tMWwDAZ6donNmu2JqMRVcWVn1Hpiijftk5y00ls3/pY0r7Ew5n61RygWPHrzf3fwMRNaZ4TKUa5+PK/XESqXLL0NZhS2fwnrRr97FCPQO8B41Ka9bQnM1crG1SGhwu21cDMKMMNaPas0EtT02ByyC2pNz2tSdVv5Px00IPJIKoNyKcQld/SENNAAi3u/qu1Fo3j12kB1qo5PrPAADjy8cCCGopI+rvWEHw/kUzfKay2V1+JizjGbAzUPwd4u8Jj9H1Tfw7i9FW9elMIscBGS2WoX5RZ53M5y9fvslYJIxwJJvxEvQctEHaUYTDYYQ1i51TTz0Vp556am+b1Wt0+wWqsrISoVAIoVAIe+yxR9b+UCiE6667rk8bJxAIBALBcMCuugrPBCdlPV2M9v/+3//Dvffei88++wxPPfUUxo0bh0ceeQS77bYbDjvssJ3R1C7RbR+o1157Da+88gocx8FTTz2FV1991fu3aNEirF69Gtdcc83ObKtAIBAIBLskuAqvN/8GMx5++GFMnToV8Xgc8Xgc++23Hx555JFuHfu73/0Os2fPRjwex9KlS5FIuOxic3Mzbrrppp3Z7LzoNgN15JFHAnCpuLq6ugCdJtgxZD5bAgAoGDEBANAcKff2pRVtvr0juByd4S7dWGC0cvJlGIuhL4qwGabTQ3AJRV0zJMF6GYNPapMDhvBIc5eoY1i2UKuXoTsucy41qPgai5icoHiVQvl1miib4naG6NjucdGAnzMqtNAm2/u5yolnilh12p5/U7hdrfqUoQI9/MmQA8N9FJiz/hbNUZnhPYqZTXsBq+M2P41wCM9bqfVhKodwNJ8LOEN3neqzSNUX0tqSTNCJ3AzdZdcX9sTobpmiuBJRG/2tXxNnn6ECCsODs1I9rBgy+ipSGAwx6YsYSpVrNvuoQS0Y4PjTQ0IUKHshPHXNYcvMuNgb80o0rX7/PPG3FupRjwCSEXdpf0u7PSypn4bO451KsB1NuuHmsArrh9v80F66fLT6HAMg/49459YvAABOxH1OCjKpQP16+JPXWB4LhimdsBKTp3zRO59D9hkXQBA2sTe30TKFv216nknCHLe0pzAF6ID/bHKfaSuiu8/nCt15izuM34T+tDHIZJyceTC7e/xgxe23346f/vSnuPDCC3HooYfCcRy8+eabmDt3LjZv3txlMuEbbrgB99xzD+bMmYPHH3/c2z5z5kxcf/31O7v5OdFjEXl9fT0AoK2tzWqpvt9++/VNywQCgUAgEAx5/OpXv8Ldd9+NOXPmeNtOOukk7Lvvvpg/f36XL1DLli3DEUcckbW9vLwc27dv7+vmdhs9foHatGkTvvvd7+KPf/yjdX86PZjXAgwupKonAgC2htwlnZUWwSJnURR7kg3SReRkdcxcb9xO4ba+woOsCWctHvOk2KomXXipytBwkGWZq67ZItJkva3J3KJSLl/mp5efT9Wh52pr6VRLlNX1s/41mXbV7qDJIpBtY8DZ53plYrldE7STaTJzYdGET2dRmEeLWd4b22nvwGXx/r2JG2wJZ7perjl9xmsIZpOJYN9RPE0WC/BNKmvUDN2rX5WxMUZkcMKKYehM0CbBP3/GMO2MMceZGoeBeslUqP5uU4acKYuBq+nZQsaJbfLHh99vXv49o39qlRHrl0b5K4I3troMIlmJmLGcXhcUm8J7jgcu0a/QWA4ez2fJzIO490h/WXZByD13SzIoFicRYjK6AKAIEW/xRkWsFAAQLnSvMVOspc/KqFyArVsAAEyNF1KWB46Ww4/bQklXeE7WakOnYnDL/Taw62kAyrG/JeGW2agZrbIfNja7/W2ypzYGiqwSmXAy2fyN0C0/uMjFu2T2ofps1hgv83fEW4Sh+rlRW1hCxpbjwrOjyGO90V9I95KB6s2xOxsNDQ2eEaaOmTNnoqGhocvja2trsXz5ckycODGwfdGiRZg0aVJfNbPH6HEc7pJLLsG2bduwePFixONxPP/883jooYcwZcoUPPvsszujjQKBQCAQ7NLgC1Rv/g1W7L777takwU888QSmTJnS5fH/8i//gosvvhhvv/02QqEQvvjiCzz22GO4/PLLccEFF+yMJncLPWagXn31Vfzv//4vvvzlLyMcDqO+vh5HH300ysvLcfPNN+OEE07YGe0UCAQCgUAwBHHdddfhtNNOwxtvvIFDDz0UoVAIixYtwiuvvGJ9sTJx5ZVXorGxEbNmzUJHRweOOOIIxGIxXH755bjwwgv74Qrs6PELVGtrq+f3NGLECGzatAl77LEHpk6dir/85S993sBdEem/v+L+Ubc/AKBSRXw2amLTxoRLRzPU007/E0suKHotUQRKCnuCCnGY5YDsvHCkyNsN3xzAD3UwvEcB7dYOi4OwCl/Qg2mkahPFpvpKkRol1B5d5n4yRLVFhQoOrR+Rda3b1DlXKmH4BhVCYG45nYo3w3G68BQI5t5qV/3B43UhuFnWcxEPUyRNASo/tVx1OYTgFFProTC6fOcKc7FsTBsDUYrrleCeoU32ZVQLi7QZzunm+fS2pFT7WI8ZPgt1I+TRoUIqYc20y3Qpj8SCIn2b/48niFffWXY3FTbTzcs/U+NiuvLfYn8zdNeuXSNDSaxfDxmbYFiPl8LrYDs/3NiS81g+d1xQwRB4hX5vVLt2r3aXhzCETjdzPRcfReqdxdUAAI6WqOO2P5T0nfYdld3AKXH7oyPkhsaKCpRbt3ZvGLqLJ13vuXaUqe1uGd1jjc+zmf0gbYQ2bW7gvAfe/VS/EcVauNsm5NeP1eEv1AjuM33VgOzfhHztTWccZPoxtJfO9C4M14M0of2Ob33rW3j77bdxxx134JlnnoHjONhnn32wZMkSTJs2rVt13Hjjjbjmmmvw0UcfIZPJYJ999kFpaelObnl+9PgFas8998SyZcswceJEHHDAAbj33nsxceJE3HPPPaitrd0ZbRQIBAKBYJfGrqyBAoADDzwQjz76aK/qKC4uxkEHHdRHLeo9evwCdckll3iir3nz5mH27Nl47LHHEI1G8eCDD/Z1+zzMnz8/y6hz9OjRWL9+/U47Z19j4y8uBgBUfs/1ywol3FlrOO3O7MLwbQzGlgVzs3GpL2dZiZg/3ahVTA5nsWSeyGLVFNN13LcF4Iw6mQlOW/xM5v7QqFSiaM6gOVOkyLYjlT31YRmeZ6Ka2G1t92f5bC9n4synNa7MFZNTEAz4+f5Mp22i2rIUOl8uQH074M9SWf/GJiU0V/1vzkwBf6k82Q1zdusiWzAMZDt8Az57ZDpu0xW8VJ2PFgsA8PkGly0wWSqySwWRbPbHMW5XQgmCE9q94XGRwuBPRMjrS387GSbPrVx9crstN55pRUDmKZctg3vO4P3cqpjKldt8xqUi5vYRGZIpo9wZaoO6n2b+QiB7LNmYKI7Nthy5NnRmlcwWnfqbVFuY2pFjQR9/POdf17li7wPrKgH4Yu3pY/3fhhGe47bKk6f6pd1RQvyoL6rPKHa702t38NzFGgPFodIWcfss7rh9lY64461WG3elyorAW6jBrAS8drKGyWzWm9tsdiIExfRksmnNsrHVyTqG/Z3LmsDuhh50LfcZqOC47ET2eBF0D01NTV0XUigvL7duP/fcc7t1/EClkOvxC9R3vvMd7+9p06bh888/xz/+8Q9MmDABNTU1fdo4E/vuuy9efvll73tBQXY4SyAQCASCoYZdjYFi9pJ8cBwHoVAo5+r9Bx98EPX19Zg2bVqWtGEwoMcvUCaKi4sxffr0vmhLl4hEIhgzZky/nEsgEAgEgv7Crmak+dprr/W6jrlz5+Lxxx/HihUrcO655+LMM8/EiBHZ2tiBQrdeoC677LJuV3j77bfvcGO6wqeffoqxY8ciFovhkEMOwU033ZTXAyKRSHiW70DPKMWdgZpvuOxdRiUDhXIF3hJzE4W+vbox65ijdndZvQ83uqEa05Ec8ENdpLs3trplY14yXZXctNgPczHstkUJQxl+YuitWis7qcoNCZJWJz1fpDj/di2xLMOGJSokE1YJSBniGBH3PZJWKeG3fx1uW5hkuFALL/C3gQ7qo1Q4Ye12JvLNDiOyr5hYttgQ4NsE5xXxoFN6g6pf/2HzvW6CPkL0hyoryn6sPCG0KuNYfuwYuqPwOxKhr1QkUAfblA/0b3IcrQ8ZOvLcv6E+KTjXRLzq3Pw022v7saag3QwjZuCX9UTpTFCtnFQ2qrFQoUKxtv9IKB4vUyFl3teV0TavTKW6fxVFKmxthNxsIULT68uW6LnRcJBnKMgLCWkhSY4lhu5s9ZnXyHvMsu+t2Q4AGKn8vV5avtkrO0aNfZ5nYqUrPC+JqjZpzw1F6BGGU9V2Xkdh2v99TCu3cvonRQrVb4B6didU+CG81Y3ucZ4LvLr+8aq93Nyk+TXxXjQot/+1jcFnVw+DtisPNPbvGuX6nzYWuwD+c92ZVuHbNvqyKedzy/NoLhLxpQG6T5hEOHoDZi/pDe666y7ccccdWLhwIX7zm9/g6quvxgknnIDzzjsPxxxzTI/z6fU1uvUCtXTp0m5VtjMv5pBDDsHDDz+MPfbYAxs2bMANN9yAmTNn4sMPP0R1dbX1mJtvvlkSHAsEAoFg0CPt9DKENwhDXDq2b9+OJUuWYOPGjcgY2lvdodxELBbDGWecgTPOOAOrVq3Cgw8+iAsuuADJZBIfffTRgK7E69YLVF9Qcb3Fcccd5/09depUzJgxA5MnT8ZDDz2UkyG7+uqrA/uamppQV1e309uqo/PPv/P+Dk0+EADQUermsnprjcsUrVnnzi51sa0nuOx0Z9d1lS4LxFkcmR7AZ40o7KQDOQXbFKLqjM6+o4KDjnnoKAIlC+Rucz/LVJ6x5oRyN7ZcL0W8nAVzhmrmygKAsWq2ul21k2V5HYCee8u9hjbl7rxRzWLJDHAGb8v9xhlqPnEpZ/P8HFUWzIW3dpvGchj5/KKGc3OzJkI23a7jqp1t6p7ok47ikqj1GJPBSLQHZ89AtiUB2STmpwOAWJzbMoFj6C6us0wcB56QXbFjFH/rueq4jUwWHdTJMoU1Fsy0RTBz3zWr+6lbNXg58Az2p9jIgQYAq5RSe8oI1+LggwaXdd5iEY+boLu1JyjW/BHMe0wmi23Q7UVMu4y4Mf54H2353DyBvGovjxmjCbiXGZYJbyx3HcmnjHGf6SMn+iGO4mLmsVPtVffRyzxQ4Ne7pS34jGbUAoiod83+PmYfoIicC0z4DHeo5zSj/afORSfjy6OBfbRHCAjDjX5oDNsZQCC7v01rBZ0d5EvGVvX7kTKeMb3eeDTSrw7lu5oGSsdzzz2H73znO2htbUVZWVngdy8UCuV9gdIRCoUQCoXgOE7WS9hAYMhmBC4pKcHUqVPx6aef5iwTi8VQXl4e+CcQCAQCwWDDruxE/q//+q8499xz0dzcjO3bt2Pbtm3ev61bt+Y9NpFI4L//+79x9NFHY88998QHH3yA//iP/8Dq1auHng/UYEEikcDHH3+Mww8/fKCbIhAIBAKBIAfWrVuHiy66CMXFxT067oILLsDjjz+OCRMm4Lvf/S4ef/zxnJKdgcCQeYG6/PLLceKJJ2LChAnYuHEjbrjhBjQ1NeHss88e6KblRUFZpff32gJXEP7KR5vcfYrGZGJg3TPFnE18vrUNufDZtuA+esqcNtVdsfjb913frglV/uD9YL0bPtx/jMvKrVU+OXT6fl/tB4ADal1fGYbuxpS6w6axw21vZZFPZFJYTiqfwnO6GXdq10V2v1qFxEjpM3ypuxHTZ2blFjdzKil3JiAm1d/Q6AvTTYFvsREmCSTyNZyI+X38CDd0unZbdv83q76KGDS/zS2eYRsm/2UIq6TMF+ub5+ZnotMIiWnnY4jO3EeRdyzuP+KecNvwqypU4b52LcyVNpI2swwF4rqPU8gIyzGMyJCgTrR3tKo+o+8Tgo7nIcu9IRhu0UNrgD0R7KhSd0xxzK/YxHGTWyRsCon1es320EeIz2y0w2+TbUGDXh9DyHq4iOODyXk5Zvksj9ZCePSEY/iaIeWlq7YD8BOPA8AY5anGsH6tOrY1GfSoAoBKFQqL0fNKLQ7pNBaPAMCIOH8D3OO5q5VhZtUHurs4w/r8TdhnpMserFO/PfrCGIYYTWG/bVywX81xYAr9dTDhd7uSLphJp3mu/mR1UhkHBb04Xz4PtYHG7Nmz8e677/Y48e8999yDCRMmYLfddsPrr7+O119/3Vpu4cKFfdHMHmPIvECtXbsWZ5xxBjZv3oyRI0fiK1/5ChYvXoz6+vqBbppAIBAIBL3CrqaBevbZZ72/TzjhBFxxxRX46KOPMHXqVBQWBnWkX//61611zJkzZ8BX2uXDkHmBevzxxwe6CT1Cau2HAICXIl/ytr3/N5cJqlFi4SIl6KTIu0lbWms+DObsqkpbbs9ZJGetnHE9u2xT4Nh1jf7yd26jw3G9YnIKm0OBNgHAciXM5WxyU5v7SYfymrgm0vTYE25Rs1jO7rVl5XRQpsCVjBPPPV4TslNYzpnoJJUHjcJf5s/TZ5tc0s5rJVvF2b4uODfZH/N6aiv9vIIUoEYMRqHdIk4n40TmhowRLQRsLFiu7xR7Jzp91sA0lyuMBYXi3fGGyXjL1v37yPZmVD10KSejpZ/XZJ74g0cGShenm2xVWJnhsp1JdT9TWh+yPo85VOehy7i++oiszBZv0YFyu1djoTOVLSj2bSmC7JdN1EyQuWjpUPYcGkPERQQRgxnhGGu0LALw2FHPVVvZjChW0OaOTpaH7Em1+l1Zozmzk9mjeHydYrj4fCa0xQBkgLkQhP9v8b5yEQkA0IFEt0YB/N80slk6Ozu6xN1W1Oxmj6ge4ab+GlEUFKADfp+lyDwrBt68VzoSBltFJlEXkbM9pcoqhPeEx5Rq+Qnbk2nAml1A0B2cfPLJWduuv/76rG1dGWkOZgyZFyiBQCAQCHZV7GpGmoNhldzOhrxACQQCgUAwwEg7Tq+8nAa7D9SuCHmB6mOk3n8RAPDf6X0AACu3bPf2jVTeQoxiMeHpOkW5634mucIJ9CeqiGXfOtY7ssQtQ9fuIiWWbdVCP6zvbxtcT5kvj3WF4mUqVKaH8AoMEWlzIijybk9mtLLuJ53Oi7zQmLs9oVG1YahkvMmgpwyP/VDzu2EiU4ZH6PczqaYk0AcM7QHZnlCm14stfGYL35hIGWXMsILuE8XwXtrwLLIJW81tLMuwF0NhhZpjeIcKVTHkxpANXc1t8EJsDLmxfi3LMMOFvCchIxwXLsiun/uYiLggUqja5tfLczOE6ftCGf1vofRZlmEuM7k14IdxGIai99CkUe642NTkO29zfLSFVHLbdHDGHExCG/R7MseJLhw3kwVT9E7xN0NKTIYMAC2JcKAsQ3pmiEmv1/Q3o2s5w5gAsFb9ttA/jv3BPhtV4ofg2K98HvkcMuH4yu3ZjEKZagM95srC7vdxZYWBOgF9LLnPcEGH69FVU+Tem3Cnv1CjvdD9PeICG/2aTJjPc3tnMNyph0wZojMTGhP6GIgXFiBcmL0gRNB9vPrqq7jwwguxePHiLBuhxsZGzJw5E3fffTeOOOKIAWph7yABXoFAIBAIBhi7og/UnXfeifPPP9/qwVhRUYF/+Zd/wR133DEALesbCAPVR0g0uWZg/77dXabZ2ObaANSN8K0DaAS+QQk5OQPmzFSf8ZI14uyPzBBnr7p4k0wQxeS6SzngL2uOW2ZTnLFvUMvLyRhVFBVmlfXPFzw2GfIfXM4yyVZxBmqjl7e2010YgTJlapa4bO12rywZt/9vTzdv4KLPXPflVUpcWl/t9rPO4phLnynEtdkY5FsmDQSXznPmv13Nikepmf8Ixfzp95GzXwpaPUbKwlxUqnu6sSmYI5DO42RyktrS8xal5o2rMcQ8eiGLyLbAYI3S6SCrlNba4onIyTjFul4JUxgzc+Ep2wGNWc2VUd1zSaegXZvbsZ6QISLnM6A77NOxe7VaMMHFB3TCt1kHkHUw2UHmOgSAEYqpYV41MqHrG7PzEnKJvCcIV/V/qthe5mHTx1q7IqNGKtsBspwp1UY9j+MII18g6+W40200yNw0NG4HAOylLElq1XkSqWxWic9lu8Fq2somUsEsCCRwtvNZ0xgoMloZpwoAUAP3OirIrof8+htakqr+IBPJftHF6dn2BWR7ubjDf174t/mc87kcr/9eh0PiRA7g888/x4IFC/Dqq69i/fr1GDt2LM4880xcc801iEajeY99//33ceutt+bcf8wxx+AXv/hFXze53yAvUAKBQCAQCKz4xz/+gUwmg3vvvRe77747/v73v+P8889Ha2trly8/GzZsyLIs0BGJRLBp06a+bnK/QV6gBAKBQCAYYAxWBurYY4/Fscce632fNGkSli1bhrvvvrvLF6hx48bhgw8+wO67727d/7e//Q21tbV92t7+hLxA9RKrt7r0+YPvuW/RHMSk2XV8YlDtU5UHE8XkuoCxwnMFDop5Ke4eoflA7VblehR9psJZ1Sq0sYVJOpnwU3NeZmiQFDmp9jHKwTmp+TU1dwbdhr19qjo9PFeowh50M2aiUIb0bO7iBPvFE6drInCekv1RoYTaDSqEReG23u/mD0qz4aWjh888R2lDyM3QXUzbXhF3z2GGath+3VHeDN2xHvr7pLQ2rNnsumUzbEZ/Jobu6Mmk+yoVlQRnd76/UnboIWyEI3ge1p/WPYGMvgurdtvE4wRDiyFPyO4OkIjWd2kjXGgK2SPh3KJd3huGwD7a5D5PuoicY5/PT4MKl/O52aiLyJPBcKofrnHPo3sCMWTEsK3v7aRc3LUwkSlMzuVwbnM695JuJxDA+kZ/TG1sVq7iyieNfmcUka/b6ocV+Tww9MWQXoklnE+H8HXNHYHrsIW8PVd11YdM8s3fFf4O6MmEWZbn+et6V0Q+Qj1PxdrCh7Tj3tsG1ZaCPGFEm/8aAFQU07HdF+vzeDMptB/mD3rxdVqSoO8spJ0M0r1Y+p9Wi0CampoC22OxGGKxmO2QHUZjYyNGjBjRZbnjjz8e1157LY477jgUFRUF9rW3t2PevHn42te+1qdt60/IC5RAIBAIBAOMvvKBqqurC2yfN28e5s+f35umBfDZZ5/hV7/6FW677bYuy/7kJz/BwoULsccee+DCCy/EnnvuiVAohI8//hj/+Z//iXQ6jWuuuabP2tbfkBeoHcBvl671/n5FuX2Pr4oHynBWuFZzBaZr9sxJbjJEsipkcCo14TaX7XN2TQHmZCVy3KDnLVOTllGeiDnYXrJMAadftY6cAnDOHMmm1BT7Q6M5h/CSaNGYorak2y4+zLxGzkR1top5v2jNwHOHLdb9n2x2Z6RkIchAmcu8127NFvXGjGXOZPrKLFYQJivRjqCTtX5Osz94bIA5M2a4ZDDIPOlMDxkiirBN5okMUaHW7oxiVopVH3qu3aqNehqEVDIoyKVrgWO5r2a+PArQTbdxwGfKaEVQGDPE6lr9jsGukdEy2QP9e1t70KqBQu71Ku/hP+1e45WlAHqz6mcyTzYnb090rZ4xU0wesDXoDB7Le03Bts5W5bJDIFvF/tCP4XPBZ4DXSMZEt8ag3YnJvJiLUvTrZk5Hfu9gGzXGpdD44ciV0y/QBo55g8EtDPN6/GNYhtYprH/GJJfJeOav67yyX95tRKC+qJe1IHiPAKDdCT5j5n1Na7+rce857AwcEzdsRgCguaMDyXaDChwCWLNmTWDVWy72af78+bjuuuvy1vXOO+/goIMO8r5/8cUXOPbYY3HKKafge9/7XpdtGT16NN566y384Ac/wNVXXx34/Zg9ezbuuusujB49ujuXNSghL1ACgUAgEAww0hkH4T7QQJWXl1ttA0xceOGFOP300/OWmThxovf3F198gVmzZmHGjBm47777ut2u+vp6/OEPf8C2bduwfPlyOI6DKVOmoKqqqtt1DFbIC5RAIBAIBAOMVMY3rN3R43uCmpoa1NTUdF0QwLp16zBr1iwceOCBeOCBBxAO59ZC5kJVVRW+/OUv9/i4wQx5geoBfvPuagC+7woATKuvBOBT4+MqXKp8qzJ20SlherCYoGuyLqJk6I7JORlSY3W6902bEZrZqhK/MnTHkFhMO2ZLwm3fKBUqJKPPUIIeRvNE0sph2nMoTmc/7BR5J+CWoXCbITxdYE3anLQ8z9lheL8AwNaWYH+alLtNXMrQnem95Dkua6E2hl38kFuwvhZNTJrLG8ZPAOvT/gzFxIxQY8gmJGY/UEyvPtkShu70kBt9n+g8znrNUB6QLUonPM8ordtNzyiGz+ggriceZhiuKB4MUXkJjbV7zpAlw4eRQnvCXT3kZl4LyzCMpIemmRw3k3S3tapzM3RqC0O3G8+P7f6aQup8IcfKqPs8m67lW1qDcUA91MdwHkN1bG+nJWRFN3WOX44xmzh9nJIW0PWcoW9beK6pC8G03ne8P2aIjZ5zpg+cXobZAthO+uJNr/cZiSolAKe0gPfa1u4Wo93mYg7dw60lZS9rQ0E4hEw/+kANVnzxxRc46qijMGHCBPziF78I2A6MGTNmAFs28JAXKIFAIBAIBhh9FcLra7z44otYvnw5li9fjvHjxwf25TLGHS6QF6hu4OevLwfgL5nXXYGJCZXuTG/1dlfEzNknlxYDvkjcXGFOdqJKEypz5hVOuYWb1ZSdbJMu3A6HgnnnyPaQxaKgVj/vuHJ3SSmFozx2azvz52XPvJLG7JsPrM5WtaW5rDmY344I5BczWI6MIQbV+26dIQ6nDYDJHujLkMlK8X7FlVsyZ/tbW7MFojw3mTN+L7PkKTSZLd/BOtsl2fxxM2fuepkWdb/4YxqNBx9TLWVdwHrA3acYHqjFAQm/f8ggmrnwyHRFLaJ6E042AZAlOPdE8J3ZzukE7zXbwGMSaszGtGcsrdpX6jEt7vnIxBSO9/v7i6bgsnePuUwHF0kAdjd4wF8woN/HmCFiNu+nLvI27y3HG8czz6fnd+OCCs8R33hu9MUopis6WSWKyPUxxWfTXGzh543TxofhZG6yvDbbBW4rNEI6ZnYE/Rj+jvJ7bWVR4DsAbFMib/OZsjFGZn47sx86NTbZZJbNBSbmvrDld3BnYbC+QJ1zzjk455xzdkrdQx2SC08gEAgEAoGghxAGSiAQCASCAcZgZaAEuSEvUHlw5XMfAvD9m+gbpFPkFIA3dwb9gtJGGA3wHXjNcADRpol7fWF1MBTG86TSFhGo+qT/CWl0itNjmhN5seFEzJDh+pZUVlvM9vvHOIG2AZqLtuG5ROgUPOuj0JchDTPpL5AdOvHpereszdmbMMMNm9QxDOkBvku0CYYvtmvhFjO0wU+GDnS/JV4LwyymLxQ9jgBfuG2KyG2Jgb1jMsEypqdTJKqFCBmKUWGJtBFZK9DCFWZ9FIpTiJ7R7ivDcOZ49v2sNF8shtJUfalQsN953oThuwT4/cuky3SR3tCaXZihO4ZibeJj3nPPl8lIoJ3vPyQKl73QUocmIjeE2iubXIf5NiN5sS0cZT4vDHOXWsKrbB+fG47LYFJy9/gOI4Tn1R/JDkKY/lK2fuC5zDA8JQFpS5iSzyjPWWyI7PW2mWFDsy0BQbu6F/zdM8X7tvYXe33FEB4TSfu/i52ptBc+7g/0lZGmoP8gITyBQCAQCASCHkIYKAu+/+RfAfiCZOZUIvRZG5kbsjCNilGgu7YNZHdaFBNSnAkyRgBQppismCEMJ+ujz4y4jwwTGSeeh7NCPfdchxKn0w5hc3NnoI4mTYxNmLnUyGLpsyaW4TmjBhNlm2WaM0UyC7rNAGGKawnekzaNjWBb2nis4Trc3NGRVQ9n36WGQDfQBmOml7XE3ZIvzqx3e0s2a9JB8XgB2R93e0zZA5Cd0cef14fs1zxTIoq90xY2xj1vOKusyWg5jmIEtLJkmDqVfUY4S1SenWOPbuUmu0bhebtGQY0aUwpAWwygxh2/l1kWdRAm46LnrDMXGZj56OIaS2tzwNbrM3Oo6Z9eWc9SoTNwXsBnQkymycpSGc8NxeQc17owfGMmEdiXD2a7zXPr487c52UyUKcm89XQ6D9jtC8wmVubVQMtH7JcxQ0GWi/DbebzqLe7NBYNlPXZL3e/Pj7yWRzsDKQzTq98oCSE1/+QFyiBQCAQCAYYjuNY0yr15HhB/0JeoAQCgUAgGGBkMk6vdEyigep/DPsXqAt/9zcAQUqYFHt9tUs5V6vknDZqu1QJkTMZl8KnEzlDb7rYm8bdpnM4oYuxGapjIJA+KxX0MNLExwylmZ5OmTznY/0rtrkBLobY6K1TqvkeVRkhzA5DfFuuhR2YpLTICGO1G55J+jbToyZCsb3WBjO8ly2u7VB1+G1NqFCMJ2jvRq4DU1TL88YsYttcYRFbMmHzGgk9Ka/nz8QkvxRnq9AYBeH6LJXhMyby9bydTLMxZPs10VXc84EKhJSCYRD2Jc/NsCKgh+UigTaZ7uUAEKXDvgqN0tGc5+Z5qqpKvWMYoqLAl22jN9Kzreu9srUVRaqs6m81HlssIWnCFio2wXo47sxwly4+Zhi/WZ3TXDRihgzd44PhWTPxdWObH9I0kxOz/kaL2zrHos3LyUSuffmOYUidv08cSys2u8J53g+9Xe1Gf5vea/o5zbCqKVrXy3QnhJUr/C4Q7AiG/QuUQCAQCAQDDcdxehWGkxBe/2NYvkD98Kn3ES12Z7ickWzXZnhH7DkSAFCtmJdPN7q57+pGFAPwBZMAsLbRnQWThSlVs0sv95susFYMAxkiirq5XXciJxrVrIxibwrDdRsC/s12NSeCbuAJi+UBGTfOljcq5sk2GzRhLu2PaLM4zrI5K7a5c+eqz2RpdGaAs3aTITJnqvoxHeraIrHgsTYmsdIiFtevUWeOzGsy3YxtzFQW88Rza+NDtxwAfBdxMjiOx6T594bCbY43X9ztfka0/IqeJYFxL2x5+UxBcswQNwf6Q5VlvfwhJ7uku6WzPSxbqvrdu7/lzM3o94u5lN10kG9ssyw2YP45lZfQxoDmWiJvyzTgjVHVv6ZlgD4uyRZFjH427S7iAcaPTFGB9RjdIsKsd7sa522G/QDgj03zWnMxovnK5mOPmbGxtdOeq1I/JmEwzZ5FifYCQMaQ4nq2pRO5mTSbaBwIslbecWrIeHk+LZYNbZ1pJDu6Zif7Ck6mlxooCeH1O8TGQCAQCAQCgaCHGJYMlEAgEAgEgwkiIh96GJYvUAXhEKpVQs5xI1zRd4nuGE5HaEXvfmlseeD7ii2tWXV2RFxqeV1z0FtID7UxvNeoBJEUQMfU+YKu5SrMp8JySaVAr4jlJg1JR2dUEYbpKOzWwwDcZwq3vXZr4QW6OlPAHTHobl2AHzcczvMlATVDaabAUxduMyTAkBpFpQyXtBliWQCoqXLvrelsbjoV52uLFzqwhCLMMIjtWr2+oleNOtZL+quFLbiNIbVCFXqkuJzu33pCX88xXIV2nZAS1Ko26T+qDO+Z4nEzPGe7JoLXrN8bOkyb7aanU01NsVeW44pjyQwx0R1+Y5P/HHHf+Cq3Hi/Rs+q7rS1+SE8/DvDvfcrSH1FjHJghWd0TyBSwF6vv29XiEV0YrTvc6/VHI2Z4u0A7Jlg/y3Cc6/1thupMgbx+/nSmwNiXPfYJ3nMzBG0raz4nucZLPt83L6Spfj+2aPfR7yNuCf7u6X5ZWaHAHPdTvzYew3HYYkl4ne6lM3hP4WTsybp7crygfyEhPIFAIBAIBIIeYlgyUCWxCHZTrri0BdCX+lMQPkKJutepWe0XLe6nPtvUl/vr4DL+0mj2fjJNFZaZv3e8mjUVGe+4aUvesY4UHcdDgTJhQzCpM0Ulql1mrra8MASnXF6uzzLNmXQuRgfILQgn9H6mozG3kR3Qc9Tp59dBgXjCEPHa8oDlWtLeneXOttmqOdv2llx7bFLuGa6XL07dNzqFh7VLZP46CrazLQT8dncqsXGZYl3JbNlYCZN5y7cYwBw7nhC6xHJNBlvA+1df4xYmi1pd6jv5M2cdx4DnPN2ZzRqYlgFZy9Z1F3fjXoeNsaqPpSxGMh1kH225FMkwsR7myeRzqLO1JlvCcUgbAH1RR0Wx3Q7ArMttp3o2DeN7m5A9aiz8IGw2AbnOncuqQG+XeY1mbjx3W7DvyLLRSbzYYrnBerZb7BzMdpvjkNC/9zsDJavwhhyG5QuUQCAQCASDCaKBGnqQEJ5AIBAIBAJBDzEsGagxFTGfRlZ0ui5KZIhtg0poSdE36foRpb7btRmaMR2yCy0hj5jhEk3ROoXjAJCBChmEgmULoLykNH8fhu42tAQTcFL03qzar9PRTMC6TfUDwwuk/G3UtRmqsZUxhdX5xNi5wmI2+p8UPv2qeCzFwRGLr01ZkV3M204RsiVEY15TojM7FNaVF1U+0a0ZCtPLmiJyIlKYHZb0EQzrMaTHUFVK68uwqofnKSsLOuzrbWGIxObADvjiW70MQzJe0l8VJtY91lhmmwrHlajFHLaQEuGJxtU5ayvjgf0jtHAfF4fQpZwh6rgaCwGXePXJ0Iee9BgA2rNaAkCNQ1v4lzDDh57wPpY7ZB3JMT7MEKq+zewrM7zt1hOsj78F/F0xQ1iAH/LOF2I322d6t3lie8szlitMridtZ/tyJXrW6+XvktcW9RvGEKl+HaanlXn9+m9GW2cakXTXSZj7CuIDNfQwLF+gBAKBQCAYVOjlCxTkBarfMSxfoKKRsDfzKLSICenqzDx2FGXbxLblRYWBYzgbZ71Flpkqc+JRYE4GSc+FF1bMgicIh+k+nC2g5awvaTiPc2ZGOwLAz3lHGwcz1xcdfwGgRs3weS1sE2ez+qw+SyxtfNpmsabwlNt1gbg5E29TzEIoj/CXzAVnlZy1evnB9HbTXkBdG3/IqCsosMxibUv6geBYMp2ecy2j1q8h1yfZNp2hyigGtbzMvUe5mAEASCgROXPWmfXrfVeqxrXJpnnifW0seVYKdP9W46JSCaD1e857URB2x53p+m1jw7y8kmQhKChWbSTrBAD7jasA4LMctDWwLRzwzsU+UrsyljawH03Xed+KICg+BrKtQUy2w8ZUbmxWDKvBPOsu3bksA3xxvc7ychFD8NkymSn971in3Z5DZ95NZ3fz08ZkmyxsLuYycN05mP2Upe9Yb6kxvnW0GBkWOB5tlizpjINwpOvFI32FjOMg1AsheEZE5P0O0UAJBAKBQCAQ9BDDkoESCAQCgWAwwXF6qYESBqrfMSxfoGKRAo8SL1ShsVKNPk6qQcxPL+GkCrW1Z3ya1wzd0duJQvTCAgvJp+jtls6gy3CbJmIdEacIPRg2s4Fu5Z7tkxNsG2ETb67f7oY4SM+TKq8s8gXjFGM2qdBJazIYDsjnNkzYEpJ25a2kh1soSOYxbTncxfVwYtQI/ZhhwISeyJdl2X4VkonQe0lrqxmiyZXEFPDDEn74gklWu5+k1LxGPQzBcJzZl6Yfl74t172xCcaz3dXd85UV+/d8uwo7hYywU4sKwZZqiw/MUBjHZCzCEFBuO+Viz0/JHasMv+ihJSb3HqWSEv+jAare7LCcNyZzeJXZxMdEts+Zv890V89yqg9l1++dhyH0tD0UrsMcdzYn/FxhQ37qommOzVwhNb3eESps2hh273FjWzJYhvZTeseoIc/fE9MXSm+r+dz4bQyOG9u18ViGQ/WwXC4BPttpS67cXxAR+dCDhPAEAoFAIBAIeoghx0Dddddd+PnPf46Ghgbsu+++uPPOO3H44Yf3qI7iSIHndGzmvQN8awNPwK32dRhCTH0fncerlB2AbklAkBFKZ5TYm8t6k8xVpzlvNwdnWKyXQu6kNlNnnjy2y2SeONvirFwvyxkXZ5AUxevO7Ku2tgXqyTcrJjibJEtjsyYwZ3v56vPtEdx6Jo4qBeAvkbcJoc1zNrcG7ZhtOeBiUTJEXYtHzVmwLfdWtsXBjs9wbUxXLiEx+z1iEeaa7bY5UHusl2ILvEUGqkxlcbagmH3frMZSq1qokNFZCCV2L/b6OThOyILYXMZzXYfOyDEzwKcbWtx66LSvWKp8ORlN5ijfeMxeHKGzpXZGKGqw0brIPGXU54u0c4uxycSxLz2LgjzXmM+Fn+eiVYC3eKYwmw3iPvNcbAvvTaP2zI0sK8o6p16HTRhuPtccL5UWVjPLdd7CkJv1erYLuVjBgv6zMchkgFCvjDT7sDGCbmFIMVBPPPEELrnkElxzzTVYunQpDj/8cBx33HFYvXr1QDdNIBAIBIIdBlO59OafoH8xpBio22+/Heeddx6+973vAQDuvPNOvPDCC7j77rtx8803d7ueSEHI0yjZdB+0ASCLRM9KMjt6TJ2emGFD38DJps5sFXHJs5oVtyj2hCyYroGiJovn5L4Vig3SNTm0Q+A1MTeeae2vszPMhUcmi7M0fm/ULARoXkmYmpnAzNQ4p5nvylzarcOzL1DL7fUs89sNjYWvncnWVpn1cdYdMWbSNtNG1mfm2LPB1Mzk00KZxn02JqArTVh3GKgyxSA2q74L5gwL3i+2hcfkYy7InlD/p/cd89iRNfL6Qz1HKW1ZfYuplTGugyxIvjHVbmjwaJqplyUzSeaJ/eDbDvhspnkfTfZUh8mS2HRHWdcWyi6TC2knyFTyubQZXnrXkQ4uxdcZF7PvzDJ6jj1/Sb+y+VD90676rGWNX7YyHhwzWxTTxNx9fD7JkgHZZqEcQ415nrVEjuvP1x+mNlEHLQ44Hkx9ZFauzjyGqQLBkBkdnZ2deO+993DMMccEth9zzDF46623rMckEgk0NTUF/gkEAoFAMNjgZHr/T9C/GDIvUJs3b0Y6ncbo0aMD20ePHo3169dbj7n55ptRUVHh/aurq+uPpgoEAoFA0CMwmXBv/gn6F0MqhAdkL5V2HCdrG3H11Vfjsssu8743NTWhrq4OxYUFms2ACglp4TOG1ApCLg1NsTfDcXEtNxmX9DOkttkIy1VoQmUKwCkI7zBo44ZmP1RmpMvzndNVvbrbOEMaDPd5TsrqeVq31Q1x7DWmzDuGx2cM8aRNkGkKQ3k+W/gzl/O4Sd/rf5vL8xny2KK5XbepsB7DcBQLmyEV6zL1bvywmKGYakN0rIdFTMGvGZoJtiHoVG1bPm62gTDDfbYwQ/aSebcsRd62/mCZfOFUb7m36m/ec9/hXLeLCIZC2aZiNc6bOv1xTUG5l6POWJhgC82Y4TdT4K6H1E1kOU0H8sQFr5/hLFsI1rQ2MK85YBdRGHSbN3Pj2UJ5Zv+2GU7fthySbK+/ND/3z3mu8LI+PrJtHExBfzBPnF6WIT2zDj2EzH7wg3ou+CzrzzvhCeQ7DMsXbSEEBeXmGMq3GMBsPxdJmKHY7oRd+wpiYzD0MGReoGpqalBQUJDFNm3cuDGLlSJisRhisZh1n0AgEAgEAsGOYsi8QEWjURx44IF46aWX8I1vfMPb/tJLL+Gkk07qUV3xwgKPTaIFgM7o0OCyg7MSWhVQYNyRnaOtGe4xXP7PYzZqM5hyzZwSAEYrMzoyXHrePNbTpJYUlzO/k2WSkVRleQ1hY9akM08EmTMvy7ma4VE8rc8cS4uCZo3mjNq2xNqc+duWyufL9m7uTyjmzTFm5OZ5bLNNk4nid50F4uzdXD6fj70ybQtYh35MrvpMcT3gM1vse9Zr5gjUwXthGg/ajDrZlGyLiWzmpdNjv4L7uF1n/nIZL3qLDeJ+P1NYXqFYAzJlnhi5Jbhgwa2HDJQaQ2os8Hz6faSgPNfignzi9HyMJa83V726ZQaf/XYu9VffPYF4MpuJ8pmm4H0zzV9t12LbZ8K8f+Z2sz3uNbn3vrkj21LCY4/D7j0wxd42cb3Zd2ZbYpbxZ/a7x3hpNgb8zerONZpMU0u7sfDBYOQ6LfYrOwvCQA09DJkXKAC47LLLcNZZZ+Gggw7CjBkzcN9992H16tWYO3fuQDdNIBAIBIIdhiQTHnoYUi9Qp512GrZs2YLrr78eDQ0N+NKXvoQ//OEPqK+vH+imCQQCgUAgGEYYUi9QAHDBBRfgggsu6FUdhaGQ59PU0qEccxM+Tc3wGX2g6MlEAXehRkvzuHYjJGajqTe3Bl2zV2xx66lRobxqzd2ZYT36ljDkSIo86EQePAY8t5HfKRA+YxikKOjwaxM3MzyRSAXrgyWckTbOTV8YW5iB9fLT9H+yOQhHjHOa/lD5QnhmyE0XAvOcZpjPJsw1z8GwCz/1Y+hozm2m74x+jbnE0vxObyOboJj1m95GwXamAvvM3GG2/k4YoRSb8Nxzs2+xey/pYRybIz0ANGx3Q2+TRroO843tfpjcdPI277UuPOfzklbnNoXmtvCq2VcRS/iJ5zBd3NnvvDd6vbnyH7IOZkPQ2+CHTu2hPLc+u6davvyKLMtW5vOMMv3T+Jugj2uvjCF+Z9u8+2D5bSBYv7kow1Y2bTy7WX5NWhsYKjXd3N2ywbHuhfI67P5kybSE8AS5MeReoAQCgUAg2NXgOL18gZIQXr9jWL5AFRaEvOzpHYb4EdAcyJWXAJknissjWk4ruoB7y2tzzMiA3DOwL1Idqg6fEWF9rJ+s15a0O4fMaNYNCeWgZmZwbzGWOettqSgOCtpNhsjGcnhMQ3unOqYg61iyBNVFLgsxUuXfM9uibzOXrptLjAGgTLXXm7WqY0LMo2VhT+LGNZrQWQO6cXO2SgfltOVHycxp1pIIirEbtXo5u25TS/nzLYs2heUmc2GKy/X6feaMlhDZ7s4UA5v5xWxslSkGzmd54Imvs/KVZeef4zYyQxxLZGPy5TQ0WQ2yH+b9AIAyVda7DvW8lMWzf/J8644gy6SPa9PKg5/s08ouxhoAlKoxlm+xQS6HbRuDy3tfGgneR72/25rc35aN291PLjCJeAxrths/r5Wf+VhY09aC18HFAKPK/fx3vE/dsf/gc8dxzHEdi0QD5wWy2bV8OTbZLl5bFqtuHJds7zono2D4Yli+QAkEAoFAMJjg9NIMU0J4/Y8h40QuEAgEAsGuisGcTPjrX/86JkyYgKKiItTW1uKss87CF198sdPON1Qw7Bkohuf0sIhPo7vUcJOikRm602l2irk5c6DD+QhF17dpLsn0cDIT9jJE8cG6Rq/s9AmVAIB1ioLfSyVsHVPmhjqYVFhvO0N4pjjbFjYynaC9NuYRdDKMUFsRDxyj12H6PeUSDdvQnsd92azX9OxJqGND2rXanLuBbPdyt6wKE6n7ZgqgbV5XZpjLhogRAjPDkzanZjNMRORzsjbF46aLOZAd9sznw2NeN8sW5wn7Ec3KUd8W1jLbyf7OFR4GgArlcm06jnttg38ddMTe3h4MYTJ8pPepKUqn4J9g8mUdZUVBN3fzHunHxY2QZnYI3w8PmWPJTLSr33Peg1IjCbQv/s5OEMw21FbGrccEthnJj20ZB9i/prs9+4Pni4R9Xy+GAj2hecT93pLIDu8znGr6YzUncofUco1JWwjSvG+57pFNGjAcMWvWLPzbv/0bamtrsW7dOlx++eX49re/nTMP7XDBsH+BEggEAoFgoDGYV+Fdeuml3t/19fX48Y9/jJNPPhnJZBKFhV3r/3ZVDMsXqEjYtzEoLmTeO78rGpWruOdSrmZDBYYrrnu8e9w2Y8bbYXEFj3m2CK4Qsoh57VS9+tLtNWpZN2dGi1qCImTOygGgSglm24yl2vmYEXN2HI8GBeE2EbknbC8KziR1h3UK7818fK2WJeO25cv6+Uo1SwWe22RWTIsCmxjUrNcmiOZs3iZI1s8DZM+yzfp1htJsd9bybO17V7nT/Hxu2axHi/HdYxK1tpDiL1CR+4TB+NlYNnOfjXExz8l8hes2tQIAqip8IbE/JoPWDyYzp7M/pgVBPudtr0w37qPHUBr5IPPBZG5MVkWvz4Rvd5G9cCVmMKsUp+dligx7B7J3+rjkOZjb0Xxe9LaarKv5GWCEubAmERS/m2PT5mJOps8cY/o1dqayLSpyoTu5AIlc10SmKaWxnOGCsOec3x/IZBzPgmaHj4eb81VHX6c027p1Kx577DHMnDlzWL88AaKBEggEAoFgwOFk0r3+BwB1dXWoqKjw/t1888190r6rrroKJSUlqK6uxurVq/G///u/fVLvUIa8QAkEAoFAsItgzZo1aGxs9P5dffXV1nLz589HKBTK++/dd9/1yl9xxRVYunQpXnzxRRQUFGDOnDnD3ntqWIbwYpEwYgXZ/idEccbd1xFSrt+dGe84wPdmAoAaJZSlGJ2hPCb2pagcAKpU2I3Hc1+N8sbZpnn3NKq/6XRO0SYp503NvjiTf+dKhmpLOsq/S1RbGGKz+TWZnlGsj6G7Mk0ITX8f5mVq8Sj9YEJi/RxblIO1TVhNeOGhPN4x5jWaoUczpFmhOb+bHjUpI1xkC7X5bk8u/HCO337da0qHzXHabJ8ZZsgn3CYYsmPoOJhYOhheNZNO6/Wb5zT7wRYeZviDWoyw6tPt2liNxYI/Oe1GGMcPLfv9wr/NkA99oRi6AoCtKtRthtY4Lm1hSs+N2hAo5wvLpcNOYLutP3JlJyD0cW6K9XONWUALaxleX7Ywsc0NXkenHqJS3Wg+h7Ywor9gJfh7kS8jgBn+NcNz+rNt7jOff1v4k+PE9KdrtDyDvDY+f3wmdBuBcO7/InYKdBZpR48HgPLycpSXl3dZ/sILL8Tpp5+et8zEiRO9v2tqalBTU4M99tgDe++9N+rq6rB48WLMmDFjh9s81DEsX6AEAoFAIBhMcDKZXr5A9UyvxReiHTqXmiAnEokuSu7aGJYvUHrWajJRFIwD/myH7t8VsSBjpDNQZdGg43GjYnA4O67RWI5RKuddaZTCdbd+Tm4rirTcbJ0uu7NVMU+Niu3ZomZTzKuntzeXDYBtBskyZaotTR3BOlKWmbppi0B7B52BYt8yd195jE7qyk1bY+SKIsFZYDYDkD1Dp5Mwr41sR8wQwQfrCbInXq45jVWw9ZF+Hh2812xvvuXqpojctHfIJ/Q3YVtlE8pxPGfSBVp/8PioheEz203kcqi3jaUQ2Ri1MKNT9Y/OdHVS/O+5XAeZoXxidZMNI7vXogmV2S6OXzrM+/npshlKzxqDwvNuMA8cO2lPmN/1WMq3gMDMNWgyMLb+bsuxCMA2pqKRbAbOhDmeY5ngWNXbRFaH7DHHljkebeL39i4WYdi2mcfo45JCdVMgzzynertNhtmEPlYz6Qwy/SgiH6xYsmQJlixZgsMOOwxVVVVYsWIFrr32WkyePHlYs0/AMH2BEggEAoFgMMFJp+H0Inlxb47Nh3g8joULF2LevHlobW1FbW0tjj32WDz++ON9urpvKEJeoAQCgUAgGGA4Ti81UM7OeYGaOnUqXn311Z1S91DHsHyBKgiHEI0ExY4VmucQw2ZFkaAwnOGnpBZr3tDqhpTakplAPRSXV8R8AbYfunO/R9Uf8cJsoXJFTDmaq+SnjQn34aBYXfdeIlZtc93J83khETxXc2cw5Lg21Z7Vlq0tdiH0lNGlqv3ZMY9EOuh1w6TNeriPfTV1XAUA4O2VWwH4omDdUZngtSVVuCHkiVZz+1cx1GEKc3UBLf8uNUTONudj9s2IkuzEpu7+7DZEwsHxlk9sa4aAWCaX+BvIDu+FjfAUALSpcez1GcMhFqFxLid5HqNvZZjDDBtGVV/q3jpxwxnbdGonbP4/uUT1+RN2B8M7tuS53jFG9NfmJZUrBKa7pJvu2QSF7dxuu8ZcoSV9jLVZvJUAv/9LtUUfpqDaDPcFMw5QGB68DjOMpsMbo+Z3S/3m4hAvLMdwtiXcbI4p23OT65p47boXlZmlwTufYw9B5gqRCwTAMH2BEggEAoFgMKGvVuEJ+g/D8gUqWhDynG45ydRF5GWe8NmdfaxudPPRjSt3HZU7tNkgmRZPlK2OpdBc00EjplivuJpNsX4Kr/XJJyc+RYqlSimWany5G3Nu1GZVdDKviLlLVyk0X68E17ZZsykGZs4sM3eWDSNVG6qYN05joOiGHjaWfZO1ixT4s+NUmk7Q7vdRql7O5vUZvOlozCXynDnSSTitzRg5i+3kzLaIVgoUcGcLiruzHJug6NZkHGzH5BIFt2nu81zin2sWT1YpYmFcOFOme3tLW9D2Qq8/V/5DndlguwpUP3vLvC2i2pDBmFFMznbqS8PbmYNRtZP3tawoeO020TQZRNPBXi9rLqTwHb6zmSdvEYHqTpNx0uvNxZCl09lMS7vFdd9Fxtp+HbmE4Nayxr2gA7zNysOs17fRyGazCsKOdZ/OjvF4skd8DtOqT/1x4v8XY+b7M68pqbG9YeNeOHnuudlXZi5JnW0ig2qO48HANMkL1NCDGGkKBAKBQCAQ9BDDkoESCAQCgWAwQRiooYdh+QKVSgMdip6mO3iHFi5a1+SG7CiOnjyiGIAfDmjWKGGGqmKFwbCcLWEt6T6GrNo9gbUyJdNoZf6ZgbvPdMxPB7yslMBSRceKC+MAfEH0xpZss7MOI/T4/trGwH5d8Gn6q5hu4zqFTpF7caG7jWJ6hhxbtL5jf9JPyhP0q3uyvtGn9M0QD5PndqhQU0r9eOjUvxdWSAdDB0Qk7Pc3kwkzLJcdRtOF4UHiNmqEifTQRy5XeC/EpInWczlWm0Jd2z6GUtKqLQz36QJuh27rOQTFemiQx6WMH2WGOnTROsMijuqikrJooN6CSDbRbZ57uwo5MhQbs4w/gs9WzFIvEfNE48Fxo4fpzPFgLjLQ74OZZDufU3hBuDBQNm0YHNIZTg+vmuLxfKHjkPcbEwzZVXLhisVhv9N43v225vaXIqxeaHTwTjMJr3LAVz9uUSMcrf9t/jbyOY1YFqMw/FtmZEPQf5/M9pridD1cx9+HLLG4JQF0f6cp6W8jTUHvMSxfoAQCgUAgGEzIZNJAL16gMsJA9TuG5QtURyqDwmjQ8TdjmW3QvoBO5BRIF2iTFc5EObHzyqiJLu0IAKCYdgWqLMXfnZ6YWpsNKuapJUH2xN1Oa4UyzQ2dAu3CMHP1hQNlyQLpusnNdHGm0LLc/WxUTIBtSXuWWJOzzpDPuFBQXqg6iW0oVLNi5XwAANjabjqPu0wZ+1SfSRNkfzhbThg2A/oSf39WrNzAea10i9dmtbmEqJzp6rNcb8FAUfDxIdOg10WRtMlq2Pq03Wgfr4WzZVtePk90HQleIxkkU4yrH29zFSdyzdDDHhumDSYyWNHguShot+X7y3KYNpayt+uLBox+ri4Nmvfp7S81tpm56nTWymcOw9b22lggljEZNCsjoppp5sRjv8e1/rKJuXXY2DCfeYoGt1vuuVkPFzzEtd+Rlo7gs59LeA74rG5aseccH2VlMWsd+vE0RfEYbWUHot9H08Gf99y0hrCVJcg86c+A//ugxO6GO39HezC/oM39XyAghuULlEAgEAgEgwmigRp6kBcogUAgEAgGGPICNfQwLF+g2pMZxIxkoHqCYArLk4ZXyIQK1wfq0y1t3jaGqOgjxcgDmeZCjZYudNydkZAKxVDoy3BGyqeLm5TzeGMiSCmPUG0r1xIPF4SU47MXElRhBU+USadpv55qFb7apJISM+T2RcQV0NsStJoO3olUOnCsfk72R0Eo6MdTpIVQ2L3s59GK/o9bEgObYRWGTDrjQcGuDk/wrO5xp+pTip3brElX7UJiPfRjJnH1ryeb7md9FM6agle9Xp6zUdXjGJ+2RKrmOTPG92TCP19hLJhQ1vPWMc4PZItqTQfxAosDSsgIl+VLPMxQo+llxNBjgTZYWdZ3R3fH5ogSd7zoCypMV3yzf/S+4zgrLer5z2AuLy19nzd2Ot1z5hNne+Muj0cU4Xu3FQbOx3ClnpTbXPjBc7Itur+aLURsOy/g359IiVsvx1J1adCdX6+fPmO855Xqea+tdBe9MEGxfi7zOWS7dSF6wvO0UuHrVDB0V2AJ2/phVLXwoyOY2QBwF0eYz5NAoGNYvkAJBAKBQDCokE7DCfeCRdpJyYQFuTEsX6Asq2UD+e1Ko1ym734yN15Dc6fa73cbhdtctk8GhsbH+kzJCbvHhVKuWDpa4M7AHDWb32awTYA/q6RdAifsUa1e5tLjRJyTpmaPKQluB3wWifnoOIvnebZF/bZ0GMLNqGdVoATj+mzQYBSSeWZwZKPYBrNsPkdvc59teztZH8WykY3hjFRnPzwxszEzzcuiqH0VxcE8a/pM2mZnodenC1/Nc5tCZc6sExqTQcaGS8DNJeEhzarBMWwnyIAm2rPHnddOY8Zu5igDfCsGts9kA219RxQrBtFbFm+p37RBaPMYqWAeRx1k9kzWRwfbQrY1n7jeFNpzvHj2CFobTUYrq/508D679bFN9vbaxO9e2wy2UN9PYXiLYRXSnewE+SwPzEUGtMBo2O4y2Lp9hncMheYlwcUh+vNCmIs4eG5+53ls4HMds4wLwmMz1b3xcuFpfRmNRRB2+u+/SMfp3Sq8nZVMWJAb4kQuEAgEAoFA0EMMSwZKIBAIBILBBCeT6R0DJUaa/Y5h+QJVGY94YQGKnZs1HxaGVehI3uGJpt3PySPiXlmGvJhgmHR6KRN7agJrMuKRjHuuQi/pqktp15X5vkSb24MCbbaTflUtSd0Z2y3DUFpJIb8rbxN1rO52HFZC9tZOtx6K09l+PSxHryiem/vKlYi1TAtFsB82tjLcqXyUVJRIF/wyBEhPK54noeKfpTE9Qaud0jdFoXrYoTgaFB9v2+beT9L1No8XM6xjOn0DQf8o/RhPsKuFeOlbk0t4rsPmx6Sf20uc3JkdlqMfD13ACT3UkkskzHCfLVEwwZCMzbE5lSdkZ57P28eFE0aSaNu9Ybu2qzb4oZlOVb8uxg4uQDB9oPSQXq5QY77FAN25Rq9MKDhGGbLj70hnWm93UCBP8JmNBMKJyrfKcPumE/kqbZGL2a42I1St7zc9rnIJufWyZj2eg70aowURrd2FwQUaxVGLlkLBdJn32xT07NLb4J2Hi3NsCdGZkDpXUuEC+zPYH3B6aaQpq/D6HxLCEwgEAoFAIOghhiUD1dSRxtgylddOCbcL9fxmqldiaja7WbEpW1uUGFmb8R46oRIA0JlWTFQy6Bwe7vRng1CMUEvYza0XV7OhUIZLc/02jFA2BSxD12/mz9MZIu4rVTO8UIiOxO5+tlYXm9JegPU3qZkpBd26NUGBoo+8nHvG7FvPDZjxbCHck69XeLg2zwAAH6JJREFUefgalVC5SnMXP2hshbsvEayfju2JlCaUN6wNzJk1Z6HMqQYA7UljflDl2lBwObVtibKX101dR9KbWfv3vEnNWosUa0fWoDNFxsGfWacNBiHfUnEvz59qH2fznt2AYpl08bvnDK62UTDPXGQxyyzfZBgc9ZlM+G0yXcXNfHeFsex6YzmE9zqb5DEqZGWy3Nwt4mY1vsLGuCMrqbMVPDfPw328JzaHfaLAsDbJ5+idj50xBeYmW0rmJd3hH8PMA9Fuid8zgXYWKFftjc3us1ar7FYAYMUmN2skWdFoJCj0N+0Y9PaZ+flsiwFsLuWAxpYmNSaR7K7hCm+yyLnOaWuj3hbz0/Z8M3MBF5SEDcYpFNbGajJjFcPvLLghvB0Pw0kIr/8xLF+gBAKBQCAYTJAQ3tCDvEAJBAKBQDDAkBeooYdh+QK1rSOFsPJ0YsiqQdHfgJ/sl+wuaWQKF/VQ2PvrXYp8/zFuGtOigoj6dMuEdJGi+ru40C3jkcUq5FaY8QWkkYh5a1TIQ4kyW3X/INXgTkVZb+9QgmsVCitRn1vbtaSu6hJYy+hiJeROZtPAo0rcwqbrOhMnJzUWvEiFSpoVVT6u3A0nfGvvkQCAl1ds88ouWr0VALBHdYlqr3Ixz7ifsYjfliql22eCZ94Lhl5Nryq3gcGvDOMUG2JewA+7OF7IQIVmQFdj/yLNBL2sJ+aFInL/kOUTH5tO475TuLud4QU91JtR9yKqQmq+/1N26MMMKRHFqi9tIQ8vlJkIhhP1EB8d3s0EximLt47p6WSCQmj93vBe+wsIcvtuNRueS+2eZ1T2PWF9DG9liae1ducKZ+UKMen1maEp8zwAEKUcNRp87nk9NhE5Q4xmsuJPNjR7ZU0fMlO4HVx0YRd1Jyy+WObxHBcUjzPkq49Djq9w2L2m7UZo01a/38/B7XqI0wwjmmF4fdEFxyhD3lwEFI1HAtchEHQHw/IFSiAQCASCwYRMJu3pYXcEwkD1P4blC1RxpACb2ygId2cczH8HAI2cxarJCGdIjUqgXK0JoSuUWPdztUR+ohIqewJUbUw7Edd5vFUJzss6m9zthS69QqfyQFsLlNi7MMia6LO1TsPigPDF3dmWChSjc4bamDCEqVr91bQ4UJf0uXIBJvtTq3JaAb7r+VenuIzT8k3Ngfpm7z5CK+ue68mPNgIA9hlZqup1y1ZoAuNt7YaLtjqWKQHZ3yNK/XvDsmYeveZENnNBtKgyZD0o6NZdjXPly0sYfWqDzeWaKFPn1IXwQDAvnImwYqU40/ecvDnTTmkLE8rd+2RaQbDduqDbW/avrr9EHcuZu96msdXFgXbns5YwRcssY+Zo09kQ1st6yrzl9kGBuHtc0LIj12IDHSzji8pzMyKm8DmfLYV5ru35HN9z5Kwzl/O753T3MecdFzGwn6q1ZyBbPJ97LNn6Rj9WH9fmfTPF1rZFBlwEEDYWo3h1aOfnIgPz+snu6uPDFNznsykx4eXLVKcOabYL/Z0Lz0lngFAvXqDy2JAIdg7ExkAgEAgEAoGghxgyL1ATJ05EKBQK/Pvxj3880M0SCAQCgaDXcJw0nEwv/kkuvH7HkArhXX/99Tj//PO976WlpTtUz6a2BAqVWPWzra7SWA9D0Y+IYb2Eoo2j9I7S3IJHOS5dzgTDFJ4ynMawHQAkQ8q9V1GtjWG3/RVJV4iOQt/hvDPEW+Oek98oTtepbUbuWpN0OFZhHbWdobxKjVaPFihPqk6Gndzt9JTRBbTcN0IJLeORYnWN7vYWjb5nW9Y3tgIAdh9ZBgBYu9W9xlGZ7V7ZrYVVAIBZE6sBwAurJpygwBMAylUIjcJ1Cmdb1WeJl9hYCx0UI4AWw/Xa5tfUboQVbMlizfCNGcrrTqJWW1jEBMMYDG1QIK6HlhgS264tggDsInKGMk1PLVvohtsqVTjIJnwmzOv2hdvZ87Nc/ZAr3Krv45gfWeaGyRnC0ttUqtzx/TbxfHanb9t1+EsrspHPrZzgNTI0yrGaJXa2hDZ9N3u1GEMlAbaNE/OeUICvj+tc99gUztuuid9tYUSzXkeNzXABheLZ7WU4LG44nnuflhCUGZ7LN/74nHiCdsuCGD4XBep31fseya63IBKG08Wih76Ek0n3LoQnGqh+x5B6gSorK8OYMWMGuhkCgUAgEAiGOYbUC9Stt96KBQsWoK6uDqeccgquuOIKRKPRnOUTiQQSCX9m3tTkirabEinEC4Nv68u3tHp/j1VL70eVuHWPUTPeja1uXVyiDwCfbXMZrCkj3KX4jcpCgILtck3sWKQmMyRWKNgmE1We7vDKxjLtqrCa6RWWqGPczYXaxIhCeG6jCDvjuJ9bVZvatBkZ21emlqO3K5frRJriVW3Zvvrc0q4cvPPoKpkXr0KxXWSiPFfqiE8LpdUtqFRK8ObO4GyvTRemFphiUoMhKsgWnZYp1or7OFOlmFe3GzBnuubsWGdTzJl5LjG5vo0537iMnyJY/bymuNu7Vi4V5wy90B9TzXSJV9dK5oJsW9zi2My+I9uTUJ8Ry2yb9ZjCeb2fEwajYpa1MVHFhms5y1SXuoztlpZEVlmyS2RjmAvOxgaR9SHhFPXE3/7vhd8fwfxwFWqRiJ6rriATZAzNHHX6NZrjwWaLoG8H/DHKa2X7bdYCZNPSGTurpNfr5eZUfcV6WxSz1ayxsmWGK3w+t3WzXeY4sV2j2R8cQ3wG2rT6QznYOpvlgcf4qd8nk8mKasw7WTCKxotKFGNpYWEdJ88P3U6AMFBDD0PmBeriiy/G9OnTUVVVhSVLluDqq6/GypUr8V//9V85j7n55ptx3XXX9WMrBQKBQCDoOeQFauhhQF+g5s+f3+ULzjvvvIODDjoIl156qbdtv/32Q1VVFb797W/j1ltvRXV1tfXYq6++Gpdddpn3vbGxERMmTEB7a4u3jexNh6aNaAu7s7PWjDsT5ZL/dsVA6WUZ62+Nqvxo6UL1qbpWNxxUrE9zZ3C2489MfQbK8wPxGCilDfEYKH8GxmswZ0yc0DUro8NkYMYbnF12kIFSs9qINlvmFXQ6tEsInCZgn+Ao/UUkSUNNZcCoikTCPrPQnPb1YQDQqnQ8CdWWdo0h4nW3t7rMXEc79S/u9oKUMoO0LPknq5ZQ96+zze3nZMJfVp5ULJ2ZwZ0z32SoMGtbWLF0GWOGnkxl60pSasbvqPYlC5SNhjYWkulwoC1ESjGe3v1N+TNqbxvrTas8ZooR4He9LWZ7vSXoeewSQszbqD7DGkPJ600pZs8sm7HoVjp5rV7uOrVdPXvJ9s6ssp0ZpUlUz1YuqwIA6EwGWSVYWDCPgVJUKNvCNujgM1qQCuaJS3vMajZD2enZoTiBOjot+dV4TdGM0kkqPWBnwtYWxUA5BmtSYGEw1T3l7xTPzbGvj7WkYzfS5DXqS/q5jeOX4y1k9HPGwkBxG8eQV4fG7NN8lca2PMY2pnjuVIfbZyYDFXZyM1CpcKH1GMB9tlIdbd7fOx3pJHp1lnRumwzBzkHI6W+eUsPmzZuxefPmvGUmTpyIoqKirO3r1q3D+PHjsXjxYhxyyCHdOt/atWtRV1e3Q20VCAQCwfDEmjVrMH78+J1Sd0dHB3bbbTesX7++13WNGTMGK1eutP6fKeh7DCgDVVNTg5qamh06dunSpQCA2trabh8zduxYrFmzBmVlZYH0EoMZTU1NqKurw5o1a1BeXj7QzdnlIP278yB9u3Mh/btzwf796KOPMHbs2J12nqKiIqxcuRKdndnGvj1FNBqVl6d+xJDQQP35z3/G4sWLMWvWLFRUVOCdd97BpZdeiq9//euYMGFCt+sJh8M7bRaxs1FeXi4/kjsR0r87D9K3OxfSvzsX48aNQzicO7zdFygqKpIXnyGIIfECFYvF8MQTT+C6665DIpFAfX09zj//fFx55ZUD3TSBQCAQCATDEEPiBWr69OlYvHjxQDdDIBAIBAKBAMAQSuUyXBGLxTBv3jzEYrGuCwt6DOnfnQfp250L6d+dC+lfQVcY0FV4AoFAIBAIBEMRwkAJBAKBQCAQ9BDyAiUQCAQCgUDQQ8gLlEAgEAgEAkEPIS9QAoFAIBAIBD2EvEANAsyfPx+hUCjwb8yYMd5+x3Ewf/58jB07FvF4HEcddRQ+/PDDAWzx0MO6detw5plnorq6GsXFxTjggAPw3nvvefulj3cMEydOzBq7oVAIP/zhDwFIv/YWqVQKP/nJT7DbbrshHo9j0qRJuP7665HJ+LnbpI97h+bmZlxyySWor69HPB7HzJkz8c4773j7pX8FOeEIBhzz5s1z9t13X6ehocH7t3HjRm//Lbfc4pSVlTm/+93vnA8++MA57bTTnNraWqepqWkAWz10sHXrVqe+vt4555xznLfffttZuXKl8/LLLzvLly/3ykgf7xg2btwYGLcvvfSSA8B57bXXHMeRfu0tbrjhBqe6utr5/e9/76xcudL5n//5H6e0tNS58847vTLSx73Dqaee6uyzzz7O66+/7nz66afOvHnznPLycmft2rWO40j/CnJDXqAGAebNm+fsv//+1n2ZTMYZM2aMc8stt3jbOjo6nIqKCueee+7ppxYObVx11VXOYYcdlnO/9HHf4eKLL3YmT57sZDIZ6dc+wAknnOCce+65gW3f/OY3nTPPPNNxHBm7vUVbW5tTUFDg/P73vw9s33///Z1rrrlG+leQFxLCGyT49NNPMXbsWOy22244/fTTsWLFCgDAypUrsX79ehxzzDFe2VgshiOPPBJvvfXWQDV3SOHZZ5/FQQcdhFNOOQWjRo3CtGnTcP/993v7pY/7Bp2dnXj00Udx7rnnIhQKSb/2AQ477DC88sor+OSTTwAA77//PhYtWoTjjz8egIzd3iKVSiGdTmfloYvH41i0aJH0ryAv5AVqEOCQQw7Bww8/jBdeeAH3338/1q9fj5kzZ2LLli1Yv349AGD06NGBY0aPHu3tE+THihUrcPfdd2PKlCl44YUXMHfuXFx00UV4+OGHAUD6uI/wzDPPYPv27TjnnHMASL/2Ba666iqcccYZ2GuvvVBYWIhp06bhkksuwRlnnAFA+ri3KCsrw4wZM7BgwQJ88cUXSKfTePTRR/H222+joaFB+leQF0MiF96ujuOOO877e+rUqZgxYwYmT56Mhx56CF/5ylcAAKFQKHCM4zhZ2wR2ZDIZHHTQQbjpppsAANOmTcOHH36Iu+++G3PmzPHKSR/3Dr/+9a9x3HHHYezYsYHt0q87jieeeAKPPvoofvvb32LffffFX//6V1xyySUYO3Yszj77bK+c9PGO45FHHsG5556LcePGoaCgANOnT8c///M/4y9/+YtXRvpXYIMwUIMQJSUlmDp1Kj799FNvNZ4529m4cWPWrEhgR21tLfbZZ5/Atr333hurV68GAOnjPsCqVavw8ssv43vf+563Tfq197jiiivw4x//GKeffjqmTp2Ks846C5deeiluvvlmANLHfYHJkyfj9ddfR0tLC9asWYMlS5YgmUxit912k/4V5IW8QA1CJBIJfPzxx6itrfUe4pdeesnb39nZiddffx0zZ84cwFYOHRx66KFYtmxZYNsnn3yC+vp6AJA+7gM88MADGDVqFE444QRvm/Rr79HW1oZwOPgzXVBQ4NkYSB/3HUpKSlBbW4tt27bhhRdewEknnST9K8iPAZWwCxzHcZx//dd/df70pz85K1ascBYvXux87Wtfc8rKypzPP//ccRx3GW1FRYWzcOFC54MPPnDOOOMMWUbbAyxZssSJRCLOjTfe6Hz66afOY4895hQXFzuPPvqoV0b6eMeRTqedCRMmOFdddVXWPunX3uHss892xo0b59kYLFy40KmpqXGuvPJKr4z0ce/w/PPPO3/84x+dFStWOC+++KKz//77OwcffLDT2dnpOI70ryA35AVqEIC+IoWFhc7YsWOdb37zm86HH37o7c9kMs68efOcMWPGOLFYzDniiCOcDz74YABbPPTw3HPPOV/60pecWCzm7LXXXs59990X2C99vON44YUXHADOsmXLsvZJv/YOTU1NzsUXX+xMmDDBKSoqciZNmuRcc801TiKR8MpIH/cOTzzxhDNp0iQnGo06Y8aMcX74wx8627dv9/ZL/wpyIeQ4jjPQLJhAIBAIBALBUIJooAQCgUAgEAh6CHmBEggEAoFAIOgh5AVKIBAIBAKBoIeQFyiBQCAQCASCHkJeoAQCgUAgEAh6CHmBEggEAoFAIOgh5AVKIBAIBAKBoIeQFyjBkMNRRx2FSy65ZJc67znnnIOTTz65V3VMnDgRoVAIoVAI27dvz1nuwQcfRGVlZa/OJciNc845x7sPzzzzzEA3RyAQ7CTIC5RA0E0sXLgQCxYs8L5PnDgRd95558A1yILrr78eDQ0NqKioGOim7PL405/+ZH1Z/eUvf4mGhoaBaZRAIOg3RAa6AQLBUMGIESMGugldoqyszMsgP9BIJpMoLCwc6Gb0OyoqKuQFViAYBhAGSjDksW3bNsyZMwdVVVUoLi7Gcccdh08//dTbz5DVCy+8gL333hulpaU49thjAyxBKpXCRRddhMrKSlRXV+Oqq67C2WefHQir6SG8o446CqtWrcKll17qhWsAYP78+TjggAMC7bvzzjsxceJE73s6ncZll13mnevKK6+EmVHJcRz87Gc/w6RJkxCPx7H//vvjqaee2qH+efDBBzFhwgQUFxfjG9/4BrZs2ZJV5rnnnsOBBx6IoqIiTJo0Cddddx1SqZS3/x//+AcOO+wwFBUVYZ999sHLL78cCFF9/vnnCIVCePLJJ3HUUUehqKgIjz76KADggQcewN57742ioiLstddeuOuuuwLnXrduHU477TRUVVWhuroaJ510Ej7//HNv/5/+9CccfPDBKCkpQWVlJQ499FCsWrWqW9fe1XXdfvvtmDp1KkpKSlBXV4cLLrgALS0t3v5Vq1bhxBNPRFVVFUpKSrDvvvviD3/4Az7//HPMmjULAFBVVYVQKIRzzjmnW20SCAS7BuQFSjDkcc455+Ddd9/Fs88+iz//+c9wHAfHH388ksmkV6atrQ2/+MUv8Mgjj+CNN97A6tWrcfnll3v7b731Vjz22GN44IEH8Oabb6KpqSmvfmXhwoUYP368FzLrScjmtttuw29+8xv8+te/xqJFi7B161Y8/fTTgTI/+clP8MADD+Duu+/Ghx9+iEsvvRRnnnkmXn/99e53DIC3334b5557Li644AL89a9/xaxZs3DDDTcEyrzwwgs488wzcdFFF+Gjjz7CvffeiwcffBA33ngjACCTyeDkk09GcXEx3n77bdx333245pprrOe76qqrcNFFF+Hjjz/G7Nmzcf/99+Oaa67BjTfeiI8//hg33XQTfvrTn+Khhx4C4N6XWbNmobS0FG+88QYWLVrkveB2dnYilUrh5JNPxpFHHom//e1v+POf/4zvf//73gtrPnR1XQAQDofx7//+7/j73/+Ohx56CK+++iquvPJKb/8Pf/hDJBIJvPHGG/jggw9w6623orS0FHV1dfjd734HAFi2bBkaGhrwy1/+skf3RiAQDHEMaCpjgWAHcOSRRzoXX3yx4ziO88knnzgAnDfffNPbv3nzZicejztPPvmk4ziO88ADDzgAnOXLl3tl/vM//9MZPXq093306NHOz3/+c+97KpVyJkyY4Jx00knW8zqO49TX1zt33HFHoG3z5s1z9t9//8C2O+64w6mvr/e+19bWOrfccov3PZlMOuPHj/fO1dLS4hQVFTlvvfVWoJ7zzjvPOeOMM3L2i609Z5xxhnPssccGtp122mlORUWF9/3www93brrppkCZRx55xKmtrXUcx3H++Mc/OpFIxGloaPD2v/TSSw4A5+mnn3Ycx3FWrlzpAHDuvPPOQD11dXXOb3/728C2BQsWODNmzHAcx3F+/etfO3vuuaeTyWS8/YlEwonH484LL7zgbNmyxQHg/OlPf8p53bnQ1XXZ8OSTTzrV1dXe96lTpzrz58+3ln3ttdccAM62bdus+/X+EQgEux5EAyUY0vj4448RiURwyCGHeNuqq6ux55574uOPP/a2FRcXY/Lkyd732tpabNy4EQDQ2NiIDRs24OCDD/b2FxQU4MADD0Qmk+nT9jY2NqKhoQEzZszwtkUiERx00EFeGO+jjz5CR0cHjj766MCxnZ2dmDZtWo/O9/HHH+Mb3/hGYNuMGTPw/PPPe9/fe+89vPPOOwFmJp1Oo6OjA21tbVi2bBnq6uoC2iq9r3QcdNBB3t+bNm3CmjVrcN555+H888/3tqdSKU8j9N5772H58uUoKysL1NPR0YHPPvsMxxxzDM455xzMnj0bRx99NL761a/i1FNPRW1tbZfX3tV1FRcX47XXXsNNN92Ejz76CE1NTUilUujo6EBraytKSkpw0UUX4Qc/+AFefPFFfPWrX8W3vvUt7Lfffl2eWyAQ7PqQFyjBkIZjaIf07XqYxxQzh0KhrGPNsFCuuvMhHA5nHaeHErsDvrT93//9H8aNGxfYF4vFelRXd64hk8nguuuuwze/+c2sfUVFRVl9mQ8lJSWBegHg/vvvD7zgAu4LKssceOCBeOyxx7LqGjlyJABXQ3XRRRfh+eefxxNPPIGf/OQneOmll/CVr3ylV9e1atUqHH/88Zg7dy4WLFiAESNGYNGiRTjvvPO8e/a9730Ps2fPxv/93//hxRdfxM0334zbbrsNP/rRj7rVHwKBYNeFvEAJhjT22WcfpFIpvP3225g5cyYAYMuWLfjkk0+w9957d6uOiooKjB49GkuWLMHhhx8OwGUqli5dmiUI1xGNRpFOpwPbRo4cifXr1wdeOv76178GzlVbW4vFixfjiCOOAOAyMu+99x6mT5/uXVMsFsPq1atx5JFHdusacmGfffbB4sWLA9vM79OnT8eyZcuw++67W+vYa6+9sHr1amzYsAGjR48GALzzzjtdnnv06NEYN24cVqxYge985zvWMtOnT8cTTzyBUaNGoby8PGdd06ZNw7Rp03D11VdjxowZ+O1vf9vlC1RX1/Xuu+8ilUrhtttuQzjsykGffPLJrHJ1dXWYO3cu5s6di6uvvhr3338/fvSjHyEajQJA1hgQCATDA/ICJRjSmDJlCk466SScf/75uPfee1FWVoYf//jHGDduHE466aRu1/OjH/0IN998M3bffXfstdde+NWvfoVt27blZV4mTpyIN954A6effjpisRhqampw1FFHYdOmTfjZz36Gb3/723j++efxxz/+MfBycPHFF+OWW27BlClTsPfee+P2228PeAmVlZXh8ssvx6WXXopMJoPDDjsMTU1NeOutt1BaWoqzzz6729d10UUXYebMmfjZz36Gk08+GS+++GIgfAcA1157Lb72ta+hrq4Op5xyCsLhMP72t7/hgw8+wA033ICjjz4akydPxtlnn42f/exnaG5u9kTkXTFT8+fPx0UXXYTy8nIcd9xxSCQSePfdd7Ft2zZcdtll+M53voOf//znOOmkk3D99ddj/PjxWL16NRYuXIgrrrgCyWQS9913H77+9a9j7NixWLZsGT755BPMmTOny2vv6romT56MVCqFX/3qVzjxxBPx5ptv4p577gnUcckll+C4447DHnvsgW3btuHVV1/1Xszr6+sRCoXw+9//Hscffzzi8ThKS0u7fW8EAsEQx4CprwSCHYQp5t66datz1llnORUVFU48Hndmz57tfPLJJ97+Bx54ICCadhzHefrppx19+CeTSefCCy90ysvLnaqqKueqq65yTjnlFOf000/Ped4///nPzn777efEYrFAXXfffbdTV1fnlJSUOHPmzHFuvPHGgIg8mUw6F198sVNeXu5UVlY6l112mTNnzpyAYD2TyTi//OUvnT333NMpLCx0Ro4c6cyePdt5/fXXc/aLTUTuOK5Qe/z48U48HndOPPFE5xe/+EVWfzz//PPOzJkznXg87pSXlzsHH3ywc99993n7P/74Y+fQQw91otGos9deeznPPfecA8B5/vnnHcfxReRLly7NOv9jjz3mHHDAAU40GnWqqqqcI444wlm4cKG3v6GhwZkzZ45TU1PjxGIxZ9KkSc7555/vNDY2OuvXr3dOPvlkp7a21olGo059fb1z7bXXOul0Omc/9OS6br/9dqe2ttYbNw8//HBAGH7hhRc6kydPdmKxmDNy5EjnrLPOcjZv3uwdf/311ztjxoxxQqGQc/bZZwfODRGRCwS7NEKOswNCD4FgF0cmk8Hee++NU089NeA+PpgxceJEXHLJJf2S5ubNN9/EYYcdhuXLlwfE+QIfoVAITz/9dK9T9AgEgsEJ8YESCOAaJt5///345JNP8MEHH+AHP/gBVq5ciX/+538e6Kb1CFdddRVKS0vR2NjYp/U+/fTTeOmll/D555/j5Zdfxve//30ceuih8vJkwdy5cyWUJxAMAwgDJRAAWLNmDU4//XT8/e9/h+M4+NKXvoRbbrnFE3oPBaxatcpbPTZp0iRPGN0XePjhh7FgwQKsWbMGNTU1+OpXv4rbbrsN1dXVfXaOnmLffffN6Uh+77335hSu72xs3LgRTU1NAFy7DH1lokAg2HUgL1ACgWBIQn9hNDF69OgsbymBQCDoS8gLlEAgEAgEAkEPIRoogUAgEAgEgh5CXqAEAoFAIBAIegh5gRIIBAKBQCDoIeQFSiAQCAQCgaCHkBcogUAgEAgEgh5CXqAEAoFAIBAIegh5gRIIBAKBQCDoIeQFSiAQCAQCgaCH+P8BuOPZ0WNzjNMAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHFCAYAAAA9occoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVffHv7tJdrPpJCEkQEhAmjRFUARUQEVAfzR9X1EsNH1FRVSaFQGlqCjKawELUmyoCIiviiBSpEkRpClCCARCQhrpdXfn98edOzt7d7anEc7nefbZ3Zl779xpu3fOOfd7dJIkSSAIgiAIgiA8Rl/XHSAIgiAIgrjUoAEUQRAEQRCEl9AAiiAIgiAIwktoAEUQBEEQBOElNIAiCIIgCILwEhpAEQRBEARBeAkNoAiCIAiCILyEBlAEQRAEQRBeQgMogiAIgiAIL6EBFNGg2LlzJ2bOnIn8/HyHdX379kXfvn1rvU+1wT///IMpU6agW7duiIqKQnR0NHr37o1Vq1Zpls/KysLo0aMRGxuLkJAQ9OzZE5s2bbIrU1hYiDlz5qBv376Ij49HWFgYOnfujNdeew3l5eUObVZVVWHWrFlITk6G0WhE+/bt8c4773i1H5706/Tp09DpdE5fAwcO9Hh777zzDtq3bw+j0YiWLVti1qxZqKqqsiuzevVq3HvvvWjdujVMJhOSk5Nx33334cSJE17tG0EQDQyJIBoQ8+fPlwBIqampDuuOHj0qHT16tPY7VQu88847Uvv27aU5c+ZIGzZskH788Udp1KhREgBp1qxZdmXLy8ulTp06Sc2bN5c+++wzacOGDdLQoUOlwMBAacuWLUq5w4cPS7GxsdLTTz8tfffdd9KmTZukmTNnSsHBwdItt9wiWa1Wu3YfeughyWg0Sq+//rq0efNm6dlnn5V0Op00Z84cj/bB036Vl5dLu3btcng988wzEgBp8eLFHm1v9uzZkk6nk5577jlp8+bN0uuvvy4ZDAbp4Ycftit33XXXSUOGDJE++eQTacuWLdKnn34qXXnllVJYWJh05MgRj7ZFEETDgwZQRIPC1QCqIZOdne0woJEkSbrjjjukkJAQqby8XFn23nvvSQCknTt3KsuqqqqkDh06SNddd52yrLi4WCouLnZokx/j3377TVl25MgRSafTSXPnzrUr+/DDD0smk0nKzc11uw+e9ssZffv2lUJCQqSCggK3ZXNycqTg4GDpP//5j93yOXPmSDqdzm6gfeHCBYf66enpUlBQkDRu3Di32yIIomFCLjyiwTBz5kxMnToVANCyZUvFpbNlyxYAji487gqaP38+XnvtNSQnJ8NkMqFv3774559/UFVVhWeffRZNmzZFZGQkhg8fjqysLIftfvXVV+jZsydCQ0MRFhaGAQMG4MCBA7WxywqxsbHQ6XQOy6+77jqUlpYiLy9PWbZmzRq0a9cOPXv2VJYFBgbi/vvvx549e5Ceng4ACA0NRWhoqGabAHD27Fll2dq1ayFJEsaMGWNXdsyYMSgrK8P69evd7oOn/dIiJSUFW7duxd13342IiAi321q/fj3Ky8s1+ytJEtauXassi4uLc6jftGlTNG/e3O4YEARxeUEDKKLB8NBDD+GJJ54AwOJWdu3ahV27duGaa65xWe+9997Djh078N577+Hjjz/G33//jcGDB2PcuHHIzs7GJ598gtdffx2//PILHnroIbu6c+fOxb333osOHTrg66+/xqeffoqioiLceOONOHbsmNs+m81mj16SJPl0TDZv3ozGjRvbDQKOHDmCLl26OJTly44ePeqyzV9//RUA0LFjR7s2GzdujPj4eM02jxw54rav/vTrk08+gSRJDufH1bYAoHPnznbLExISEBsb67a/p06dwpkzZ+yOAUEQlxeBdd0BgqgumjdvjhYtWgAAunbtiuTkZI/qRUVFYe3atdDr2fNETk4OnnrqKbRv3x7fffedUu7vv//G22+/jcLCQkRERODs2bOYMWMGJkyYgP/+979Kuf79+6NNmzaYNWsWvvrqK6fbPX36NFq2bOlRHzdv3ux1APzHH3+MLVu2YOHChQgICFCW5+bmIjo62qE8X5abm+u0zUOHDuH111/H8OHD7QY7ztoMDQ2FwWBw2aa//bJYLFi+fDnat2+P3r17u90Ob8toNGpa2KKjo13212w2Y9y4cQgLC8PTTz/t0fYIgmh40ACKuOy5/fbblcETAFx55ZUAgDvuuMOuHF+elpaGTp064eeff4bZbMaDDz4Is9mslAsODkafPn2wefNml9tt2rQp9u7d61Ef27Vr51E5zk8//YTHH38c//rXvxSrnBotd5+7dadPn8b//d//ITExER9//LFPbUqSBIvFYrcuMDDQoZw3/Vq/fj3S09Mxf/58h3Xq8wIAAQEBSju+bEuSJIwbNw6//fYbvv32WyQmJjptgyCIhg0NoIjLHtHqYTAYXC7nU/gvXLgAALj22ms121UPyrQwGAy4+uqrPeqj2oLkjp9//hl33nkn+vfvj88//9xhMBATE6NpYeFxUlpWoDNnzqBfv34IDAzEpk2bHMrExMTg4MGDDvVKSkpQWVmplF++fLlD3BF3T/rSLwBYsmQJgoKC8OCDDzqsCwoKsvu+dOlSjB49GjExMSgvL0dpaSlCQkIcttetWzeHtriL8LPPPsPy5csxdOhQzf4QBHF5QAMogvCR2NhYAMCqVauQlJTkdf2acOH9/PPPGDZsGPr06YNvv/1WGfSp6dy5Mw4fPuywnC/r1KmT3fIzZ86gb9++kCQJW7ZsQfPmzTXbXLlyJTIzM+3ioMQ2Bw8e7NTq5m2/AKYb9b///Q9DhgzRDPYWt8WPN499Onz4MHr06KGsz8zMRE5OjsO2+OBp6dKlWLJkCe6//37NfSAI4vKBBlBEg8JoNAIAysrKanxbAwYMQGBgIFJSUnDXXXd5Xb+6XXgbNmzAsGHDcMMNN2Dt2rXKsRAZPnw4HnvsMfz+++/K4MFsNuOzzz5Djx490LRpU6VsWloa+vbtC4vFgi1btjgdKA4dOhQvvvgili9fjmeeeUZZvmzZMphMJkXcMiYmBjExMX73i7NixQpUVVVh3Lhxmm12795dc/nAgQMRHByMZcuW2Q2gli1bBp1Oh2HDhinLJEnCww8/jKVLl+KDDz5wsKARBHF5QgMookHBLQsLFy7EqFGjEBQUhHbt2iE8PLzat5WcnIyXX34ZL7zwAk6dOoWBAweiUaNGuHDhAvbs2YPQ0FDMmjXLaX2DweD0D95btm/fjmHDhiE+Ph7PP/+8gzutQ4cOyvT+sWPH4r333sO///1vvPrqq4iLi8P777+P48eP45dfflHqZGVloV+/fsjIyMCSJUuQlZVlJ+PQvHlzxRrVsWNHjBs3DjNmzEBAQACuvfZabNiwAR9++CFmz57t1P2mxtN+qVmyZAkSExMxYMAAr45XdHQ0XnzxRUyfPh3R0dG47bbbsHfvXsycORMPPfQQOnTooJSdOHEilixZgrFjx6Jz587YvXu3ss5oNKJr165ebZsgiAZCHelPEUSN8dxzz0lNmzaV9Hq9BEDavHmzJEmS1KdPH6lPnz5KudTUVAmANH/+fLv6mzdvlgBI33zzjd3ypUuXSgCkvXv32i1fu3at1K9fPykiIkIyGo1SUlKS9K9//Uv65ZdfamT/tJgxY4YEwOmLHwNOZmam9OCDD0rR0dFScHCwdP3110sbN260K8OPg7PXjBkz7MpXVlZKM2bMkFq0aCEZDAapbdu20n//+1+v9sOTfnF27NghAZBeeuklr7ahZuHChVLbtm0lg8EgtWjRQpoxY4ZUWVlpVyYpKcnpMUhKSvJ52wRBXNroJMlHgRmCIAiCIIjLFBLSJAiCIAiC8BIaQBEEQRAEQXgJDaAIgiAIgiC8hAZQBEEQBEEQXkIDKIIgCIIgCC+hARRBEARBEISXXFZCmlarFefPn0d4eLjLRKIEQRAEIUkSioqK0LRpU7e5Lf2hvLwclZWVfrdjMBgQHBxcDT0iPOGyGkCdP3+esqcTBEEQXnH27FnNHJDVQXl5OWJMYSiFxe+24uPjkZqaSoOoWuKyGkDxdB5nz55V0loQBEEQlxdVF04BAIKatHJZrrCwEImJiTWSCopTWVmJUljwIJrB4EdUTSWsWJGZjsrKShpA1RKX1QCKu+0iIiJoAEUQBNEA2Xk6FwDQK9kxafVPf18AAFRZ4wEAQzz8H6iNkA8D9DDo/HATUk6RWueyGkARBEEQRH0kQKdDgB8DtQDoaBBVy9AAiiAIgiDqGL0OCPDD0KUHaABVy9AAiiAIgnDLyxuPK59f6t+uDnviGi3XHWdQ+ya12BOioUMDKIIgCIKoY6rFhUfUKjSAIgiCINxSl1andccyAQBDOsTXWR9qmgA/XXgB1dcVwkNIiZwgCIIgCMJLyAJFEARBEHUMufAuPWgARRAEQdQ6+cWlAICosBC3Zf1x3ZkzTiifAxPa+NxOTUMuvEsPcuERBEEQBEF4CVmgCIIgLhOqLqQCAIKatKzjnnhmeaoO6rPVSQ258C49aABFEARBEHWMDv65hGj4VPvQAIogCIIg6hiyQF160ACKIAjiMqE+uO4IoqFAAyiCIAiCqGNoFt6lR72Zhbdo0SJ06dIFERERiIiIQM+ePfHTTz8p6yVJwsyZM9G0aVOYTCb07dsXR48ercMe+0/V3nWo2ruurrtBEARB1DFsAKXz41XXe3D5UW8GUM2bN8err76Kffv2Yd++fbj55psxdOhQZZD0+uuvY8GCBXj33Xexd+9exMfHo3///igqKqrjnhMEQRAEcblRbwZQgwcPxu233462bduibdu2mDNnDsLCwrB7925IkoS3334bL7zwAu6880506tQJy5cvR2lpKb744ou67jpBEARB+AV34fnzImqXehkDZbFY8M0336CkpAQ9e/ZEamoqMjMzcdtttylljEYj+vTpg507d+KRRx7RbKeiogIVFRXK98LCwhrvuyeY9/8AAJBaXwcAKC8rAwBYVbMoAszl7L0gHQAQ2LxjbXaRIAiCqEVoFt6lR72xQAHA4cOHERYWBqPRiPHjx2PNmjXo0KEDMjNZJu4mTZrYlW/SpImyTot58+YhMjJSeSUmJtZo/wmCIAiCuDyoVxaodu3a4eDBg8jPz8e3336LUaNGYevWrcp6nTA6lyTJYZma5557DpMmTVK+FxYW1ukgqqIoHwBg6XALAKDcbAUABElsfUmVRSlrCjQCAPTRrQAAVUUsb1R0eO2o9xIEQRC1h95PN1y9soZcJtSrAZTBYEDr1q0BAN27d8fevXuxcOFCPPPMMwCAzMxMJCQkKOWzsrIcrFJqjEYjjEZjzXaaIAiCIPyEXHiXHvV60CpJEioqKtCyZUvEx8dj48aNyrrKykps3boVvXr1qsMeEgRBEARxOVJvLFDPP/88Bg0ahMTERBQVFWHlypXYsmUL1q9fD51Oh6eeegpz585FmzZt0KZNG8ydOxchISEYOXJkXXddE67vJLW8RllWbooBAOSXmgEA/GGjooz58CotklI20igvs7J3C/P2IauUBcK3bxJRLf00dB3LtnPgk2ppjyAIgvAeEtK89Kg3A6gLFy7ggQceQEZGBiIjI9GlSxesX78e/fv3BwBMmzYNZWVleOyxx3Dx4kX06NEDGzZsQHh4eB33nCAIgiD8gwZQlx46SZIk98UaBoWFhYiMjERBQQEiIqrHguOOisI85XNloAkAkFnMLFA8aPxCcSUAIDjQ5lGNDglidczs9GSVMDmGMAMb897YKqYmu00QBHHZUxv/GXwb7zdqA5PO92FQmWTBYxdP1Or/2+VOvY6BIgiCIAiCqI/UGxceQRAEQVyuBMBPF95l40uqP5AFqobRmcuVF5+mer6oAueLKpBXVoW8siqlLP+eV1aF7JJKZJdUosJiQYXFgrSCcqQVlCOrpAJZJRVIv1iivAiCIIhLG71fiYR10HspgbBo0SJ06dIFERERiIiIQM+ePfHTTz/V0N41TGgARRAEQRCXGc2bN8err76Kffv2Yd++fbj55psxdOhQHD16tK67dslALrwaxhDdVPksyQHljUMNAID8cmZ9KihnQeQBetsTRHwYEwDNLWVlYuWg8tIqpmfwW1q+UrZ/IKsXQyrlBEEQlyR+z8Lzsu7gwYPtvs+ZMweLFi3C7t270bEj5V71BBpAEQRBEEQd47cSuVy3sLDQbrknGTksFgu++eYblJSUoGfPnj734XKDXHgEQRAE0UBITExEZGSk8po3b57TsocPH0ZYWBiMRiPGjx+PNWvWoEOHDrXY20sbskDVIsaIaABAQDl7QuDq4lz/KSHc9pRQWMG0oqyyTJcxkOmDcLHyIJW770ReOQBy4REEQVyqVJcL7+zZs3Y6UK6sT+3atcPBgweRn5+Pb7/9FqNGjcLWrVtpEOUhNIAiCIIgiDqmulx4fFadJxgMBrRu3RoA0L17d+zduxcLFy7EBx984HM/LidoAFUHJIUxa1JjEzv8f+eWAbBZpLylykICIARBEIR/SJKEioqKuu7GJQMNoAiCIAiijtH7oOUk1veG559/HoMGDUJiYiKKioqwcuVKbNmyBevXr/e5D5cbNIAiCIIgiDpGF6CDTu/7AErn5QDqwoULeOCBB5CRkYHIyEh06dIF69evR//+/X3uw+UGDaDqgOCQUACA9ZvXAQDRN40HADtV8qhgpvuUL7FlVbJ/r0xOQBwua0kBtkDzk9lFAIDWjcNrrO8EQRBE9aMP0EHvxwDKWwvUkiVLfN4WwSAZA4IgCIIgCC8hC1QdogtiVqawIDaOtUpByjr+IGIMYAHnsSHM4sQtUGpK5WUF5ew9I5/lx+MPJAcyigEAg9o3qc7uEwRBENVFgB46vR82DR1NJqptaABFEARBEHWMTq+Dzg8hKB38EJEifIJceARBEARBEF5CFqg6xDTsaQBAc/l7ZX6Wsi6tygQACDWwMW6VlQWRx8lJhiONtlOXU8qSEWcUa+t33BLHXHuVBTnKMknH2uXq6ARBEETdoQ/QQe+HBUpPFqhahwZQBEEQBFHH6PT+xUDpJIqBqm1oAFWPMETFKZ+bl7JA8KxydlNUWVkweYWZWaLUkgdciDxaVjY3yUHpjUPYd0l+MAkozFDqFEQkAQBc5+gmCIIgCEILGkARBEEQRB1DLrxLDxpAEQRBEEQdowugWXiXGjSAqqcEFLGA8gADc+txd1xwAHPPZRZXKmW5EnmQ7D83yDeh2Sq7/wzMUVfZKFmpE15RwMpkpAMALBHxAAB9SS5rK85WtjqxnD2sfA5I7Mz6cO4o62fsFQAAU3BwjWybIAiCIKoLGkARBEEQRB3DLFB+BJHDWo29ITyBBlD1lKAmLQEAzeTvuUWlAIBoEwsmD9TbcuEF6O0tTpyLsjJ5cSW7sWLkugBgKmd582BhlqzAnFMAAJ2ZSSFY89OVsvq2vf3bGRXc6gQAy/efBQA0i5CD58+yPt3YhO0rSSwQBHG5QDFQlx40gCIIgiCIOkan00HnRzJhnZUGULUNKZETBEEQBEF4CVmgLhGizu4BAOT+uAYAEP3oq8o6i1VbQK1Uz1x3aYXMLVdmtp3upEimfx5Smg0AkKzM3acvY8HlCLQpRPHAb+5+q8pMYStkNXPubgSAPNnVGF7OVM9zDTEAgGDZNG3S2ZIhj8j+CQBQ2Po+AMBvaWzbxbpQAKRRRRDE5YM+QA+9HzFQeonsIbUNDaAIgiAIoo7xW8ZAIhdebUMDqEuEisO7AABxUxay78UFyjp92UUAgDWkEQCgUg4wD9ezoPEwAzvNKXmltvZkRfPOscxCpK8qAwDkBrOA7iiLrX3JwCxCOPMne5e3E9S4BWurKF8pawpiEgS5VtZuUQXbTqz5vNyYbaaIJTCIrcv9CwBwsawxACCvjFmpYsK1jwVBEARB1DU0gCIIgiCIOoYsUJceNIAiCIIgiDqGYqAuPWgAdYlgvG6A3XfLzx8pn6Vw5lILvm0cWyC71FJL2Q31ZybTV6qy2txnVXLguV7HnlraxTA3XYQsxpZhjlDKNpGn1lY1bm3Xh4sFLOGxRQpSljUuYAHmMbLbL0YOTtdVsLLmlD9t+3TrGLbs/HEAQEkVK5tfbnbYf4IgCIKoT9AAiiAIgiDqGj9deCAXXq1DA6hLBTkgvPjzlwEAF/86o6xKnL3ErqgxPAoA0BgsaDwkiFmiSqscm80oZhIHEUbWvimQ3YQlVTZr1QVZLixQtkRZ5Nx7lRb2Xma2lY2RA8wDCjIBADo5aNycfpL1TbY6qUkJTGDtVF4AAOw7X2C3HQC4PolUyQmCqFksx7YonwM69K3Vbet1Ouj9ENLk3gSi9iCnKUEQBEEQhJeQBeoSISDpKgBAiCw3EHbf9W7rRMhill0TmFXoYplNxDI4kFul2LJTF1m7rRqZ2PZUQ+vCSlYmSH46MgbY5967IsomeanPk+UKZJFNfctrAACGVt2d9vNsQYW8TdYuf5LamXZRKbPpJNsXg9zvG5OZRYrLMTQJY9INUcG2fH/xkaFOt0kQBCFS21YnNboAvX/JhK1kD6ltaABFEARBEHWM38mEKRderUMDKIIgCIKoY/zWgaIBVK1TLwZQ8+bNw+rVq/H333/DZDKhV69eeO2119CuXTulzOjRo7F8+XK7ej169MDu3btru7t1ir61e9cd56Kch665rCoeH2sLxLbKAdoVFnYJhAQx15dRDiKvtHn7UC67+YpkGYQE2V0WLbvL9FDl4pNddwHJV3vczzCDHMAuv5eb2fbUOf7450rZZcddepEhTEJh/3m2vGlEsFJHr2P7fbHMPnqeyzncdWWcsuxiOdtmpBxM36xR7bj/uIQDAFhNkezdyCTYg0NYH7jSe2D+WQCAJbyJUkdXySYKcBX6EllSwiD/EBtKc5Wyhtjm1d5/giCIy5V64TTdunUrHn/8cezevRsbN26E2WzGbbfdhpKSErtyAwcOREZGhvL68ccf66jHBEEQBFF98Bgof15E7VIvLFDr16+3+7506VLExcVh//79uOmmm5TlRqMR8fHxtd29eonlyCblc0CnWzTLNCpjUgJSIAvyvlBis8Q0kq1HZbJcwYUSFshdZWUWjCqLzfoTLMsghOpsAdoAUC6Xic49pSwLbN7R211Bk1C2TW5lKnYhpMnLNJEtTRdLK+2Wny8sV8o2DmX7HSRbY3jAfHYh29eP9p5TyvZowSw4P2QW2rUXG8qsbYUVtj5FGNlt89B1SQCA5fuZZWhUt0S3+/rbKWYRSghn7VboEpR1UWDH9690ZlUqKC+Q+8+O/7ELbJ+7N7eZ6oP0Yey9lPWvqILt2zUJbLnBbY8IgqgP6APgZwxUNXaG8Ih6OWQtKGB/HNHR9to/W7ZsQVxcHNq2bYuHH34YWVlZLtupqKhAYWGh3YsgCIIgCMJf6t0ASpIkTJo0CTfccAM6deqkLB80aBA+//xz/Prrr3jzzTexd+9e3HzzzaiQn7i1mDdvHiIjI5VXYqJ7CwFBEARB1DY6vc7vF1G76CRJJfdcD3j88cfxww8/YPv27Wje3HnQa0ZGBpKSkrBy5UrceeedmmUqKirsBliFhYVITExEQUEBIiIiNOs0BKqy0wAAViNz4+jMzK2Vag5TylSY2Wnn4rV6sA/cldck1KbtxLWVuIu9USCzFQdms7x33gSMa2HOOAEAWJ3NgqbPXGQurEqVwrk6oFwNL8PfeSC6mivjWVA2D5RPl918eSWVDu2L29HaLterCgtmrrwyOeJe3V/O7EFX2n3n7j4eON9MFfR+LLsYAJBRUG5Xh/eBb4drYan7Iq7rJetkdW9qO+fhVfmsve2rAACmIRMd+ksQhI3CwkJERkbW6H8G38bvIwYgzBDkvoITiiur0OOrnxv8/1t9ol7EQHGeeOIJrFu3Dtu2bXM5eAKAhIQEJCUl4cSJE07LGI1GGI1Gp+sJgiAIgiB8oV4MoCRJwhNPPIE1a9Zgy5YtaNmypds6ubm5OHv2LBISEtyWvdwIKGKxYZb9LDi/uPf9AIDIAJs1Jc/KLBaNQ9glEGZglotWjVjYcUaxLeCcT4mP0DGLjb6IBUL7a3niBCa0AQB0BItR4+riBRW2PvDAclHOQCRAZcbm1hhRxoBbovJUy0QLlGh5Ult9uOWJW7t4X/i21X2bs+kfl+2eyS9z2AfRotWyMbPMpWaX2K1X94u/8zpbZJmHo1lFStm2scwa1b/fgw7bJAiibvFbB8qfRMSET9SLAdTjjz+OL774At999x3Cw8ORmclmj0VGRsJkMqG4uBgzZ87EXXfdhYSEBJw+fRrPP/88YmNjMXz48DruPUEQBEH4h9+pXEjGoNapFwOoRYsWAQD69u1rt3zp0qUYPXo0AgICcPjwYaxYsQL5+flISEhAv3798NVXXyE8PLwOekwQBEEQxOVMvRhAuYtjN5lM+Pnnn2upN5c+ejlxbzBP4FvG3ERHc2xB01fIrjoTmHtLn89cPvo8FuScHGwLPubtVWxZAwAI6ntfjfS7Y4J94ONROagaAILlpyuux8TdaNxlpeXaU3Sl5DptYpgrrEj+rnbLiS7CAA9mtHBXGq+bVWSfFBkAiuR1UbJieqlcJ1AI/gaAXDmovWMzdhy4XtXRdFmbSuM+idJrB50WCfsDAHnFrP0moUxLrYvEnJjGiGh4SulX8wAAISOe87gOQRDu0en10On9sED5UZfwjXoxgCIIgiCIyxl9gB56P9xw/tQlfIMGUJcBwSYTAKBbosl5oTCWhw3xVzgtYqwhy5MIt0RFGm0/CGmF9npf5TzQXLa0XCxnljQeIA7YlMd5UDq3PFVYHAPQudWIW4iMgfY/RmpLDrdycetRvhykXlbpaPXhVi5uBePbad7IZPcdAJpFs2XcosX7XSn0V21lM8g/mtzCxdvj79wqpu5LiiwTkRzF1Ncbwwv07Pjmf/i8sijqP3O9acGOi4ueBQA0evRVn9sgiAaBv+lYaABV69ARJwiCIIjLjHnz5uHaa69FeHg44uLiMGzYMBw/ftx9RUKBBlAEQRAEUcfo9H4mE/YyBmrr1q14/PHHsXv3bmzcuBFmsxm33XYbSkpKamgPGx7kwiPqLc2jwzQ/Azb1cms0CwyHnil6n6m0uSnPy+6rPNnFFhvCAueLZVdbsckWgM0DrENkbSeu8cTddFpB5VxlfPQXfwAAIuX284ptbrMA+UfNYmVut3w56S934WkFsnN4oLlJdkuGy4HzuRoK6iJ8PwpUGlhhchLkP9LyAQDtY9mxC5WTRQdW2oL29UUX2DIhOXTIv6exd82teg+57giCUdtB5OvXr7f7vnTpUsTFxWH//v246aabfO7H5QQNoAiCIAiigVBYWGj33dOMHAUFBQCA6GjPZ+Ve7tAAirgk4erlIuql5XLwdZMwZhnief/iwCxP6kBxXjY9j0k+cMtOpBycrZYb4Ez67ggAm2VHDOAGgEozq2cyBMrbtFct17IgiXnteDB5fmmV3KZjEPy5i2Wa7RaV2yxQvC+GQGad2iirlZcmsWDydjE2u1J4MJtUYN7/AwAgsNsdDtskCKL6YK44x1yentdn93diYqLd8hkzZmDmzJku60qShEmTJuGGG25Ap06dfO7D5QYNoAiCIAiijqkuJfKzZ8/aJRP2xPo0YcIEHDp0CNu3b/d5+56yY8cOdO/evUHkqaUgcoIgCIJoIERERNi93A1UnnjiCaxbtw6bN29G8+bNa7x/gwYNQnp6eo1vpzYgCxTRYEkMZ+6388WyerkcLF1pYe6taFUQeYDs3+MK59yN5iwJMAAkRLHA9WxBo6p5I5srLKPAPlkwd+VpKZ7zZU6TFMtuRu4yBGxB4rwO14XibZWp3JTRoeyHlGtSZeSXAwDSoth7uKrdJiHMrRcd3woAufIIoqbR6/XQ+xFE7m1dSZLwxBNPYM2aNdiyZQtatmzp87a93W5DgQZQBEEQBFHH1HYy4ccffxxffPEFvvvuO4SHhyMzMxMAEBkZCZPJhegyoUADKKLBEhXGLEGGAGZh4erl/xSx76fzbdYhHlDOLTkFcsA2t+QYAh1/nMSgca5IrrbkNA5nViouK1DqQhaBkytLKpTJSurcOqYEl5tsfeHWKJ4nT8kJKFuruLSCug98nRiMnq2SR+DSBqZGyexdx75bT+0DYMuPSBBE9VDbA6hFixYBAPr27Wu3fOnSpRg9erTP/XDHBx98gCZNmtRY+7UJDaAIgiAI4jKjrlxpI0eOrJPt1gQ0gCIIgiCIOkan81NIU0dzwmobGkARDZ4QE3OjlReV2i3X62xuNK61FCUHlnP1bx5wLaqEAzZ3WakQcM6TFgM2N1mg4LLT0pXicHcir8P7Fin3jbv2AFvQOO8v315MqMGurvgZsLnytp/MZXXCbO6+07ImVIfGTAG+Y+MWbDv5aQAA6fRBW0PFrL5UwVyjkpm5MvWh4QCAgE63ON1XgiAYte3CI/yHjjhBEARBEISXkAWKuGyIDmdWlevl9+D0fGXd33I8wPlCZkURLUT26uL2lpworlZewOos+tdVyrrbF++U27O3YHE1cHW7/DO3KvF2xcBzLSVyMSidW5uKVdYw3q4SeC5INGQUlDvsIw9gj5GtX8kBzEqlN19UykqBbJlUUsTqxMSzMq2vd+gnQRDakAXq0oMGUARBEARRx+gD9ND7MQjyp25t8M8//2DLli3IysqC1Wr/EPjSSy/VUa/8gwZQBEEQBEHUGB999BEeffRRxMbGIj4+HjpV/KlOp6MBFEFcakSbbJc/D5auklXKi4OY6ytSdncVqVx6p3NK7NrhGlHcNTZyxV5lnUnQf+Jwt1lYcJDDskqwpzO1S02N2h1YxqWbZL0nHkzOA9HzSmxPeqL6OX/nQekGjSfYKjnQPFPWpgqPiQMAxDdxVC32PQ0qQRA6vc6/WXgutOXqmtmzZ2POnDl45plnfKr/xx9/ICgoCJ07dwYAfPfdd1i6dCk6dOiAmTNnwmAwuGmhZqjfNj+CIAiCuAzgMVD+vOorFy9exL///W+f6z/yyCP4559/AACnTp3CPffcg5CQEHzzzTeYNm1adXXTa8gCRVy2rDuerXzm+ey4CjgPvuZWpfBglbp4BMspxwOtuWWHl8krsdlieHscJWedbCEqLq9S1nGL0BcPXgsAGP3FH3ZlxTx3rA/MepQlB79ztXGuQB4d6vhkpsggWHgbVrv2AZvF7HQuk344L1vDzhaEAgCuirdZ1Dom2DK/EwRBiPz73//Ghg0bMH78eJ/q//PPP7j66qsBAN988w1uuukmfPHFF9ixYwfuuecevP3229XXWS+gARRBEARB1DENeRZe69atMX36dOzevRudO3dGUFCQ3fqJEye6rC9JkhJ4/ssvv+D//u//AACJiYnIycmpmU57AA2gCIIgCKKOachK5B9++CHCwsKwdetWbN261W6dTqdzO4Dq3r07Zs+ejVtvvRVbt25V8vilpqbWaV49GkARlx3v7koFAEzoaQuE/s/XBwHYXGrcnVYgR2lz1W4AaCGrdPOAbU6BnEy4TZMwZVnHZsy9dSaHucK4+4y73opUCudcCfzRVX/a9YG/c7dihioJMncJGoVkx9ylF6VKJsz3jbsExaBydcJk3k/eP+6ePJ5VDADIU7kerWDtdE6IRG2Q/+HzAICo/8ytle0RlxZVe9cBAIKuHeJxndKv5gEA9JExyrLAxs1gLi51VqXa0QUEQB/g+1QMnR91a5rU1FS/6r/99tu47777sHbtWrzwwgto3bo1AGDVqlXo1atXdXTRJzwaQF1zzTVeNarT6bBu3To0a9bMp04RBEEQBNHw4EmM1VIG7ujSpQsOHz7ssHz+/PkIqMOBo0cDqIMHD2Ly5MkICwtzW1aSJLz66quoqKjwu3MEUROoLU+cglJmafpq9HX2Zb89BMBe6fvEBWaFSYgKtitbJiiGA8DUPuxJ6eWNxwEAL/VvZ1fnrk9+Vz6bDIF2feFq5fx7fimz+jSPDlHqnMtjT8g8V1+cHODOLU/qIHUztzgJCuRaKErssgGLb5tbojLzbRIL6/9hwfj5ZawPN7ayPcXXBIbI8Bptn6j/cCskAATJmQUCm7B8jUFJ7QEA1pQ9DvWkKva/VHGU3XeWEnYvl+cWAABCVWXNAMwlZagtGnIMFACsWLEC8+fPx4kTJwAAbdu2xdSpU/HAAw/43GZwcLD7QjWIxy68qVOnIi4uzqOyb775ps8dIgiCIIjLjYY8gFqwYAGmT5+OCRMmoHfv3pAkCTt27MD48eORk5ODp59+2qFOo0aNPLZS5eXlVXeXPcKjAVRqaioaN27scaPHjh1D06ZNfe4UQRAEQRANg3feeQeLFi3Cgw8+qCwbOnQoOnbsiJkzZ2oOoOpKmsAbPBpAJSUledVoYmKiT50hiJpg5+lcAECvZOeuJdF1x3n3ri5O6zy5hvnkuctOyyXGXXdcD4oHq+cWM1eCOvhbTDhcVM7dZkHyO2tfHezNt82DycXAc+4WFOsBWgHzVU7L8iD6rKIKh33lyxRtK3k/BrWv3tkxWW88CQCI6NC+WtslLh1Kv3kdABB27U3KMp1JdryZ2T1mLc5ny4OY/9lalK+UleQyx5b8BAAoymAuvPZ3d2frrTZ9M11gEHSB9vdkTaLT+zkLz4+6NU1GRoZmsHevXr2QkZGhWWfUqFE13S2/8WkWXn5+Pvbs2aOZFFA9wiQIgiAIwj0N2YXXunVrfP3113j++eftln/11Vdo06aNR22kpKRg6dKlSElJwcKFCxEXF4f169cjMTERHTt2rIluu8XrAdT333+P++67DyUlJQgPD3dICkgDKKK+YM5gwYq9kt3foA98tg8A8On93T1uf+HwznbfX/zpLwD21hke3M0VwrklJy6CBT8GqO4fi2Qf3B3J5QtkSxFXF1/0r6uUOsM+3g0AWPvQ9Zp9VOfls8gPOwHykyrPw8ctX0kxtuB03u98lVUKcLRMATYFc27JypEDzo9nFQIA2sV5r1Se89/Jtn6XM6uBqXEjAIC1rESzDtHw4TID+shYZdnfIW0BAG2tzJIhpTOrL7dESVW2aziwZScAwFUzngAAFO7dAQCIuvkOVrbCNjlCMldCH1B7MgYNmVmzZmHEiBHYtm0bevfuDZ1Oh+3bt2PTpk34+uuv3dbfunUrBg0ahN69e2Pbtm2YM2cO4uLicOjQIXz88cdYtWpVLeyFI14PWSdPnoyxY8eiqKgI+fn5uHjxovKqq0AugiAIgriU0el1/uXCq8fJhO+66y78/vvviI2Nxdq1a7F69WrExsZiz549GD58uNv6zz77LGbPno2NGzfaJQ7u168fdu3aVZNdd4nXFqj09HRMnDgRISEh7gsTBEEQBOGWhhwDBQDdunXDZ5995lPdw4cP44svvnBY3rhxY+Tm5vrbNZ/xegA1YMAA7Nu3D61ataqJ/hCEX3BFYQAISr4SAPBzIVPIHtDOuQyHN647Z0TLSuJcdRyw6TJxXaW4cPadu+l4Il8AeH0w8+PzQHNnfXvuh2PKZ+6644mHl41korfjVh4AYK9JxXWlxG3zQPMTF4qUsnyZqFbOXY5qZfZKsM88IXOxgbn//pTdfREGm9BdxE9vAQBC733Rbp8qflkKALCWs2MXoMqVZZVdjFWyJk9AMDvOPKA45N91l42dqF2CbxsHACj733vKMkMPpq22o4S599q2uQUAEJfPXPhVTWzaa1kV7FrVRTF9tuCOtwEAKuVrNaAsXykbkH8eemNxte/D5UJhYSEiIiKUz67g5ZwRFRWFjIwMtGxpr+F34MCBOhXs9mgAtW7dOuXzHXfcgalTp+LYsWOaSQGHDPFcPp8gCIIgCECnD4BO70cqFz/q1gSNGjVCRkYG4uLiEBUVpanpJEkSdDodLBaLRgs2Ro4ciWeeeQbffPMNdDodrFYrduzYgSlTptRp3LVO4rrqLtB7aBr05EDUJYWFhYiMjERBQYHbES9xaVK0YqbyOSiOaZEFD/yP23rOlMJd8cHvZwAAj/RgMh8Ld5wCAJzKsgU5c+VutaUJ0A7GzihgAaxL7ukKwBYAXiHX/XZsD4/7poU6oBxwlF2wl0fQ2y0TA8XtLFBmq926MCPb50D5+6juNlmTuFC2LkLPAnsDc1iOLMvZvwEAUgWzMlVdOKvUKTiZDgAICmWB96HNmCadPpwFlZv+73GX+000HKwn2aQJa0gjZVlKYAIAwCBfb7vOMlVxnquyT5ItR2NmCbNm7k1nZU7lsHuVq+cnRdqUrWNMASgsLETL5gk1+p/B/5cyls1CRIjvytqFpeVIGD2j3vy/bd26Fb1790ZgYKBDAmGRPn36uFxfVVWF0aNHY+XKlZAkCYGBgbBYLBg5ciSWLVtWZ+lcPLJAiVIFBEEQBEFUI3o9e/lTvx6hHhS1bNkSiYmJDlYoSZJw9uxZsaoDQUFB+Pzzz/HKK6/gjz/+gNVqRdeuXT2WQKgpvD7iK1as0MxzV1lZiRUrVvjUiXnz5uHaa69FeHg44uLiMGzYMBw/ftyujCRJmDlzJpo2bQqTyYS+ffvi6NGjPm2PIAiCIIjaoWXLlsjOznZYnpeX5xDXpMUvv/wCAGjVqhX+9a9/4e6771YGTx988EH1dtYLPHLhqQkICFD8mmpyc3MRFxfnkwtv4MCBuOeee3DttdfCbDbjhRdewOHDh3Hs2DGEhjKV2ddeew1z5szBsmXL0LZtW8yePRvbtm3D8ePHER7uWXJRcuE1HMzpTHNJX84Cn/VXaCuJA54pkTtj/taTAGxJgauLR1f9CQCICbVNyZ096Eqv2+HJiD1x7/GygU6mO6sDzvnn6FCjXRmunK4uy12MXMmcu/0SZHeI2jXIP0fIbr6eicwV0zqCtReUzpI3V57+W6ljzmYuPK4HFSTfuxQ8fvlg/nMDe09PAQAEdbSpWn+WEw0AyJf10gyCoKRF9RdXIGuU8UkdPEm2qMEGAB2bRaC8pAjPDri6Vlx4mZ/P9duFF3/f8/Xy/02v1+PChQsOKeHOnDmDDh06oKTEtbab0WjEhAkTMG/ePEXGIDs7G2PHjsWOHTvqdy48NTzoS+TcuXOIjIzUqOGe9evX231funQp4uLisH//ftx0002QJAlvv/02XnjhBdx5550AgOXLl6NJkyb44osv8Mgjj/i0XYIgCIKoF+gD2Muf+vWMSZMmAWDx0dOnT7eTP7JYLPj9999x9dVXu21n27ZteOCBB/DLL7/giy++wOnTpzF27Fh06NABf/75Z0113y0eD6C6du0KnU4HnU6HW265BYGBtqoWiwWpqakYOHBgtXSqoIAF+EVHsyeL1NRUZGZm4rbbblPKGI1G9OnTBzt37nQ6gKqoqLBzN7qbSklcOvAgUkskCxS3lLEA7LNFlUqZPzPZFOS/5en53AK18k9m0bjnKvfTX6vb8sTh6uIFpbb+TviWWV94/j0e9M0VyHlQrDpnHX9iFi1RWsrqPNg7UJYV4Pn/uDUsr9h2r3ALU3EFC7rlgeFmq2M+vubRJgBAgpU9PfOnex6Qz/cLAFrFMYvyBTl/3uEsdm46JrBzUdaiG2vfEKrU0YcyC7O1RJZZMNuOGdGwqcpOAwDoo1mgeEmrGwAAf16wWSxO5djrAPHrj1tGtXJUWgTHi5asyL7UPFSWkYyBPxw4wORUJEnC4cOH7UQwDQYDrrrqKkyZMsVtOz169MCBAwcwfvx4dOvWDVarFbNnz8bUqVM1DTq1hccDqGHDhgEADh48iAEDBiAsLExZZzAYkJycjLvuusvvDkmShEmTJuGGG25Ap05Mdj8zMxMA0KSJfXLSJk2a4MyZM07bmjdvHmbNmuV3nwiCIAiiRtHr/bRA1a8gcgDYvHkzAGDMmDFYuHChX67F48ePY+/evWjevDnOnz+Pv//+G6WlpUqYT13g8QBqxowZsFgsSEpKwoABA5CQkFAjHZowYQIOHTqE7du3O6zTiuB3Nfp87rnnFBMiwCxQiYmJTssTBEEQRF3QkJXIly5d6lf9V199FTNmzMB//vMfzJ8/HykpKbj//vvRpUsXfPbZZ+jZs2c19dQ7vIqBCggIwPjx4/HXX3/VSGeeeOIJrFu3Dtu2bUPz5s2V5fHx8QCYJUo9cMvKynKwSqkxGo0wGo1O1xOXHhVbPgcABLS+GgBQGMlmcGQWMLfOkSybyf2QrPXC9ZU4nrjuqptb32UPBL9MYC6Ic7JaefNYW0wAd91xuFuBv3PXXaXZNlEjKsRgV4crknPV8RHL9ijruCbVFw9ea1dHnZyYIyqZc90ng8bEXR6Yy/tpMtg/Rav368k1hwHYkiufzS+zK3tGPo8tY5KVZUEWtkwqYy48c06mQx+IS4/KnHMAAEMs+62vykxR1u0tjwIApOSx6y3tIvsdjwy5AAAIUg0WuMuuSHY3c1e3op6vmvAgToLg1yz/jeCJtQHmAqwqr7+6hpcae/fuxTfffIO0tDRUVtq74VevXu2y7sKFC7F27VoMGjQIANCxY0fs2bMHzz//PPr27aupDFAbeD1k7dy5M06dOlWtnZAkCRMmTMDq1avx66+/OkxrbNmyJeLj47Fx40ZlWWVlJbZu3YpevXqJzREEQRDEpYUuwBZI7stLV/+CyDkrV65E7969cezYMaxZswZVVVU4duwYfv31V48mnx0+fFgZPHGCgoIwf/58bNiwoaa67RavZ+HNmTMHU6ZMwSuvvIJu3bo5+B998XE+/vjj+OKLL/Ddd98hPDxciXmKjIyEyWSCTqfDU089hblz56JNmzZo06YN5s6di5CQEIwcOdLr7RGXLoHJLF+cJZjddDyomceEBqg8ur7IAlQ33AIU4EQ6IKvQ9uQ0+EOWVfz7/zBzNA/y5gHi/OnZPiiWWYbMQqBsTBh7Yo+PNCnLFg7v7LKvaqVy29O7MCU80HG6N7cm8cBybhGYs+kfu+VafeAyEZzUi8wiZZVs/W4tTxQwXMEsFfX3b4Lwhh8y2ZlM/YtZnrglEwDKKu2tjNy6pL5fONw6yi1PXKZDS+2/tFLbomS7dm3L8osqYC6vRctGA5yFx5k7dy7eeustPP744wgPD8fChQvRsmVLPPLIIx6FA8XGxjpd507FvCbxegDFZ9oNGTLELv7I05w2WixatAgA0LdvX7vlS5cuxejRowEA06ZNQ1lZGR577DFcvHgRPXr0wIYNGzzWgCIIgiAIovZJSUnBHXfcAYCF1pSUlECn0+Hpp5/GzTffrDnZ684778SyZcsQERGhyBc5w50LsKbwegDFo+qrE0+0PHU6HWbOnImZM2dW+/aJS4eA5KsBANYLLIdahBxCVCCbnu7q3LTW+9T71V8BAGb56fb3l/or67gV6Zb//mZXZ/NTN3ncPrfoaAlgckuRWYiXyipkMR1rH7reabvDPt5t14Yaceo3L2PUeKqvtLCE4twCwGOteBtlTp76AUeZiEHtWUzj8v229A5/yRaumwwsbiyqjMXBBBScBwDo2/Z22j5Rf+BimDvCrgEAXCyvsluvvk6yZJkLLp/BZT9KNe4FLvNRVsXWhRvtrz/19a3IFchWqwBhElKOysJVVWGBuaL2YqAachB5dHQ0iopYDGOzZs1w5MgRdO7cGfn5+SgtLdWsExkZqRhpfNWYrGm8HkDVpbmMIAiCIBokDdiFd+ONN2Ljxo3o3Lkz7r77bjz55JP49ddfsXHjRtxyyy2addQz9/ydxVdTeD2AAoD8/HwsWbIEf/31F3Q6HTp06ICxY8fW21EiQRAEQdRrGqAOFOfdd99FeTmzij/33HMICgrC9u3bceedd2L69Oket5OVlYXjx49Dp9Ohbdu2DinlahuvB1D79u3DgAEDYDKZcN1110GSJCxYsABz5szBhg0bcM0119REPwnCDn05U5WvCGcSF23i6k5MjaN23XH6vLkFALB1cl+f2/1xvP1MUy5VAAAWK3NFiK41UapAjTPXndptx9cFOnERquHulQ/vvhqAo1SBOph3xs8sx92sAe01+/biT44SKdFhzEWzTf7eK5H9aDYOYxG/9fdvg6jau075/GsEcyf/eCgDAHAml6mJt23C4lgjQ4KUstxVx5XwK12oinPXsbiOt6F1XXPXHf8eZWDbbhJly0V3qrACFpUyOeEbZrMZ33//PQYMGACA5cWbNm0apk3zPJdlYWEhHn/8caxcuVKJsw4ICMCIESPw3nvv1ZnxxuvfnqeffhpDhgzB6dOnsXr1aqxZswapqan4v//7Pzz11FM10EWCIAiCaNjoAgL8fnnDtm3bMHjwYDRt2hQ6nQ5r166tkf0KDAzEo48+6pdW00MPPYTff/8d//vf/5Cfn4+CggL873//w759+/Dwww9XY2+9wycL1EcffWSXCy8wMBDTpk1D9+7dXdQkiOrDLAsthoWYXBesBXY8e7PTdb5Ynm5fvBOAo+WJs2yko5WXC18uuaer2/Z5YDmXLeDWKi3LFqei3AxPEaUKJn13RPkcYnD9I68lPfHcD8cAABFycHCBHNgbY6KQgfrO0aa2yRIFuSxYmAd7F8vX1BFZ8JZPPgCAaFmGgwtbcgsot7SqrZpi3kaDIJapzh0p1uHWqehQZuXML3UsW2vo9f654bysW1JSgquuugpjxoypljRsruC57JKSknyq/8MPP+Dnn3/GDTfcoCwbMGAAPvroo2rLwesLXg+gIiIikJaWhvbt7U3wZ8+eJUkBgiAIgrgEGDRokIM4ZU3x2GOPYfLkyTh37pymfmSXLl2c1GTExMRouukiIyPRqFEjzTqHDh3SXO6KDh062BmH3OH1AGrEiBEYN24c3njjDfTq1Qs6nQ7bt2/H1KlTce+993rbHEEQBEEQ1TQLr7Cw0G5xfUhpNmLECADAxIkTlWU6nc5j/cgXX3wRkyZNwooVKxThzczMTEydOtVpEPrVV1+tbMMT9Ho9/vnnH7Rq1cqj8oAPA6g33ngDOp0ODz74IMxmZjINCgrCo48+ildffdXb5ghCIffdqQAAcymbrdFk2jtOyxrDGq77hrvuHvhsHwDg0/vdu8Y9cd2JiIHmWq5BER6ArtaX4grqzlgwtJPXfVMz744OAGzaUO2bsGwHBSUs8NegXY2oQ87kspyUS/fY9LyOyq668hLmJgsIlN1oZkeFfR4ALk500NJCE113PODcpi5ucz/nCErmgXKZ/FI2IaGoyLZeskqARtB6TaHTB0DnxwCK101MTLRbPmPGjDrXT0xNTfWr/qJFi3Dy5EkkJSWhRYsWAIC0tDQYjUZkZ2fjgw8+UMr+8YctFOH3339H48aN3bYvSRI6dfL+d8rrAZTBYMDChQsxb948pKSkQJIktG7dGiEhIe4rEwRBEARRY5w9e9YupVpdW58A4MyZM+jVq5eDe8xsNmPnzp1uY6OGDRvm9Tb79OmD1q1bIyoqyqPyN910E0wm72JqfdKBAoCQkBB07uw6txZBeENYe2ZpMN46xmFdlaw8HtSkpcO6+gwPzHZm3eEWHcBm1eHL3AVc1wW8jzw/H2DL3VfTjOpm/2SdXcosC5F1r2BByHAZihMXmOq0OkejSb6eq2SLkcXM1lmtzNpktdgmLlQGMMuQKdj+L0pR3lepllcKUgONw5kUAbdMqQPDK+VlklzFYmDbqeByCWU2a5W5ygKLufaUyKHzM4hcx+pGRET4lJO2JunXrx8yMjIcdJsKCgrQr18/ty68GTNmeL1Nb7Om/Pjjj15vw+sBVElJCV599VVs2rQJWVlZsAqzdU6dOuV1JwiCIAjicqa6XHj1ER7rJJKbm+sQUH4p4fUA6qGHHsLWrVvxwAMPICEhQfOgEARBEARRfykuLsbJkyeV76mpqTh48CCio6OVOCN/4UmAdTodRo8ebedOtFgsOHToEHr10pZrqS7++usv7N69Gz179kT79u3x999/Y+HChaioqMD999+Pm292LkPjDq8HUD/99BN++OEH9O5NCTyJ6kV03Vn/2aF8DrpEE8a6C8zWSvbrKgFwXcO1o74d28PjOlyZHLC5YPwNLAeAPedYUHLrxiSfUlcs+C0FAHDgzEUAtuDvMg0V8HJZj4m77mSPk82dZhewzRaK7jkxQBxQqYvL7+cultq1Z1a1ERhkb6XhM7QkK++TzSCgD9RDMteizn0tp3LZt28f+vXrp3yfNGkSAGDUqFFYtmyZ7/1QwaUHJElCeHi4XYyRwWDA9ddfX6NCmOvXr8fQoUMRFhaG0tJSrFmzBg8++CCuuuoqSJKEAQMG4Oeff/Z5EOX1AKpRo0aIjo72aWMEQRAEQWhQy0Kaffv29XiKv6/wJMDJycmYMmVKrbvrXn75ZUydOhWzZ8/GypUrMXLkSDz66KOYM2cOAOCFF17Aq6++6vMASid5eQQ/++wzfPfdd1i+fPklN/OusLAQkZGRKCgoqHdBdg2dimJmLQhMO2BbKD9tBbS/UbOO5fRB5XNA8tU11TXiEudkdpHymaxRtQNXh+f57HigNrf68KBsNTyvnNXCygQG2f/hW1UWKF6Gh4hwyQNuQTKqJlhwyxO3SuUXV9q1G6hhrSqVrWFiCIq5yhbMrNfrYC4vwc4X/69G/zP4/1Leru8QEeb7AKOwuATRPYfS/5uKyMhI7N+/H61bt4bVaoXRaMTvv/+u5Ow9cuQIbr31VmRmZvrUvtcWqDfffBMpKSlo0qQJkpOTERQUZLdercFAEARBEMTlzYULFzBlyhRl8plot9Gahcddip6wYMECt2X0ej2Cg4PtZA3Cw8NRUFDg8XZEvB5A+aLHQBAEQRCEC6pJibw+Mnr0aKSlpWH69OkeTz47cOCA3ff9+/fDYrGgXbt2AIB//vkHAQEB6Natm9M2kpOTcfLkSbRu3RoAsGvXLrsA+bNnzyrK5r7g9QDKUz2GL7/8EkOGDLmkpygS/lOZnwUAsBiZSdnYoa+yLq+IBXvyiLpjmSwFQYd4VpbcdoQnXCzzPNEx4TsvbzyufP4rwz5diEVQ7A6QdZx0GsrhAYHaZapUbj8eWM4DzbnrTicEjKspEBIBBwpJhdUY5cTUXJuK999itf0lmgwBqCqzOtStMRrwAGr79u347bffcPXVV3tcR63jtGDBAoSHh2P58uVK7ruLFy9izJgxuPFG7RAQAHj00UftrFui2vhPP/1Uu7PwPOWRRx5Bjx49vMorQxAEQRBEwyIxMdGvgPU333wTGzZssEsc3KhRI8yePRu33XYbJk+erFlv/PjxLtvlweS+UmMDqJqO7icuDawGZoFMK2SBnb8fy1bWZRWzvFP8CdEkP2VyCxRRvXCV6NmDrqzjnrhnwre2TOrv3uU6U/u1LbSzsRP+wS3CPxxnVmSeyw4AwmWFcC4roGXlAYDicpV1UJQQ4AHnckC30WSLp9UHyO3KVqSYMIPddkpVSuRFsuWJW6d4gLlBwwIl9pe/N2/EJkRlFJQpZS1WycGyVpPo9Hro/JiF50/dmubtt9/Gs88+iw8++ADJycle1y8sLMSFCxfQsWNHu+VZWVkoKipyUkub6vSO1dgAiiAIgiAID9H56cLT1V8X3ogRI1BaWoorrrgCISEhDpPP8vLyXNYfPnw4xowZgzfffBPXX8908nbv3o2pU6cqYp2eUp3eMRpAEQRBEARRY7z99tt+1V+8eDGmTJmC+++/H1VVzOIYGBiIcePGYf78+V61VZ3eMRpAETVCaVk5ACAkhJlJv9/LUgZomcT5MjtzP1Ht1GfXHVc4/+LBa/1qp7iUuWDCQrzLqk7Y4K67M/nsWHJV8egwWxoOviwsmFk9uPs9u4jd92at+1xQFddzl5vsujOptJ1CZJedSIXchvp3hLvsRD0oLXgZ3n/u0stAmUPZSrMVVeZaDCLX6WxR877Wr6eMGjXKr/ohISF4//33MX/+fKSkpECSJLRu3brOJ6nVX6cpQRAEQVwu6PT+v+oxKSkpePHFF3HvvfciK4vF1a1fvx5Hjx71uI2MjAxkZGSgbdu2CA0N9cma9NNPP6Fp06Ze19OixixQSUlJDn5O4tKmfP2HAIDggf9xWzbEFAwAeHdXKgBtyxPn2X5tqqF3REPCXeC4M8jy5D+FspzAn7JUQVYhm+yhdQ9Xmu1z3nHrT6mgTA7YLE482FsS6qiDvbkFy8jbq3QUWuTYJAi039UWKW5xqpTb43/AvGxYMDllaoKtW7di0KBB6N27N7Zt24Y5c+YgLi4Ohw4dwscff4xVq1a5rJ+bm4u7774bmzdvhk6nw4kTJ9CqVSs89NBDiIqKwptvvulxX2644QZ/d0fB6yHr2bNnce7cOeX7nj178NRTT+HDDz+0K3fkyBEkJib630OCIAiCaOBIOr3fr/rKs88+i9mzZ2Pjxo0wGGzu2X79+mHXrl1u6z/99NMICgpCWlqaXQq5ESNGYP369W7r5+bm4vHHH0eHDh0QGxuL6Ohou5eveD3cHjlyJP7zn//ggQceQGZmJvr374+OHTvis88+Q2ZmJl566SWfO0MQBEEQlyX+uuHq8QDq8OHD+OKLLxyWN27cGLm5uW7rb9iwAT///DOaN29ut7xNmzY4c+aM2/r3338/UlJSMG7cODRp0sQjJXRP8HoAdeTIEVx33XUAgK+//hqdOnXCjh07sGHDBowfP54GUA0YT1x3P/19AQAwqH0TALZgTW4if+GWtjXUO+JSxt/gccJ/zuUVAwAOCK477gKzaMSb8Pu6tFKeGeVEDwqwue54wl7+J1YhBHQDjgrhoiuvzIVLj7sClckpKoVyAw84FwLNtQLPw4MDUSXVojSATudfIHg9DiKPiopCRkYGWrZsabf8wIEDaNasmdv6JSUldpYnTk5ODoxGo0YNe7Zv347t27fjqquu8rzTHuD1kLWqqkrp8C+//IIhQ4YAANq3b4+MjIxq7RxBEARBEJc2I0eOxDPPPIPMzEzodDpYrVbs2LEDU6ZMwYMPPui2/k033YQVK1Yo33kb8+fPR79+/dzWb9++PcrKHGda+ovXFqiOHTti8eLFuOOOO7Bx40a88sorAIDz588jJiam2jtI1D1VWacBAEFxyQCAInmqeE4pCzZtGRuulOWWJ87UPq1rvoMEQXjEmVxmZTqdz+QG0grKlXXZJczidOgsUxy3WJlFyGRgfxOGANvztk0ywN5SVOHBtH/RfWKV66qf5kWlcB5Uzi1P6oBzUQVd/G61WFXr7HPg8bLc+mUMtN9HqwuLWrWj17OXP/XrKXPmzMHo0aPRrFkzSJKEDh06wGKxYOTIkXjxxRfd1p8/fz769u2Lffv2obKyEtOmTcPRo0eRl5eHHTt2uK3//vvv49lnn8VLL72ETp06OUxwi4jwLfuF1wOo1157DcOHD8f8+fMxatQoxSS2bt06xbVHEARBEITn+BsIXp+DyIOCgvD555/jlVdewR9//AGr1YquXbuiTRvPZmB36NABhw4dwqJFixAQEICSkhLceeedePzxx5GQkOC2flRUFAoKChwSB0uSBJ1OZ5dw2Bu8HkD17dsXOTk5KCwstEvs95///EfTR0kQBEEQBNGqVSufU6jEx8dj1qxZPtW97777YDAY8MUXX9RtEDnARm379+9HSkoKRo4cifDwcBgMBhpAXcJkFpQAAOIjHZVdueuOEy5r7YR7cLq3puQAAPLkhKFpqmSdZ3JKAQALhnbyur+cG+dvBgD8NtW9H7ymeO6HYwCAeXd0cFrmUkrkWxc8uupPADZX0Id3X+1x3W8Pn1c+39W5egTyGhqWM+z4vsoE3xV3XKbqfgwLZm6NovIqaBEQbHN7hBnZX0dZFQ/qFrbnQRJeHsjN9aACNfSa1OrkgCrxuGo5d7txN1+l4EYMVCUxtghlxIBzNSZDIALMtagL1YBn4f3rX/9C9+7d8eyzz9otnz9/Pvbs2YNvvvnGbRv5+fnYs2cPsrKyYLXan2N3cVRHjhzBgQMH0K5dO+877wKvr44zZ85g4MCBSEtLQ0VFBfr374/w8HC8/vrrKC8vx+LFi6u1gwRBEATR4GnAA6itW7dixowZDssHDhyIN954w23977//Hvfddx9KSkoQHh5uZ0HS6XRuB1Ddu3fH2bNn634A9eSTT6J79+74888/7YLGhw8fjoceeqhaO0dUL5W7vlU+61qzaeNWUyQAILaYPcVb0pkMgS7Q9rSpb9vbZbt/XyhUPlfJT3IB8gV+RSOmSF4kB3+GG22XXIyTfFfeUJeWJ44ryxPncrY8zfj5b+XzrAHtNcss+heLpZzw7SEAwKTvjjiUcWapDAqov38ctYl5/w8AgMpTttQYIf+eBgCoiGN/HNcmsxQa+bJFuLjCln+yWLY8ceuMwYUKeIAcsMwDzbklh1uDQgyO0/95gLloIeLWH3XwN982b4/X5UrhgRplnf2aqLdn5n3ggeuCOro6CN5gtqDSx9gYwp7i4mI7AU1OUFAQCgsLNWrYM3nyZIwdOxZz5871ydP1xBNP4Mknn8TUqVPRuXNnhyDyLl18y3zg9QBq+/bt2LFjh8PBSEpKQnp6uk+dIAiCIIjLmgZsgerUqRO++uorB53IlStXokMH9w+g6enpmDhxos9hQiNGjAAAjB07Vlmm0+lqP4jcarVqbuzcuXMIDw/XqEEQBEEQhCsknc7PWXj1V0hz+vTpuOuuu5CSkqLMhNu0aRO+/PJLj+KfBgwYgH379vkcgJ6amupTPXd4PYDq378/3n77bSX3nU6nQ3FxMWbMmIHbb7+92jtIVB+Gnncpny3HtgAArC26AgAkAwset15kJv6ARnFO26kozLP7Hh8arHzel8GC0dvHsEDzOGs+AODWZObu3ZBaoJTNKqrweh8uBXhANGBzTfkCd305c3tdKrjq/3++PgjAMWicBycDgClIWw2aAvMZFSVFAID9MdcDAH7Msv3JZKw8AMDmJhMDxNWK3pWCmyxcDhrnCYPtXW/ss1lI3Mtdd1wfSq3wHSm7yURXoRailpOocK5eL2pQKWU11MWVYHH5nbvuLHLd4nKbSzNAr0NVpXtdK8I9Q4YMwdq1azF37lysWrUKJpMJXbp0wS+//II+ffq4rX/HHXdg6tSpOHbsmKYLjgt6OyMpKcmv/jvD6wHUW2+9hX79+qFDhw4oLy/HyJEjceLECcTGxuLLL7+siT4SBEEQRMOmAbvwADYIuuOOO3yq+/DDDwMAXn75ZYd1/rjg/MXrAVTTpk1x8OBBfPnll4og1rhx43DffffBZDL53JFt27Zh/vz52L9/PzIyMrBmzRoMGzZMWT969GgsX77crk6PHj2we/dun7fZUPn1ZDYA4ObWjQEAN7zGpvq3ToxUyrw5mIme/nyCWZNaRYcBABq1GejYYBYL8gviT5CV7OmybSMWBxdanK0UDTOwdsrMco6sEJbpOu0im+esV5mZW0Sx64VbWvjTMH+q9UfeoCbp+9ZWAEDbZux4itaTI6k2C50nEgfOcGa5mbPpH+VzbecWfHnjcQCOFgJf+8KtS9xqxycfeGK5u9wtT5z/nWIWqAPnmHU3Q6Uuzq1H3PLCrUr5pZV2ywGbnIBoGeLWJN6WJyhyAxoSAmGKZctqt1zrmhL77ywQXY0oSaD+rljE5Hfejl5RVq/DQUgDzoXHqays1JQhaNGihct6Yvn6gk8iFyaTCWPHjrULyPKXkpISXHXVVRgzZgzuuusuzTIDBw7E0qVLle9aUf0EQRAEccnRgC1QJ06cwNixY7Fz50675f4Gcdc1Pg2gPv30U3zwwQc4deoUdu3ahaSkJLz11lto1aoVhg4d6lNHBg0ahEGDBrksYzQaER8f71P7BEEQBEHUPqNHj0ZgYCD+97//ISEhwScl8E2bNmHTpk2aFqxPPvmkurrqFV4PoBYtWoSXXnoJTz31FGbPnq2MHBs1aoS3337b5wGUJ2zZsgVxcXGIiopCnz59MGfOHMTFuQh2rqhARYUtUNkTvYn6TkUxM9NftNhO3bFspuh9VjbdF1WyQMg9Z/MBALddw9SZeXAoAPwou+4qZBP57+fy7bajNpEHKMGfrF1u5jZ1ZIPZJFUSy7hQZp6/WGaRv7NtFst9ilTpQMWGsLJXxbNEjt//fcFuO/WVLU+zoMdhH2u7j/3VplLrJgE2Vx53n73U3zcxOF6fnz/u2nDleuPuQl6Wb1vtRuTXCu83L+vKxcbLGgWXycLhnQEAT6457LDMGVw7CgDevcs3PZdLmZxSFpTN9ZrUbiiuGC7qMuUWs99Fs+o+t8hJd4uK7O+/BNnVzl15gE3/yZm7zJXCt0UIPNdym/F+F1fo5H1j/RUVxNWUCr8bRnmf1b97/Djky8eMr9NKUlzbNORceAcPHsT+/fvRvr1vE2JmzZqFl19+Gd27d/d5AMYpLi52GIDVWjLhd955Bx999BGGDRuGV199VVnevXt3TJkyxadOeMKgQYPw73//G0lJSUhNTcX06dNx8803Y//+/TAajZp15s2b53PuHIIgCIKoNXR6QN8wXXgdOnRATk6Oz/UXL16MZcuW4YEHHvCpfmpqKiZMmIAtW7agvNwWI1jrOlCpqano2rWrw3Kj0YiSkhKfOuEJXAgLYKJc3bt3R1JSEn744QfceeedmnWee+45TJo0SfleWFiIxMTEGutjdVJcynJU5ZezE3uhhD1dZchPjhWqgM5zheyCKBCeqtrEMmmCbw8wgdN7utv2vU8SC4DOK2PtplxkbWTJ7Vepnhz5Mv7EyJ/WPpPbvbaFLal0Qhhbl1XC6oQa2E3dLJwNciONtpvcIjycDu/YBACw/oTvN1ptME6eGh4VUjMxeNzixK00amuP1nfA9uSckc/Oo5bVhluPuCWKw7ejtjryoHdunRKtYp4EjLsKoBctFdwSxS1P7qxOarSsBot2nwYAdGjMJjX0uSLW4/YuNRqZ7Kd0R6m+55awYPFzF5mVmh9nbvUpVMlFWHlOOjnwu0y26PCA87gIm1wJz30XoLcP7rb9RrC66vx5ohyFGESuDlIXrVTi9aK2qBmEgHDRsqW+T4sFGQde1iyorxPVy2uvvYZp06Zh7ty5mjIE7ixAlZWV6NWrl8/bv++++wAwV1+dJhNu2bIlDh486KCr8NNPP3mkKFpdJCQkICkpCSdOnHBaxmg0OrVOEQRBEES9oQEHkd96660AgFtuucVuuacWoIceeghffPEFpk+f7tP2Dx06hP3799d9LrypU6fi8ccfR3l5OSRJwp49e/Dll19i3rx5+Pjjj6u1c67Izc3F2bNnkZCQUGvbJAiCIIgaoQEPoDZv3uxX/fLycnz44Yf45Zdf0KVLFwcL1oIFC1zWv/baa+tHMuExY8bAbDZj2rRpKC0txciRI9GsWTMsXLgQ99xzj88dKS4uxsmTJ5XvqampOHjwIKKjoxEdHY2ZM2firrvuQkJCAk6fPo3nn38esbGxGD58uM/brC+Y05misjk6WVmWKbvsTuQy0/tf2cUAtAMvxQBI/s5de12TmIstIcxmjQsGaz9MNoVzL0hmsX2wpvozfxfN9btP23SPHujWDACQXiQrH1ewviVHsAteX2lz80p6dvlJAWxdSAQztfdoHgUA+OLAOaUsdymO6sbckPO3nrTbd5O8H1P7tFbqcFcXP1bqdf4QE8r6qQ5OrU5EhW3RfaZ2WXFXGnfLRcmB+TwZr1pLi7cjurwUzR6NBLDitkX3H+DoZuHXCdfz4q48wNGdJ16znGnfH3UoI9blKuZaPHp9MgDg60PnnZZpKNzSMgoAcEZ206knYRgC7CcM8OBpjk513PkvSoB8v3BdKN5eVIgq0a4yEcF5UDdg/zvCE4mHyNcor5Mnu/vVQeoc3j532fE6YSrXIN8Gv375bwJfnlVoi3nhiEHuOo3r0GKVNIPgCe/xRG3cFYcOHcLVV18NADhyxD7RuCfuuI8//hjjx49Heno6OnXqVDfJhM1mMz7//HMMHjwYDz/8MHJycmC1Wl3OhPOUffv2oV8/2+wlHrs0atQoLFq0CIcPH8aKFSuQn5+PhIQE9OvXD1999RXl3yMIgiAufRqwBQoA8vPzsWTJEvz111/Q6XTo0KEDxo4di8jISLd1/bVgZWdnIyUlBWPGjFGW1Xoy4cDAQDz66KP46y/2hBwbW32BmX379oUkOR/t//zzz9W2rfqC5SwLmLVGMDdkvirvEn96z5KDQDmipICaWNnCVCgHSoqBl+dUT2JxoWzgGRUsB2UG2T+9aT1R8mX8yY7nKysosz3VrjnKpAgmGVig9bYgNijWlzP5BSnAFtAZUMTKWiKZzMLOc+wJuqkccJ7cyKZsHyU/cXKVdW5N4pYoLWVi8UnUF7jFRZ0zjFuefJET8CR/G1/HrTCvD+5oV1cNt7KJ54ZbotSIZTjcmqA+586sXlrT08V1/D232P7aBWzWKJsqdaBdn7T2la/jx6NUOK9a1+q7u1jyUG51/e1ULgDgxlYxDmUvdU7ns+OsdX6LK9jvBA8ezxfyT1o07g1zlf2fSaBclweGq7fFzwU/n6IshZpSJ5by6FDHONVKi72V2yRPRlEsaqr/Ch587sySqmVFUn7DhN9R9X0OAOZK3/5YfaEhJxPet28fBgwYAJPJhOuuuw6SJGHBggWYM2cONmzYgGuuuaZGtz927Fh07doVX375Zd0Gkffo0QMHDhyoseR8BEEQBEE0HJ5++mkMGTIEH330EQID2bDDbDbjoYcewlNPPYVt27Y51LnzzjuxbNkyREREOJ1pz1m9erXL9WfOnMG6devQunX1hHFwvB5APfbYY5g8eTLOnTuHbt26ITQ01G69r75EgiAIgrhsacAuvH379tkNngDm0Zo2bRq6d++uWScyMlKxFHni5nPFzTffjD///LPuB1Bcj2nixInKsurwJTY0uHsuINFRz8Zy+iAAwBrM3GgFuhAAQG6JzZz8RwZTTc+Q3W6uEmRyLsp6LQmyXgvXb+Km7VQ5yBSwBYt3imN9iBQCol2ZvUXzulq/hbsWK3oMBgD0lrctVbJt60svKmWtocydYtEzd1NwIOs/33RCmM3dx3WqkiJtWjQAECe7aEqrHK877jIIl/eNu/tE9596GefVzUwew5l2kqdwl5UzfRl1u2KwPndncW0kvh9qDSbeT2cJWdXt833hfRJdKWr3hbP+igHj6vrOApXLVOeGf+ZJg50FkWu55fjkBVFtXK1azj8nRLHrpNTIri1+fZzLK1bKNpcTaF/qtI1h98DGk44uTVtgtb2rqkqe3KHlyuBuPb0Lty3HmctOdLOq2xFdeUYNF7LRKi/TaV8fZRW2a6pUcLPx9io03JMOrmj5+Di7f6y1qUzegJMJR0REIC0tzUGJ/OzZs07jmNV5b9WffWHw4MF4+umncfjwYU0dqiFDhvjUrk9CmgRBEARBVCMN2AI1YsQIjBs3Dm+88QZ69eoFnU6H7du3Y+rUqbj33ns9bicrKwvHjx+HTqdD27ZtPZ7ANn78eADAyy+/7LCuVpXIKfbJNfwJNzCiFQDActE2bT+AX9+N2gAAggPYE8NXh1kwdYHqyd1ZTilXliFFjVq2WvHvMbIS75k8mwWKW4r+lIMx20SH2tXRat8s9EErHxZXPv7icBYA4OFYtm/85lYHSZq5BUruQ/MI9iTN40MNAY592X2OBaO3kS1n+XLAvKscVmJwrZY1iQdjc+sO3yct1W++jrfD29dS5xbPH/+untrvDJ7jTcxdpw6wFgPARRVztVWJT/vngbg80FyUQnDVf62AfHHfuIq4OkedQx35JItWQr5v6muK76NZ49pX19XqN8/BaJW3F6JSwzYFsXZjwkOc9vNSIDyETbbg93SkagKBeN6ydOy3IcjoKBkgWqPC5Ha4hIDJYDvOtnvK/o+HbyfQiSwAYLNCcmVyvlx9Hrn1SLSEalm9tbal9V29LFBYp2W1Ki432+UKbKi8//77mD9/PjIyMtCxY0e8/fbbuPHGG6t1G2+88QZ0Oh0efPBBmM3sOg0KCsKjjz5qlxLOGYWFhXj88cexcuVKZbATEBCAESNG4L333nPr4hNz31UXXg+g1q1bp7lcp9MhODgYrVu3RsuWLf3uGEEQBEFcLtRFMuGvvvoKTz31FN5//3307t0bH3zwAQYNGoRjx46hRYsWPvdFxGAwYOHChZg3bx5SUlIgSRJat26NkBDPHl4eeughHDx4EP/73//Qs2dP6HQ67Ny5E08++SQefvhhfP3119XWV2/wegA1bNgwJeZJjToO6oYbbsDatWvRqFEjJ60QBEEQBKFQBy68BQsWYNy4cXjooYcAAG+//TZ+/vlnLFq0CPPmzfO9LwIFBQWwWCyIjo5G5862uOC8vDwEBga6zYX3ww8/4Oeff8YNN9ygLBswYAA++ugjDBw40KM+lJSUYOvWrUhLS0Nlpb3Eijqm2xu8HkBt3LgRL7zwAubMmYPrrrsOALBnzx68+OKLmD59OiIjI/HII49gypQpWLJkiU+dqu+czC5SPmcUsRNRJZsIi2WXxMlc5rpTJ9DkpusIWZE3R9B40nKPiIHFWkG33OwcIG+bm715AGmuHFx+jazwDQBHMlmQevtYFkgbKfeJ17FTM5bb4yZ2bv4+pwpK53ATe44cpL7K1BwA0CmObadpmGoWhtyOVXDZ8bG52sx+a5vGAICFO07ZbS89jyVdzpL1bSZl2VymXIWbu7N4387I6u7qY9hcpTnlDmdBtdwFphVgzeHrKgRXB2BzUTlzSXAlbq4yrtWu6ALjgeiAo0uQn2tRsV1dX7wmtVzIojo+d0/yYG+1K69MI9gfsLnyRMVpNSEaSumAvaaWeK65Rhmf+KDWgTqVw+7jmAaixcs1tXhCabt18v3dKp7trE07Se9QxtkEAvW1oEwG0Nsrkttcyo6B4fwzdyGL51jdPr8HHMMGuLvY1keuEWVTRbfvv9otJ16/YhC82F+pNoPIq4nCwkK7785ywlZWVmL//v149tln7Zbfdttt2LlzZ7X26Z577sHgwYPx2GOP2S3/+uuvsW7dOvz4448u68fExGi66SIjIz0y1Bw4cAC33347SktLUVJSgujoaOTk5CAkJARxcXE+D6C8HrI++eSTWLBgAW655RaEh4cjPDwct9xyC9544w1MnToVvXv3xttvv42NGzf61CGCIAiCuNxgQpr+vQAgMTERkZGRysuZJSknJwcWiwVNmjSxW96kSRNkZmZW6779/vvvdplGOH379sXvv//utv6LL76ISZMmISMjQ1mWmZmJqVOnepRg+Omnn8bgwYORl5cHk8mE3bt348yZM+jWrRveeOMN73ZGhdcWqJSUFE1zW0REBE6dYtaBNm3aICcnx+dO1QVFpWXK50oLe0oplKfK8mcW/r1c9UTDLU8FssXmohzUnF3ILCLqfGn86YxbnsSnKnXAr9YUXEClKKxS/+ZPdOL0YN4utyatO2y7+AZ1YDdNq0ZsurdJbjchnH3fl2eTGzAJVgH+VMiDSrWsEnybJ+Qcfhfl/nZobJs6HhfGglSDeECqfNx5LGuo6ulwawq7nvgx4gHRfHo274s699vHe87Y1eH9PicH0xerntRNV7LZHNyKJAZue6LMznFlgeLt8jqlGtIBvA63uPBrQT1dn1MkH+cQYTo2t1apA8P51H5xO1rXn9h/cZ36+uNTzXm7Ys46teVIaa9KO/hYa0o7JzmGxUss+C0FADDpxiscykTL0hfBcl61R3o4n/TSKraBmJ5kFOtxhWOWAn58uZWGq3+rLTCiqrgYcK22l4v3PM9jJ1qZ7PpgsbeiuzrXvH1+z/K6xfLvq/qec2X1EhHX8XsrSp5oo5Z7MBkCUGXRtnrWBJJks777Wh9g0gDq/2gt65MacfIAD8WpTioqKpTgcTVVVVUoKyvTqAF07drVrh8nTpxAUlKSEpuVlpYGo9GI7OxsPPLIIy63f/DgQXzwwQcICAhAQEAAKioq0KpVK7z++usYNWqUW6FOZ3g9gOrWrRumTp2KFStWoHFj5lbJzs7GtGnTcO211wJgO9q8eXOfOkQQBEEQhG9ERES4jSkCWCq2gIAAB2tTVlaWg1XKX6699lp8+OGHeOedd+yWL168GN26ddOsM2zYsGrbflBQkDIYa9KkCdLS0nDllVciMjISaWlpPrfr9QBqyZIlGDp0KJo3b47ExETodDqkpaWhVatW+O677wAAxcXFHpnVCIIgCIJgUhtWP0xQ3tY1GAzo1q0bNm7ciOHDhyvLN27ciKFDh/rcDy3mzJmDW2+9FX/++SduueUWAMCmTZuwd+9ebNiwQbPOjBkzqm37Xbt2xb59+9C2bVv069cPL730EnJycvDpp5/aBbV7i9cDqHbt2uGvv/7Czz//jH/++QeSJKF9+/bo378/9LIJtTpHjjVFWbl9oGV2qc28mCknQS2tYubdKtl8LKp1A0AT2RReJbuf0otYu9x1pw7IdObqEV1MgKOLg5vEuclZHZzO4a4SMQi0W2IUAOC2G20uC30lC7Y+Xibvo7ztaxJYmYwi2/Epc5IwVDHXawSdcheP6BYoV+m3tIg02e1rWn6ZXdkrYm1pgi7IQelcK8uWjJa5AaNM7F0rCS3XxeF1K+S+GU2O7lUxeNqVCjPHmWaXVjuujpnYnoiWayJQ2CYvw4OptVSpRTcL12TS6rcYIF6kkcSau1dEeHC6Orkr/xxu1Va+5+4/rcTJJfJ1ws+1Ftx1zvdRTLasdqlP6MnkVnKLmEv3UteD0kqenV9qn2g4Qb7n+IQQrXPj7HpWu5stgq6OQU7Rwa8p0f3MKrE30cWoNTmA1+NluWtNVB0HACiaUexrpdm5Zp74G2YR3PrifVlVizpQEmzhIr7W95ZJkybhgQceQPfu3dGzZ098+OGHSEtLU4Qnq4vevXtj165dmD9/Pr7++muYTCZ06dIFS5YsQZs2bap1W1rMnTsXRUVs0sgrr7yCUaNG4dFHH0Xr1q39Ujn3egAFMJ/pwIED0bdvXxiNxmr3lxIEQRAEUbOMGDECubm5ePnll5GRkYFOnTrhxx9/rBHB7Kuvvhqff/55tbfrDkmS0LhxY3TsyGYkN27c2O2sP0/RSaKgkxusVivmzJmDxYsX48KFC/jnn3/QqlUrTJ8+HcnJyRg3bly1dKwmKCwsRGRkJAoKCnCxiudaYuvyym1PNmkFslqv/ASWKOdfy5UtGOEqFd882ZpxVq5zKsc2jR5wHVAsluFT8dVlRUuAYkVQDVq5onSY8FTJJQquimeWHINq+5Vye8ey2ZNXsPzkFS0/3Ueq9rFEtsSt+5upi3NLjpbsQoXQXzEgWusYcKtGZgGzQGXI0gR6VdlweR9byUHovD1et2+bWLZ9lTWEn79D59m03nMXWbvHTuU5tB8fx45RUgx758dUtMCo90GcBOBKhkKsa9J46uaB92ahPVFpW0ulW6ufWt8Bm6WCB1xzpXquYK/Vb94+P9521ir5mHPLUJiQs8+VmrszhX21NIGokM73iV+HbZrYJiaM7c4CTLkFS9x/9fXXpjG/P9h7uzj3cSP1GS5vobbwZMhW3YQoZnmKC2cWc7VaOceZ5ZNfLxkFtusjt7jCrgwPwuaWca3JAjZJFlmJXDYZcfkE9fa5VVSsI2ZFABxVxfm2xd8iLcTfV1E53VxWgl+nDEBBQYFHcUW+wP+X0s5n+rWNwsJCtGgaX6N9vRSxWq0IDg7G0aNHq93a5bWMwezZs7Fs2TK8/vrrMBhsyV47d+6Mjz/+uFo7RxAEQRCXA5Ik+f0iHNHr9WjTpg1yc3OrvW2vXXgrVqzAhx9+iFtuucXOT9qlSxf8/fff1dq5mmL5vjQYQlmszwX5qbtxuG2qpyh4mSXLDrSXY3LUU3S5fMG5fPupmFqWFnEquDilXd0uf6pXpugKWcnVcQPx8vT0aDkeKFBup5NsVeHyAEGqPvGYr3D5KTAimLUXJj9BJkTZ4o84kxrbT/te+Wc6ACCn1DbBOU+OHxPjprjlQv10zOMOeJk2ssgfn2Kt3sc/zjBZBS5TwK0SSbEsbqWJbE1JUz0l8yfQxnKOPf4EzWOfJNWTab7cbx4j4uqplSNaf7TquBMl1LJQ8nyCPH4lxMAsJFpWK7GuiN1TvRDLYpLfz1WWOZR9qX87AI75/rTiVfi+iDFWrgQ6xSd+V1PPncWncSsKtywCwKubT9iV1ZJm4HCB2VxVDspLkZ2nnf8xxEWw34aYUHZ/iJZtdUxYsRDfJl67aquk8pvFZVX4b4BsiRJ/2wDHuCkxN576GtCy5qrbNWisE+8/MT5Q/dlRhsFRAsEYqEeVzqcoF5+wSjZRYV/rN3QqKyuRmpqKK664AoGBnp+b119/HVOnTsWiRYvQqVMn9xU8xGsLVHp6Olq3bu2w3Gq1oqrq0v4hIgiCIAiiflFaWopx48YhJCQEHTt2VKQHJk6c6FEy4vvvvx979uzBVVddBZPJhOjoaLuXr3g9vO7YsSN+++03hyCzb775Bl27dvW5IwRBEARxOXMZGJF84rnnnsOff/6JLVu22OW+u/XWWzFjxgyHdDQib7/9do30y+sB1IwZM/DAAw8gPT0dVqsVq1evxvHjx7FixQr873//q4k+VjtZxZUI1TGTsxKQqlJWFhW8uVm3WJ5KG6KSECgXpqm7CkoUzdpiXjT1dHDuzlPUewPsXRzq6cG8n/w9QTbb789g0zYHNmVtleltLjjuEmweYZD3iZXh3a0sUCnJW+WpxAaWi+hMATt2YbL7T68KaOftcledIh0gBIMCQImcR9Ai72NZNHPH8QDV7//TUyk7csVeAMCjq/4EAHRsFmG3z98fvQDA5s4EgFD5PIku0nDZnaF2E5QLOdMcgvY1cno5cwOoceaK0FL4Ft0LzRuF2LWr5e5y5T4Uy4o58ESJBXX/tWQQ1HW1Atk5riQgnCm7i8vVgefO2teati/esxwuq6F2k6fLrr84+XpIlXPjtbzEFMr3phcAsE3ND9TbAsS1rl81arcdP57crce/F2kcU3ESBz9/gcK1xBXKWRnYtePsGlB/tuXYC3Bal//m8MBz3m8ufaB2O4uyKiIO94sLuZHqpqG78Pbu3YtvvvlGM5nv6tWrXdZdu3YtvvrqK1x//fV2s/47dOiAlJQUt9seNWqUb512g9dXx+DBg/HVV1/hxx9/hE6nw0svvYS//voL33//Pfr3718TfSQIgiAI4hJl5cqV6N27N44dO4Y1a9agqqoKx44dw6+//qqZJFgkOzsbcXFxDstLSko8klEqLCzUfBUVFTkM5rzBpwi5AQMGYMCAAT5vtK6pMlsdnmLVAoExYfYhirxsuhxsa9LK7SW3I06dVT/9OJvSzlE/HVuEGRWKJUqSn8Cstro8+zqfel8kP3l1b8ouTKuRLQ+22vYxOZLtY4Gc3y9flnGIC3W8JKQgk92+pcuB903kJ/dS1VRls9zPTDlg2+TkSRUAAuUs6uYSVv/0BWYBiJFlI/i0bMAmX6Dk+xLaU9rPswUUi1O1+XnNK6mwqwMAJWbtxzcti4l4Hl2JYorrxCdfk8b10byRSbMNre04Ez3UelJ3dv1ptSvWdxVUL1pfvREfdUb35lHK56NZRXZ1ePt7U5kcxTVJtmzsufJkgCjh3PPp9VpWjnPy9dw21nHiRH3miwPnANgmbnDU5zNevpd4oLZo/VYfD5MgxOsqx6O4LdGazt+NgY4567g1ydV9IyLKdIQbbb9T/HpQrEuBfLKBc2FbZ7IfakmEAL0eAbras0D5O5OuPs/Cmzt3Lt566y08/vjjCA8Px8KFC9GyZUs88sgjSEhIcFv/2muvxQ8//IAnnngCgC1/30cffYSePXu6qgoAiIqKcjnQat68OUaPHo0ZM2YoguCeUHtTDAiCIAiC0MQqv/ypX19JSUnBHXfcAYAlN+aWo6effho333wzZs2a5bL+vHnzMHDgQBw7dgxmsxkLFy7E0aNHsWvXLmzdutXt9pctW4YXXngBo0ePxnXXXQdJkrB3714sX74cL774IrKzs/HGG2/AaDTi+eef93i/PBpANWrUyGO18by8PI83ThAEQRBEwyY6OlpJpdKsWTMcOXIEnTt3Rn5+PkpLS93W79WrF3bs2IE33ngDV1xxBTZs2IBrrrkGu3bt8iiX3fLly/Hmm2/i7rvvVpYNGTIEnTt3xgcffIBNmzahRYsWmDNnTvUPoNQR7Lm5uZg9ezYGDBigmM527dqFn3/++ZJJIFxWZQHPerX7BAuW7tfRMfu0GEjMgysLNHRjuClYzBOnFfArfud11IHhFou9iZ27IN69q4vb/cuTc3vxbVvB3vUqczRXFy+uZO98fJxexPYtwmBzI1llDx3XjoqTdZoKKljZi6oA/Ew5AFx055zKLgYAFKrU1gtld1tSS+aC4YrbvO6BVNtg/NorYgDYzoGY2+zQ2XwAQONwWxA5Vyvm7fJjyXWm1ATEsP3lqsjO1Ma1cHZetdpx5d4S3SHO8ue5al/sgyslfNH1prXO1b45Wyb231kgvVafOLkqbTFnx+4qOcejuo24CPtzy48ZVzZ/7odjyjrFhSu7wA9nsh/4+FDm/mscUb9z4xXIEzVcuYn5RA8+qcMhbEBDo8tZkL79dvhfh2NuRMDmTlMrhpv0wm+j8FAuhi2o+2QItC9r1rgOnV3fmvnzBLR0oAL0Opf6ZNWNJLGXP/XrKzfeeCM2btyIzp074+6778aTTz6JX3/9FRs3blSSC7ujc+fOWL58uU/b37VrFxYvXuywvGvXrti1axcA4IYbblDkETzFowGUOoL9rrvuwssvv4wJEyYoyyZOnIh3330Xv/zyC55++mmvOkAQBEEQlzsNeRbeu+++i/Jy9qDy3HPPISgoCNu3b8edd97pseHFarXi5MmTyMrKglUQZb3ppptc1m3evDmWLFnioBm1ZMkSJCYmAmDGoUaNGmlVd4rXMVA///wzXnvtNYflAwYMcKvFUF8orjAjQX7iGHAVC2DTekrmTyU8GJlbntRTz8Wp4WLAryfWCI56Cj5n0o1XeLxflXnnAQChgXI7cjclPbOulKsCz7kqQrSJ9ft8Mdu3/DL2RFmhynhfJV+sJi51IFu0Lsqi3zkqi5yj5YnlBuSWp/xsm7m2Un4q5hY40TIUHWb7bhYsKvwcnJOtWDx4WB0Yzs9BjNxOpLxP3CKlDvDn1j9xAoEnlkSxrFagsojW9SGW5YHyYYJlztW2RVxZoNzlAfNmO2rEIGStOs6sSvw9XZWXT7SMOLM0aJXlcFkG9X7x64Cf+2zZ6pVVwo57VFmqUjaoSUsne1t3cDmVAnn/ueK+Oqg8Xc4vKV7H/PiorenOzpvyLjmexzA5+4FansQZym+lk3x5WtecaH3lE21c3Te2ftt7BdRlPQlgrzRbUGlxv1+Ee9RilXq9HtOmTcO0adM8rr97926MHDkSZ86ccQiW1+l0sLg5T2+88Qb+/e9/46effsK1114LnU6HvXv34u+//8aqVasAMJmFESNGeLFXPsgYxMTEYM2aNQ7L165di5iYGG+bIwiCIIjLnsslF94dd9yBjIwMr+qMHz8e3bt3x5EjR5CXl4eLFy8qL0/irocMGYLjx49j0KBByMvLQ05ODgYNGoS///4b//d//wcAePTRR7FgwQKv+uW1BWrWrFkYN24ctmzZosRA7d69G+vXr6dkwgRBEAThAw15Fp6abdu2oayszH1BFSdOnMCqVas008h5SnJyskdpX7zB6wHU6NGjceWVV+K///0vVq9eDUmS0KFDB+zYsQM9evSo1s7VFAE6ncvgWP6ZJ3Xl7rkWsjL0PjmxLeDoihGDEWNVbqhHetinv6ludGbZdC8Hi0uyK09nrpAXqxMms9uNP7WY5H4XyTZJdXxnqEp5HQAC9KxOpBxwnRxlr1sEAGdymauOJxmtlPWmCmS1Z9Yf1q5JDnQ9d5HV4cHBajO76HrIl10PXNOpiiuf59rcFxGynlKurDgdJWviJMj9deVacqffpLXMk4BzTzSSONy1ZPIgkFtcp6nY7CYwXu328kajx1kfPFnnSg2dEyvrjeXI96Mn966zPmgFH3O4y/SoPOEhoaVtYonv2bJqDqMQLqCVOFlUZnfl/uTw37t8YbKMnU6drLWkXgbYXHnctad1/TlzA9u1r0zgYe1o6XhxtCbhuNqOuh1x8o9aOd1kCEClNcixcg0hwc8g8mrrSf2jR48eOHnypFcDqEOHDqFTp07Q6/U4dOiQy7JdurifnKWFTzpQPXr0wOeff+7TBgmCIAiCuDxJSkpCUJD7gal60PPEE09g8uTJyMzMROfOnR3qaw2Arr76amRmZiIuLg5XX301dDqdppvTkxgqZ3g0gCosLERERITHjRYVFSE8vP7mk4oMCVLUu1vFMfVhbjEBgLhwZqmJEXKm8YDMMdclKmWvbhZV4/31GFlvgFui9KXMUqaTFdRDwmKVooZwJotfJFuGKuUnshg5YD7SqFJbl81RRVzpV77WIoJZmYQw28VslS/Q0zls2THZWmc0sUuNW50AoEmLKLYtObi7VWN2LsSAfMDx6VUM9s4wsvNZllFs64t83koKmZXKKktDcJVqV1YlrgYu5o1T98FZXa1l3gSv8vZ5kDu3LHiiLu6qT86CbbWsNrxdMZealpXDnWVBq6y7PmlxVQL7DeLT91NySpyW1ZqWDtgCxwHHfeTwoOasUtuEhMj031h77W90us3aJkG2bvNMAFnyRA2t61DMlMAzG6ivn0iT/Z9SWZX9uVbLDjgEdyvXtf29pT7+Yp48vk7LgiSeN6PGpAsRpU/QlgMBHCcOGJVJQGy5SWVtNwTqoRes7zWJVZKU309f618KHDlyxH0hQHPQM3bsWOUzX+dsAJSamorGjRsrn2sCj4U0MzIyNHPRaNGsWTMcPHgQrVq18qtzBEEQBHE5IME/N1x9Gz65c5up0bIg+TvoSUpK0vxcnXg0gJIkCR9//DHCwsI8arSqylFokiAIgiCIywNXbjPAvQVJPejZtm0bevXqhcBA+yGL2WzGzp07NQdI69at87ivQ4YM8bisGo8GUC1atMBHH33kcaPx8fEe+TjrikahQWgVxdwBHeQkta70lhb8luK2TL1ADh7XVckzHLLOAAAq01n/DR1tSRcDglhAdWAA239uGb8o60BVWmwXfbAc3FlusdcNCpNdH2onUkfZJRok19l84LzcNWZGnzymm1JWTAgsmu213EVctyZaduFxEzzXSgpTaWkVyRpRJrls1tkCu+9qd1qZ3Jfmsdp6OZ5oJGnhLqjZE+0bT9wW4rFyFZTtrA+iKwtwn3xVvS1xX10FzLsL1lf3pUR2Jf2Rzs7fDckspJsr4BeUOdchE/uoRtRwaxTCrotGsitL7bKyNmrOljm0Undck8DutYOZhQA8uy6V67rC8Thxl7GitSYkIA5TJfANCbQ/Ejw4n7vpAjXcus6uSU+SWXPE61Fr247bczxrfJk390lN09CENKvTbdavXz9NL1hBQQH69eunOQAbNmyYR23XeAzU6dOnfWqcIAiCIAgP8DOVS33z4VWn24xbqkRyc3MRGhqqWUdUK68JfJqFd6kzoVcrr4Li673lSYarJVtOHwQAVGWwJ4CAXsMBAJUhtsnYmbLyeGUls7yclmXFfzx2AYB9sC1XOI6SpybzJ/QWsixAI1XZcAN7kru+GbNstWoRCQA4cIAJp53KsgX+8rxlnjz9iarwHP4EGRfB+qK2xHCrFw8m50HrSl9V/c6V+9W+c7zd9rjFS9wu4JnFRbRkcaubN0+8rgKtvVFFd2at0rI8ietcqZaL68QyWvnW3Mk5aEkq8Dp7zuU7LStuxxNJBcVqpbNfrv691llkhf5fVwAAjDc/6LTd2iLkwl8AgCZhTG5ByzojWvr41As+kULLQsSVzMXjqnUtVQjbdJUL1Ju8jUXCfSK2q0ZcJkpVqK8/Z7IZXEKBB9cDzAJXWUVK5L5SHS60O++8EwCzEo0ePRpGo02Kx2Kx4NChQ+jVq5d/HfWDy3IARRAEQRD1CSskWP0wI/lTtyaoDhdaZCR7AJckCeHh4TCZbJqDBoMB119/PR5++GHNuv/973897uvEiRM9Lqum3gygtm3bhvnz52P//v3IyMjAmjVr7E6AJEmYNWsWPvzwQ1y8eBE9evTAe++9h44dO9ZdpwmCIAiiGpD8dOHVNxWD6nChLV26FABTEZ8yZYpTd50Wb731lkfldDrdpT+AKikpwVVXXYUxY8bgrrvuclj/+uuvY8GCBVi2bBnatm2L2bNno3///jh+/Hi91pyqDUq+nA0A0JvYxWVo352t6DcaAJBVxkb3JYU2le6zBUwzJkdWCueaOtxUrjbfH5KDr3kQKddg0ss+jgiVZlSBrCsVG8LKDrmqKQBH3RXAuVaPqJ4M2NxOYmB1qbyca3YVl9sCis3yNs2yGd5cZa/7c+pMvlK2RWKk3TolcNaLRL6eBHsrWjfyu0HjeHBE9wsPnC/WSJgs6vyYDI7Kze60qPxNJuzsOGgl3xbLaPVXrO9u0oFWfX59hGhoi4nHgQel8wkQ6j8kfUkuAKDo+DEAgPFmh03XKJW7vlU+cy01XSBzw13dnKkzV8kTP/LKbPc5d8eJxyws2PGnnx9fm54UvwfYdtS6UGLAuTPXnZYLT3SjFQnnFQAskvZ5dOXKc7imNNTLlX7Jv118O6LmFe9npcZEFsJ7UlNT0bKl7wm5Z8yY4dM2a5q6n3ogM2jQIMyePVvxeaqRJAlvv/02XnjhBdx5553o1KkTli9fjtLSUnzxxRd10FuCIAiCqD74LDx/XvWV1q1bo1+/fvjss89QXl5e192pNnyyQP3222/44IMPkJKSglWrVqFZs2b49NNP0bJlS9xwww3V3UekpqYiMzMTt912m7LMaDSiT58+2LlzJx555JFq3+alxPltBwEA0R3ZCD+oOwsWLzWzO6pcfjItrrBZUYLkJ7FiWdX516MseDxWDuwuUlk5eMApVyr+O4NNmz4n55hLaWYLyL+5VQwrK2+zawKzDib0YYH4jUNtCuJHsphq+DlZ4d1V0Kq4zBY8brRbrlYzbhrN/OV8yjIvw/eDB54DNvV5V/nhRJypansyddsVzqw/ogVGixDBgubqSd2VgrgnEgpi2UrBqiZ+d7ZMjav+ciuV2gIn9tGd2roW4rGq4nIdaiuILBESGBqMuiCwcTPls2RmljKpgt03rQLY/Whtyu7DvbLcA2A7VqJFle9rZr7tz+xMLrNC82PVONx+X9XnjAdqq4Ou1e1qwfvA33kbFidtAbbfJ1E1Xq0YLuYEDPAgV6LST3mTFthPKOBlPFHXry4amgtPzZ9//olPPvkEkydPxoQJEzBixAiMGzcO1113XY1tc9KkSXjllVcQGhqKSZMmuSy7YMECn7bhtQXq22+/xYABA2AymXDgwAFUVDBzb1FREebOnetTJ9yRmZkJAGjSpInd8iZNmijrtKioqEBhYaHdiyAIgiDqGzyI3J9XfaVTp05YsGAB0tPTsXTpUmRmZuKGG25Ax44dsWDBAmRnZ1f7Ng8cOKCIeh84cMDp6+DBgz5vw+sB1OzZs7F48WJ89NFHdmKZvXr1wh9//OFzRzxB1IFwpg3BmTdvHiIjI5VXYmKi07IEQRAEQdQcgYGBGD58OL7++mu89tprSElJwZQpU9C8eXM8+OCDyMjIUMpGR0cjJycHAMuBV1RU5NW2Nm/ejKioKOWzs9evv/7q+/54W+H48eO46aabHJZHREQgPz/f5464Ij6eafNkZmYiISFBWZ6VleVglVLz3HPP2ZnuCgsLG+QgKn1vOgAgtgsLJpWMzG3GA7pL5eDpCtVU0bQCZrr/fCdTKy+X9Y7OyIl3K1Tqzhdlt1upEMybeo5Z9FIybRf217+dBgA0j2c6UA/0YGJqsbIbUK3RIuruuHK3OFsnupquSoxS1omB52Jb6oTEvAzXuCoUXAdaOHOFeeJ6FDWItBDb5e4LHhisri8GiGtpArlTd9ZyVzhzq3ri9uPf80tt15I4SUE8N1p9EYOPxe1p1Rf74IniO6dKLpuvchWaZSXyoFj2e5P1xpMAgLgpCx3arU7MGSfYh9AYZZnOzO7dQCGxcYtS2RVusU2qKaq0v475cTiazu7drEKbC4+XaS8nbQ4XJlCUaiWS1rl2kWpd36JOk3YAN0+gzc8f77/j+fQmM4Azl5wrzbLaoiG78Dj79u3DJ598gpUrVyI0NBRTpkzBuHHjcP78ebz00ksYOnQo9uzZAwCorKxEYWEhYmNjsXz5crz22mv1bsKY1wOohIQEnDx5EsnJyXbLt2/fXmPJg1u2bIn4+Hhs3LgRXbt2BcAO7tatW/Haa685rWc0Gu2EtwiCIAiiPmKVJFj9GAX5U7emWbBgAZYuXYrjx4/j9ttvx4oVK3D77bdDLw+QW7ZsiQ8++ADt27dX6vTs2RPDhg1Dt27dIEkSJk6caKcDpeaTTz5xuf3y8nK888472Lx5M7KyshwkFnz1nnk9gHrkkUfw5JNP4pNPPoFOp8P58+exa9cuTJkyBS+99JJPnQCA4uJinDx5UvmempqKgwcPIjo6Gi1atMBTTz2FuXPnok2bNmjTpg3mzp2LkJAQjBw50udtNhTCE5i1J7TT1QAAazB7giwrYTcUv7EKVE/Un+1mlqf8bBY4yhM+FuSUOrQfJb+np7OnwrIiZgExhcvT6lWBqLmyNUovm5f4trnFK9pkc/tahPvdmUKxK1ypdItTtV0pZHN4vj9RrVvLkuNJn5wpYldoPJmL/RIDZ0PlwNk8jTrcOsCf7o0a+yb2xZllTr1t0fqjJT3hSqVc7AvvpzOrnavp7wYhWFgLsb+iBcSToHoeuHxRZYU1x7GJGYHhjQAAuoCancBcdYFNwZaMTJpEV1mmrJMMclL3VPajH9DyGgBAWAj7c2mtaidAz/r91UGWkzK3hN27BaWVEEmIYvX5xAyuwp8h37t8ogWgCgCX7+9wWeKEX9diXjrWF/s8eRXCNaZ135RWsj6I17O6LG+HT6AQrwGte40jWigtOlu7lbDWahB5Q2bRokUYO3YsxowZo3iURFq0aIElS5Yo3z/77DO89dZbSElJgU6nQ0FBgc8z+MaOHYuNGzfiX//6F6677jqXoT/e4PUAatq0aUoCv/Lyctx0000wGo2YMmUKJkyY4HNH9u3bh379+infuett1KhRWLZsGaZNm4aysjI89thjipDmhg0b6p1JjyAIgiC8xWJlL3/q11dOnDjhtozBYMCoUaOU702aNMGrr74KgFmoPv30U8TExDir7pIffvgBP/74I3r37u1TfWf4JGMwZ84cvPDCCzh27BisVis6dOiAsLAwvzrSt29fxQqihU6nw8yZMzFz5ky/tkMQBEEQ9Y2G7MIDgPz8fOzZs0fThfbgg65zS/oritmsWbMaMbb4rEQeEhKC7t27V2dfCC84OeFu5XN8dzn2rCML7i/TMddadglzx3Ez+x8qfZj0UxcBAK3bxwIADsouPcnKXCymcJtkfohsug+SFcdbJUUBALJk112/jrZA/hMXmAvvnOwK/N8RJjPRRVb6bhsTopTNk10knrjuPAkgBrTVtF2pI4tltYKvnbUrftcKDBfdBxbB9aEmBPZq2WJ7Z2XdLVcuLFdB3qIWkCeB1s6C37WOh6gmLroitdpx1r5WMK+4jivjq4OQRderJy4YZ27Wggqby7tQbjeuCZuEogvY67Zdf9BZ2baDopm2W2XeeWVdQBGb8q2rKnOsCJsrDwD+Osnuc2fnT62FxhPq8kkiXAsuQU4abncsuXs5yD4RtRh4rnWdiG5g0XUK2O6bqBCD5nbU7XL3njP3oTppuLOJHkWCthgvSy686uH777/Hfffdh5KSEoSHh9u50HQ6ndsBFABs3boVb7zxBv766y/odDpceeWVmDp1Km688Ua3dd98800888wzWLx4MZKSkvzaFzUeDaC01MGdsXr1ap87QxAEQRCXI1ZJ0nyw8qZ+fWXy5MkYO3asErvsLZ999hnGjBmDO++8ExMnToQkSdi5cyduueUWLFu2zG0sdPfu3VFeXo5WrVohJCTEToIJAPLy8pzUdI1HAyieERlgwcZr1qxBZGSkYoHav38/8vPzvRpoEf5hatzI9mUiU1EtDWKj+ovl7GmZB25fLauBn5IDxgGgWStWnwdectp3dxydt2nC6vMnR/6Ex5ern9L4Mv7OA1D5E2meKjD3b9la5cwC4kpB2BPFaWftubJEiRYMZ21pLeMB0mqLiGhFKpJz9fEna25FAVRBtYL8giuZgcgQ+x8C0Zqi7qN4nMVjZlJdC84Cw7WOc3wUs1CIx65MCBhX4ywPolbZBNlK4jAlX3K0Vol9cGWtc5ZfUSv4OLuUbTsmkuV2tLv/qoGqzBQAgBQs31O5aaxPsmSBzmhzP3DLk76t9/Ec/HrjFh2tAH++/wnyeRXVzAHnllVX95YzeB/Kqpxbq0SpA/V9wy2qYh5LsS3xs7qfWpZVg14PvWD5qklYOhZ/BlDV2JlqJj09HRMnTvRp8ASwsKHXX38dTz/9tLLsySefxIIFC/DKK6+4HUDde++9SE9Px9y5c9GkSZPaDSLnGZEB4JlnnsHdd9+NxYsXIyBANtlbLHjssccQERHhrAmCIAiCIC5DBgwYgH379vksdXTq1CkMHjzYYfmQIUPw/PPPu62/c+dO7Nq1C1dddZVP23eG1zFQn3zyCbZv364MngAgICAAkyZNQq9evTB//vxq7SBBEARBNHQa2iy8devWKZ/vuOMOTJ06FceOHUPnzp0dXGhDhgxx2VZiYiI2bdqE1q1b2y3ftGmTR+LY7du3R1mZdsygP3g9gDKbzfjrr7/Qrl07u+V//fWXQ2Q9Uf1wBWTutgMAbnUuk5MHl1ax92LZ5XFeVhc/qQoiv7EDC/zm5u7waDaLkpuyk2JtQeRcsdtZMLarwO1WjW3tAMDZgnKHsq7UuDnOEvc6++4JanePK1O++J3X4y4P7gbNLiqXyzq6jWzq50a77+oEqgbYu5L4dsR9U7vtuHtFCcQVvmvhbN+0zoN4jrUUxMVtiu2EaQTxit9FN6K6/aziCrt2eR0tF6E3Gl3iMrFuqcptlC3rJ7VsyjRsDMlXsr75oUhelZ1m+xLAzqmukk2+MCez8Aidhbl8dRXFSlFrCVMR90SJ6u4uzOX48gXtNBhmDRcvd8+JSZtdIWowaeHMzefq/q8UgtX5dtTXlHi/uMKZu9Zp/71IAu4v9XkW3pw5c/DDDz/g4MGDMBgMHmUdGTZsmMOyl19+2WGZTqeDxeL63E2ePBkTJ07EwYMH0atXL+h0Omzfvh3Lli3DwoXu771XX30VkydPxpw5czQHcL56z7weQI0ZMwZjx47FyZMncf311wMAdu/ejVdffRVjxozxqRMEQRAEcTlj8TOI3J+67qisrMS///1v9OzZ007s0hXVaVB59NFHER8fjzfffBNff/01AODKK6/EV199haFDh7qtP3DgQADALbfcYrec59N1N4BzhtcDqDfeeAPx8fF46623lMR/CQkJmDZtGiZPnuxTJwjPibl9OADgjMpywYO6s0vYE2PKRfYUy60bX+4/BwAIUgVeioGyPbs3A2ALznQ19dfZNGR1u5xGcrD04XPM+pUXYlNA5k+R4pOoq6nyzvrkKveb2F+tAGtnFiytp2RRQZmrO4t5u+zhAeH2Ob40n9jlQxQlW5qcBWdr7Zsnkg3eWADE+loB/+7OjZZlQDw3ngS/i+riWoryonq7J0rkIso1pbrHuIo/DyZvfkU3AIBu93YAQOm3byhlQ+6a4nYbAGA12rTzygNM8jbZtvXy7lvkn2hjqM2Sayre41H7arjVUjwn+apJHVzGgO83D9zmy7WOnZbivXo7rix+/ByZNKxKMaHaVm+xDfVn0TrqiYWS37t8H9WTakjGwMasWbMAAMuWLauzPgwfPhzDhw/3qe7mzZuruTcMrwdQer0e06ZNw7Rp01BYyEzJFDxOEARBEL5jhX8z6fhwn/8vc+pLTthNmzbhrbfeUnSc2rdvj6eeegq33nprjW+7T58+NdKuXw7eiIgIGjwRBEEQhJ9YrJLfL4AFXEdGRiqvefPm1fGeAe+++y4GDhyI8PBwPPnkk5g4cSIiIiJw++234913362RbR46dMgrN+LRo0dhNnse9wf4YIFq2bKlSw2FU6dOedsk4QHmDJZL6HRj5jpQq5OcyWdBtsdzWKBpiqz3xDWYzuaw74mqwHAePMrdRDF6WfHX4Kh7IrrHXGky8bLbjzO15KbRzDURHWq0W6+G61NFyYmGo+Wgda12ncHLqvVpnAUsO1MdBty7JNRw5eQyQZ9IHZgbqLggxPrcDeWovRSg0+5nkexuiFIlZG4iaySVm7U1jVyprouoj7Gon8SvCy23iHhdNJaV6wtk95C6XWeuHU8mBThzJWu5bV25kJwhuv3U/S6Uz7VePjc8uDswmO2rPtymC2U+f5yta2o/0YbDEwWXhdoU/C+Wsfb5JsONbN8aBbDl1o22bPNShPf5wJ7szaaPf7KPBa7ze07r3OTLiYb5tWsy2Lvaxc/q76IKuNa94EybyyS4z9R9El15Wm5h8beLf9e630W0rpdL1X139uxZO8OGM+vTzJkzFdecM/bu3VstGUfmzZuHt956yy5f7sSJE9G7d2/MmTPHrzy6zujatSsyMzPRuHFjj8r37NkTBw8e9EpqwesB1FNPPWX3vaqqCgcOHMD69esxdepUb5sjCIIgiMseyc9ZeDyXrKeeoQkTJuCee+5xWSY5Odnn/qgpLCxUArnV3HbbbXjmmWeqZRsikiRh+vTpHot3VlZWui8k4PUA6sknn9Rc/t5772Hfvn1ed4BwTWUOCwAvCGVB3pKsMp6qkgM4mMF83qKyMn+CSo5jwaqRKssFtzw5CzrWsvg4C8ZWP6nxQND+ndl074JS9qTOnwLNGlalcDlwndflgezqIN7kaHYTpOQ4Pjmr+6C2IJmFp0pn6slqeBmjCxXwQOEYlbqYPs37IPbFqGE9EeGzavh2uGWguNwW+MuDg8WAfFeWJ2fb1LIMNJGtSdwCo5WrTnzyLxbKqhHPm0mYPq7Vvjid3pmKubNtqrerbtdZILu4HgDayDkcm4Sw/kpmebLF4AfY90BbTjlLiGyNkq3G+pJcVqacXbs6ecZPeJQtVsUUkwwAqJItwYYquWwZmxBScPK0UjZuik2N2VvGdm8BAJiz6R+Hdfy6En9HDIFyUHml85yGSlkh4DzQhdUqTMib50pGw9W16+x3iaPug5gtQAxoV/8+wWz1SGKlurBI7OVPfW+IjY1FbGys7xv0giFDhmDNmjUORpbvvvtOUyCzOrjppptw/Phxj8v37NkTJpPJfUEVPicTFhk0aBCee+45O9VygiAIgiAubdLS0pCXl4e0tDRYLBYcPHgQANC6dWuEhYW5rgwmOTBnzhxs2bIFPXv2BMDkj3bs2IHJkyfjv//9r1J24sSJDvUtFguWLVuGTZs2ISsryyG26ddff3Wos2XLFi/20DeqbQC1atUqREdHV1dzBEEQBHHZUJ+FNF966SUsX75c+d61a1cATB6gb9++busvWbIEjRo1wrFjx3Ds2DFleVRUlJ2ulE6n0xxAPfnkk1i2bBnuuOMOdOrUqdpy2fmL1wOorl272nVekiRkZmYiOzsb77//frV2jgAKDGxQWiSbnrNlN85hlbLwun3MzdepBXMd5JWwoPKkGBY0rqWXw03WomlcS0/JHVqBl6I5PS7CXoFb3Yck2T0XIbvusuRgaXW75wvLNfsrbldLH8Ybl5UYBKtVtkhQ3uZ1KjSOnSeuRts27F1hYqAs347aZchdpM0imek5SNaX4kHl6u2L7khXQdOccou968uVm8VV8mCxrNh/0Q2jdtuJ59FZAmWtsp4oYztL1mxSJZINN9r/VJojE+y+55ba+quzsHaiG7EUEwY5IbAUyoK/udq4NTNVqcNb18llLGHMtRJUepFtv+0VStnKHUxI0ND7bqf75o4r5AklGfm2UAA+GcKdSwywXeuGQOEY6pzrkInL+LlvHOEY5CwmMHaVzFrsH+8/vycOqzIw8LAA8frgrse6RD2Tztf6NcWyZcv80oBKTU11X8gFK1euxNdff43bb7/dr3aqG68HUEOHDrUbQOn1ejRu3Bh9+/ZF+/btq7VzBEEQBEE0HHiwuzdWJIPB4JAHrz7g9QBq5syZNdANQqS0jD0Z8ie9swXMqvTxrtMAgNxi24yBa1qxp1YeGB6n8UQHeKfC7EkZVwHLHC5JcOhsPgDgxra2KaXcCtNOfhpOl61MzeSp+bmltn0sEqQCxCfTUo28cQVlrH6kybWqMWCz7pidWLa0pnuLaLXPrTISryNYnlwFQnPVcn4N8D6q1ZK5NSy9gCXK5Mrv3GJSFWjra0kll12w2L27ykmYma9t+XMVjO3KWiVaPsXgbi0FcW6N4EHH3HLBcTYtXmu7rtTtxeV61Q98eRXrjyQvK5W/55WxY6j+L7BI8jq53/rAJLv2Q0JZ4YQubZVlUjmzkgRmp7D2zBXyOzv+QUm2h1Op0mY18pV7rmKTUvikDDX8vhEtovZWH/tzK54DLUuuM+mDENnSx1XB1es6xocDAP7OYhItroK6xfOZJmdkUE9yELMIBNQTVxBQv1141cGKFSswf/58nDjBJle0bdsWU6dOxQMPPOC27uTJk7Fw4UK8++679cZ9B/gwgAoICEBGRgbi4uLslufm5iIuLs7nnDIEQRAEcblS27PwapMFCxZg+vTpmDBhAnr37g1JkrBjxw6MHz8eOTk5ePpp1zNLt2/fjs2bN+Onn35Cx44dHZIBr169uia77xSvB1CSk1FuRUUFDAaD3x0iCIIgiMuNhmyBeuedd7Bo0SI8+OCDyrKhQ4eiY8eOmDlzptsBVFRUlM958GoSjwdQfJqhTqfDxx9/bDd10WKxYNu2bRQDVY2UyaZm0WDNFb15gDjgXBfHpcaQG/eFGneuP1fb4X3r2CwSABCkaiuWu5tkpeMr5GDyP2RdK7V53Vmgr0MSWtWPiDPXnTN3nRpRD8qsEbRqC8YOlJc7BpFzt1OxEHhuc3vZ3As8aFnUqOF9iJeDYtXuEVFL56Ls9hSXAzbXlydq4GbBxcaPKw+2VR8Po3D9aalEi/CyYj/5cVK3USoEp3OF/YTIYLs2tPZFTJ6rPh7uNIYuqlzI/Jrkbr12Mew+tILVCVJdqxdlt165E3dTUSUrG6xyezUyMleVOa4NACAw9zTr7/H97PtVfW39rnB0u/mKep95CAB3EStuccnx+FQ6EfcOEO4tV+5Vft5yNSaNtIgyydvm29O+/9X1xMkRWhMJRLd1gOAWF5NYSx64hwn3ZGRkoFevXg7Le/XqhYyMDLf166s8kscDqLfeegsAs0AtXrwYAQG2H36DwYDk5GQsXry4+ntIEARBEA0cq1WC1Y+ZdP7UrWlat26Nr7/+Gs8//7zd8q+++gpt2rSpo175j8cDKD4NsV+/fli9ejUaNWrkpgbhLVkFtifLYjlIlU+PPpzFZAvC5ac2rSBeX/AlZ5g37WUVsmBY/oRXUmWzLFyUc6XtKmZTtfmUeT4Vv0JyHjDqTAlZLQ8gygqIga3qsmIZ/l1LZVyxHkGc7s2+l6kez5VtCErh3PKkPo/iFGu+LkG2PLWIDZHbt/VJtD7yJ3VXucLEp3C+j+rjoQSsC5IBrlTXnVkHXeVQ0wpKB+xlDIxCcHqrxsz6yuUMeja3/RalFzHrlFG2lGUWs+svQ56g4GoygNhfddmzeSwgmVultp5m7d/Rjk2KOJBhkxUpkJXYg+U+BMrv4Vy2Q7auqGNhq+Rr6aKVneNmena96G68FwBgrShWykpBrH512EbUAdZ8Ygq/V/k7v4+KVYlWxfMlyhe4mpggXof8u7ovcWHMwpcmT47g1iqt61q8pnjf+PGvUp1nsb5W7k91u9ZalDew+hkDVY/HT5g1axZGjBiBbdu2oXfv3tDpdNi+fTs2bdqEr7/+2qM2Vq1aha+//hppaWkOaVf++OOPmui2W7y+OjZv3kyDJ4IgCIIgPOKuu+7Cnj17EBsbi7Vr12L16tWIjY3Fnj17PIpt+u9//4sxY8YgLi4OBw4cwHXXXYeYmBicOnUKgwYNqoU90MYjC9SkSZPwyiuvIDQ0FJMmTXJZdsGCBdXSMYIgCIK4XGioQeRVVVX4z3/+g+nTp+Ozzz7zqY33338fH374Ie69914sX74c06ZNQ6tWrfDSSy8hLy+vmnvsOR4NoA4cOICqKuZu+eOPP+qVDkND4KgcoFql0la5IJvTfzvFEpF6onXDcabS7aurz5lauaj7o/7sTDlYbULn67jLjrsBuIq2GmeByZ4kz9VSYlev1+qnKxVmh21DDp628mBntXvVPhDclcqzTQWevfMg+GbR9irjIaE2twNfFhTA2uNxENyNlKfS1nGmFM7dwupgbJ54OjW7xK7frnCmD6Z1nHn7PPEwd6Xw/VG7VvKK7c314nWo/uNoJ7s5s4rZ75VecC2p2xWTFItuIvU+82W8Dl+36nCmXfvq/vFt8bJWiZ1PHmCt/r8rN8vB6HI7eTFsQo5Z9ukEBDla/eMclnhPq2hbpno+ySBffneVNJzjbuKKOoE3d1G7uj443HVXVGE/qUArKbToBua/I43ka0zdhwKNYHE1Dq5JP8IjvMUiSXaTYHypXx8JCgrCmjVrMH36dJ/bSEtLU4LQTSYTioqYy/yBBx7A9ddfj3fffbda+uotHg2gNm/erHyujQR9BEEQBEE0DIYPH461a9e69WA5Iz4+Hrm5uUhKSkJSUhJ2796Nq666CqmpqU6llWoDr3Wgxo4di4ULFyI8PNxueUlJCZ544gl88skn1da5y4UcOTD1WLYtUJQ/TTgLkFRTnTmQXLUlPv1plXWmFKz1JKdYXPTuA9l5Wa68LU7x19oOt6yI0+C18q2JCtiixIH66c7iJNLTZqlznCrvStVZhFuwxOPMLS0BOts+82VGeVZskEGuw6d/WxyDpp1Z5tR94pYhTr6Qs06thu4sr6KWdVDZlsbUeLZv7L1xiE1TTlQe5+01liU9uPUNACpkS06GHDyeV2Y/RV7LciEGjWsFLIvLnOVoEz+rt8Otg0rAtapYVNkFAIBkYNbGykAm+5FfzrZzocx2Pn74OwsA8MItNiVzbzGfPw4AyCkNVpbx88jvMX7tuFL/dmYBdmW14rIFMXCeIYAfI2e5JF3l3+RWx6AAvd27uj1neSHFfajJ/HIiDX0W3iuvvIKdO3eiW7duCA0NtVuvlUBYzc0334zvv/8e11xzDcaNG4enn34aq1atwr59+3DnnXfWZNdd4vUAavny5Xj11VcdBlBlZWVYsWIFDaAIgiAIwkss8FOJvNp6Uv18/PHHiIqKwv79+7F//367dTqdzu0A6sMPP4RVfjAdP348oqOjsX37dgwePBjjx4+vsX67w+MBVGFhISRJgiRJKCoqQnCw7cnFYrHgxx9/dEjvQnhGaZXjNPIj6SwuKkTI4eVNlnlPhDW9Ed8Un9JcxTA4y3uljmcRn/5c7ZOSv63K3gJQaWHHLEqOd9DK0s6Pq7OnWcB5jI/SnqqqGMthi+9iT+7qmItAZR+5lYfXdW7F48dD7LcS+2NxtHBxwuS6/L2gwtEy4kzcUw23+lQIVscQjSnnYsyQsxg89bpiwZKoxBhZHRUaxX42lnM98pjBC6prKlLeN7N8jEJlcVLehpY1xRNhUWdxdFqI+8TrVgXL25Gtb6YgW1u6YiazoDt3jK2LYbnqssOuAAAUVdj+Hkd1bQoAOHS+AADQpWmk2z5xyktZTNvZQNbGjUm2fVx1mAkacusjz8VoE4q1F5lk+8COb6BgBaowu7deibFsWvejq3tWbIe/F5aza5fLRsSH23KD8utWjH/TotJsRZXFef8Jz+EySL6i1+uhV8WW3n333bj77rv97ZbfeDyAioqKgk6ng06nQ9u2jqZjnU6HWbNmVWvnCIIgCOJyoKHOwhPhMUveTkb77bff8MEHHyAlJQWrVq1Cs2bN8Omnn6Jly5a44YYbaqKrbvF4atfmzZuxadMmSJKEVatW4ddff1Ve27dvR1paGl544YWa7CtBEARBNEj4LDx/XvWZFStWoHPnzjCZTDCZTOjSpQs+/fRTj+p+++23GDBgAEwmEw4cOICKChbjWFRUhLlz59Zkt13isQWqT58+AJgpLjEx0c6cRvhGag6bismDHM9dLFPWiarZrtwLHHfuOG/ySGnJBjhz72kF0Dpz4cVH2Vy/4rRj7p7T2jZ3CQQ4eWoRA8UBx2PIXT/ilHQ1ohtKye+mUlDn+eC4qyO/1D5QWdPVIeTZ5u4+dX+5q4S7RcTgbN7fXJU0Ac8HBzk1JQ+g5S68SKNNSTxEbpfXF9vXyhMXLiioa6l0O8uB50piQgzk533QyuEn5mTj8DpVqsAR7rbh6t/l5VWaddR98GRKuzt5C1c59jhcDZ1Pr2/dyAgRayUrY/79JwBAs1seAACYYmwyBo107M8jofAoW9D0Rs3+A8AJOYMBv20q5WPFT0mjYJsr9u4uCQCAT/acBaC65zTuAX6NiiEGHFe/NZWyP5xLFGi5fsWJA87aUm9LDAVoFsHujdayDAgA7E8v0GyPX7tqKY8Avc7p701NYPUzaL0+B5EvWLAA06dPx4QJE9C7d29IkoQdO3Zg/PjxyMnJcZtMePbs2Vi8eDEefPBBrFy5Ulneq1cvvPzyyzXdfad4HUSelJQEACgtLdWUVO/SpUv19IwgCIIgiEued955B4sWLcKDDz6oLBs6dCg6duyImTNnuh1AHT9+HDfddJPD8oiICOTn51d3dz3G6wFUdnY2xowZg59++klzvcVSn+cC1C/4QysPVIxU5R0TA1CrQ9BNyzLiyfRjd09F9lYU+0BzMQhU6ynTmVSDuiwPqC4VApbFIFa1/IBZ2BcxGDtSyPMmbtPZPipBwMq0b/v21WVFmQWbyCK3tDjeL2KgtngNRIfZzFni8eWB1YUVjvvBn1DDjGzb3FrF87u5shQ5kygAbFYkUfqBoz4G4r6IFicxT58WfJo9Pz7c0gAAEcHsnIrxIFpWTVGygvdTzNHmbJl6udb9Isp+8O8nc1kgd6Ng2/XXIzoGAKBPZg+glhOHAQC63d8BAKJj4m3734mlrihu3BUAkH6aie2eli3YMSoJiD6JbLq4zsysVr9dYP3t2JgJaEYfXKuULbhyMABgVPdEAMA+OUj970xmxVJbdEURXfG8av1uKedNL1u5ZYuWeE+r63likVGs23L+vMHt2LE8ml0mr7eVFcVNxWugKL/cbh8rKtwHm1cX/som1KbkgrdkZGQoQphqevXqhYyMDLf1ExIScPLkSSQnJ9st3759O1q1alVd3fQar/1wTz31FC5evIjdu3fDZDJh/fr1WL58Odq0aYN169bVRB8JgiAIokHDB1D+vOorrVu31kwa/NVXX6FNmzZu6z/yyCN48skn8fvvv0On0+H8+fP4/PPPMWXKFDz22GM10WWP8NoC9euvv+K7777DtddeC71ej6SkJPTv3x8RERGYN28e7rjjjproJ0EQBEEQlyCzZs3CiBEjsG3bNvTu3Rs6nQ7bt2/Hpk2bNAdWItOmTUNBQQH69euH8vJy3HTTTTAajZgyZQomTJhQC3ugjdcDqJKSEkXvKTo6GtnZ2Wjbti06d+6MP/74o9o72BDhWizGQJ387uhO4+4l0e3kiSvPE/O3J9o3YntiGVfq4u0as6jm9CJmEnfl6hC3w83s6kBS0R3H88/Z1MwdXQai+rSoV+RJXypdBK+rg2rVqF0RjcOZe4kHnLsKtuV9EF0a/FqIk/VsilRuBTGfoNKWolqudifKauXyulwh+F0Ld3kQ1f1xcJGaHF2kHG+ua9GlaxSOizqf2+l85rZpIQfX8zrZhRV22wVsQdLivvHzGhNqc4VpBc9r7Y8acZ94GX5db0vNVdZllbD75f+SGwMAggeOZn0LY99PFNiutT9PsuSpmbLauhiIrz43py6WArC5OZOjWEB1cSXry2/R/Wx9kPNuxskK79zFO6p7cwDA1tMXlbIXhWuH72uyfC4iZTcxPx8AYDKw/eb3oVE4r+pjKLoIxetFDd+2opsmB8onR7H9SC+0/Y7wSRXhcax/f54rsK+r6kNtW3UsVv/ccPVZsuquu+7C77//jrfeegtr166FJEno0KED9uzZg65du3rUxpw5c/DCCy/g2LFjsFqt6NChA8LCwmq4567xegDVrl07HD9+HMnJybj66qvxwQcfIDk5GYsXL0ZCQkJN9JEgCIIgGjQNOQYKALp164bPPvvMrzZCQkLQvXv3auqR/3g9gHrqqaeUoK8ZM2ZgwIAB+Pzzz2EwGLBs2bLq7p/CzJkzHYQ6mzRpgszMzBrbZnVTlXUaACBFsIDQRsH207A9sf64W65ux5My3qwXA0Nd5cTjgbIcLQVgZ/0U81Wpyyoq4Dptq5g6YDk8OFCzjJaFTnzCFZ/mtRTOeTuBwvFQB9vacr6J7WtZr1iZTDkTPbeEiH3SCojmedXEQPEgdbC3XC9fntovThVXWy74NkqFoG6t/Gj5QhB6nGzt8EQ1muNKcVoM8uYEyxa1U3mlyjI+qYAHVGeX2s8SVm+XH99iQeogWrbAZBTYrCdhcsA3b1+cMKBWh1dbrsRtqsmSrWJ2y3ieODkQPEBX4LCPzgLttaxkeXJ73AKaUcS2eV62DGndY9lCv9JkK5Z6in/fVixQe8M/2XbbLpDv7y5NWKqvVioJgR1p+QCA/DJ2vEXLmdZx8kSJnJfhx+6YHDzeI4a1978M229RciNmIcuSrXcO16Fa5V/SkRK5HxQWFnpcNiIiQnP52LFjPapfVynkvB5A3Xfffcrnrl274vTp0/j777/RokULxMbGVmvnRDp27IhffvlF+R4Q4JgAkiAIgiAuNRqaBYpnL3GFJEnQ6XROZ+8vW7YMSUlJ6Nq1q6JgXp/wegAlEhISgmuuuaY6+uKWwMBAxMfHuy9IEARBEJcQDU1Ic/PmzX63MX78eKxcuRKnTp3C2LFjcf/99yM6Oroaelc9eDSAmjRpkscNLliwwOfOuOPEiRNo2rQpjEYjevTogblz57rUgKioqFAk3wHvTIo1gTWYmSkrBZddVkmlQ1nRheSJ28ydho7Wclf6PhxniYy9udl537QCRcW+iJpAgKM7i+sncdeKVpC32D/x2Kn74kyvSnHtaTz9iMcjxOBoEeXuIU+OnegWcuay0wo8vyC7Zvi6i7KbpJEqkDtHvs7EcyGqggOqZLCCy44fd3X/m8tuEX6MuFK7qASvtU1xn7T0g7gbUXSV8qSxkSrX0kV5GU/QnSnr+mi1y/tZKhzf0krmslKfT34eef+5K4+7W7muFwDkQnZp6pxfF2JfuDuVv2ca7Pvt6n53BS/D3aB5gfbuVnXia2cubzH4HQAiZBexqIvFdchOyi7HbgnhyrructLjAxmFdu1rJbV25p7UQlzXJoa5kAvk4x8fbjtOvCi/PqLkiQiKzleQ6pxXmF0mQyZcw7OX+MP777+Pt956C6tXr8Ynn3yC5557DnfccQfGjRuH2267zet8etWNRwOoAwcOeNRYTe5Mjx49sGLFCrRt2xYXLlzA7Nmz0atXLxw9ehQxMTGadebNm0cJjgmCIIh6j0Xy04VXD11cavLz87Fnzx5kZWXBarUfmKoVykWMRiPuvfde3HvvvThz5gyWLVuGxx57DFVVVTh27FidzsTzaABVHaY4fxk0aJDyuXPnzujZsyeuuOIKLF++3KmF7LnnnrNbV1hYiMTExBrvq5r0i7YAxuBA9mRUWcUuHj6VuKDCPqhSDX+6CpWfcPlTnJpoE3tq2p5WILcrTyu32FtyPHlidWWJ8iY43ZsfArEs72eRhgqws7I8aFqN+PTuLFAccMz7JU5p1+qDGBgubpd95tOxebv27anrilYS8XhrTeUOC9a+hUXLlLq+2D63wKgDaHnZXDnYNimGKVpDPs7qsmLwvKhI7sm1IFqB1Mew0kkgL7eIqK9rfjyiZMubqHRuZ3WU2+WWF/G60Do34vdIOdjbLheeE8uTKE+hNYmBw4+hlhVPnOLv6vrj7Yp9EXMdutpHLSvYur8uAAAm9GASB18fY8Hk3LLDg7Rzy2xB5C0iuDXUPmD4l5QcAK4nmDi7J9SfO8jSKY0CZTV+C9vnWFXGgRz5muGSHvz6KNO4B2qbhhYDpeb777/Hfffdh5KSEoSHh9sZW3Q6ncsBlBqdTgedTgdJkhwGYXXBJZsRODQ0FJ07d8aJEyecljEajYiIiLB7EQRBEER9w18V8vo8gJo8eTLGjh2LoqIi5Ofn4+LFi8orLy/PZd2Kigp8+eWX6N+/P9q1a4fDhw/j3XffRVpa2qWnA1VfqKiowF9//YUbb3SeiZwgCIIgiLolPT0dEydOREhIiPvCKh577DGsXLkSLVq0wJgxY7By5UqnITt1wSUzgJoyZQoGDx6MFi1aICsrC7Nnz0ZhYSFGjRpV111zSW6ZzSwdZmAGP6McvFpYwczG6XksEFUrmSY3LfOgTe6eU2viyNUVUzUPHOYaJhXye4HKRF4luJ+8cfNxPHni8URBWAwS5u4LtVujrNJeM4YTFmyfcFdLy4gjKk9r9ldwexYJGkGAo3K8GAyvRlzHXXpcB0q9Xh2IrG6/SHDt2gc32yfW9STYNrfYXhuoe3IjAEBqts3dnGtmZbjrLrvIPqjZEOgYGM2DssXj48oVJupMaZULl699XpafR63rhNdrKQe2c5cSv8fsEl/LAcOKtpNw7tXuVn7euKuY95e7CnNVE0EChOuYny9nelbq9lwF0zurI25XjejmE++BKI2E2q7U8kU+3H8egC3EoEezKADANbpzAIDDki3k4O9cdg1FKS5TtnxIe5bZ4o+MIqXsiexiu36K+6O+b5pHMjdhz8xfAQC6iOsBAOYg9kcbrCr7VxbbRpJ8fSTKyux5xY4TeSrNFlQ6mV5fE5itEgL8sCI5S+ZdHxgwYAD27dvndeLfxf/f3rdHWVWc2e97b3ffvv2koaFpoGkE34pGZTTgey2jYhI1jkZNFFk+MsYYfEwUXTqCGMV3zGQlRp0MidGs6Ewwk5hExDHizwdqHE2IEh7KS2hEXt00/bqP+v1x6qtT9Z26l24aumn722uxbt97zqlTVafO4dT+du3vpz/F2LFjsd9++2HRokVYtGiRd7/58+fviWr2GAPmBeqTTz7BxRdfjM2bN2P48OH44he/iMWLF6OxsbG/qyYQCAQCQa/wedNA/e53vzN/f/nLX8ZNN92EDz/8EBMnTkRxsfvifvbZZ3vLmDZtWr+vtCuEAfMC9etf/7q/q9AjrNAzHWKMAKAzE8yEirVtNH0eWh9os5asbzb7VrOZYYtmC/6xOWAJKKcVANSWuc7HxEQRa0UTyK3tUTZliLYBaNfC9rfXb9ffLQuBXtgjdDG2wEbEOoBYt3SUAaDy8s2yfC7MXJhMq1R8+dz4eUgg7hPxUrkkwA2F4sGnvRSasxpULjE4DgNV7GeRiP0htKfD8ivYcnJil4j14MvMg+PdJdv/0DN/+zymP82MP+HU3yeADvs+qBNfFm+3l/YlFowzJd3J+UjsieMurvt5rGYl3l233W2Ph62ivuIWBa3WIgbOPBl2kNUfsMTpRe4xnJnz1YUvCvD1B4nniU2icvl4t+tCwnbOCha6dwsxUXzbTv2ce0Xn91tSHjBPR9aF+xwwNFhEU/m+/o/1sJMAABu1qPz4hpCtOm948Jx7pTVgR+nZldHtmWzt27j9AwBAetxpAAAV12O1K2hHVTK8B6htZIFxUG2godlQFYz97Z5npGD3cO6550Z+mzNnTuS3XRlp7ssYMC9QAoFAIBB8XvF5M9LcF1bJ7W3IC5RAIBAIBP2MrFK98nLa132gPo+QF6g9jI3NAfVMAvH6ijC8RmLGpZvbnGNGVwXJS3MqtFmg8BuF7igB7AidqLRxSKnZd5z2VxleHhwzVAurd2ifqRZN7e9fEx4zJBuEC2Nd2wEA2dpRuo6BTf4nLWE4Z70O7ZBQtjv0P4UTuIO4z6PGhG+6kVQ5n/dNGPaLznp4uIGLhoFQAN2VZ9bU6Qm3hG1yf7fDn7yeXChu19cO/QHAik93ePe120OJeykMRWEzEp7bIQle/ifb3HFoo8wkf3ZDGlSHzkwY3qIQErWNh2/t8BYfH7xOZKxi9yGFz/i1P3BEdAnz0o1un+UTT9tt5P1KYWIaE762FHKo5qFYOieFUwuFKSk8l+JhRSsUS31H9feF7gjcoZ+L0wu2gyUAt+vAQ420z1D9vKP+XrR6i9mH5L/lJZMBACM2BHWor9QJlC3X/A3JegDACdXBPkUrXgcA5BoPBwDEMmG5XaMmAgA2dQT9SleNWvbxtvBZRtePnPo362TTjVoSseLTVrNvIh5HIjZgnX72Cbz88su49tprsXjx4oiNUHNzM6ZMmYJHH30UJ510Uj/VsHeQ0SEQCAQCQT/j8+gD9cgjj+Cqq67yejBWV1fjX/7lX/CDH/ygH2q2ZyAM1B5Cpikw9CyuGA0AqNNsUKo4fEdt1qzUhJpgtkOU66adbv4uAGjSDBCfIa7Vn63WrHP5FhKLa1GsPieJy6nczkx4g20rCmbvKhZ8Dtfbhhj2KhwarfrvtGaIOjL5LQ/yOYVzB27AFiZzp3BiBOLWvq6TN7EdNKPkIm37eJNPUPePz224ud1dxlxI/E7gefmy3Yj5b2l1XeftWX3YlmAbMQybWwJX55jHFoCcwumYoRVJp/42w8NZOmIhfMvqeRvpc7Re/m0Lzrdr1iTD+qOytDxvefmW6dP25q6Q+coW63L1dauvDli3Cj0GWiyWjMoj5qOQELozD/ti2myFRGw2yt7GxdlAdOFBPud3m2WjcmgMEIPoY6ton3z1L7Q4gl9rHzvIc1GSUN7HwhITVc0E/bWaiRpWFmXgSZy/RbM/vlyg9ZXBOKYFMRXDjwMA5Np1H6aTZt94e3AP1KT0M8EwicF2ckUHQrsCbq9i8vFZjF02l0NW9Z2O5/O2Cg8A/vrXv+K+++7Lu/3000/Hgw8+2Ic12rMQBkogEAgEAoEXq1evxhVXXIH99tsPqVQKEyZMwKxZs9DVFX3x5fj0008jlgU2ioqK8Nlnn+3J6vYphIESCAQCgaCfsa8yUP/4xz+Qy+Xw2GOPYf/998ff//53XHXVVdi5c+cu2aPRo0djyZIl2H///b3b//a3v6G+vn5vVLtPIC9QvUTny08CAD77wnkAgOZWTb1rin/tp5a7s6asaRsXZdshMe4+zfchsSkQ0ulceMoxujr0jiIfqSGa9l6/IyiPwg/FVviMnM2LdRjDpsR5vaPO265ztR2KyBe6I2xvi7o7G38jJj4Ow2jhQyRV4gp+I4mCLY8uLsQtJBrOF3biiWvt48NQZrBN6WO2dyNhclGePrX35WG0ZJEbvrRht9suzxa4N+u+527aJGy3y22j8IcOt9C1pvFtX6t8/k5FeQTX9jFDSoqdtpLT/rJNofD35AmB+zSFuLM65PjiPzZFzukLv9mww3a0D9WT3NELua1HPKM63CTfjn+VHr8VcMulfTdZSaGpXvnCk3YIkbv9c+8oe6zStqK4G05MdPlCx8G1pXFN14vuARJnjxsSpu4gaQFJDYp0O+i5GLfCZ6v0AoemHUG55JlHsgQ7QXClHrdx6D7T9dy4IyjXHh90Der1IhyqfyEhfl8hq3LdkgEUOn5v4Mwzz8SZZ55pvo8fPx7Lli3Do48+ussXqLPOOgt33HEHpk6ditLSUmdbe3s7Zs2aha985St7pd59AXmBEggEAoGgn7GnfKBaWlqc35PJJJLJpO+Q3UZzczOGDh26y/1uv/12zJ8/HwceeCCuvfZaHHTQQYjFYli6dCl+/OMfI5vN4rbbbtujdetLyAvUbqBl3h3m7+T5NwIAln8a5NpasSWYOZEzrz3DizIuLhPFlxwD1iyQzWp9Am7OctAxnUwUCgDrm938e5TTq0Y7kw+1lhSTeJzE6HHG5Nht5L9xsbD9gPCJxYGogNauexlz1t66M5iZ04zYxyYQs0IsFc02Wzui7E+HXt4cT7gMTiGxLc9baNdhu64XPdwUiY91+XaaAp+w3P5eZmb54bUJReQuAze80p3tAUAzc1nmYmebmSLmqYhda97/AJAs4YsB3H6wRfvkzs1Zmdasywo6bJiuN22j/Hxr9Rg+YlS4wmfRR4F4fKQWmq/V96MvJyNd0wpdJ1vUDUSF40BUuO2zEuDifDqGL17w/WdpnMOVe23IyqE7sBc+dLIxym0d7DHAxwPtS9YYdhu5IJ6fhz5tgf/QVMB603OuWrfJftbw8qkc2peYqHKL1VynF9y06WwKG/UCh+XaksC+H+l6NW0P9qHnh1mU4rnmAw0NDQ3O91mzZmH27Nl7rPyPPvoIP/rRj/DQQw/tct+6ujq88cYb+Pa3v41bb73VPP9isRjOOOMM/OQnP0FdXd0uStl3IS9QAoFAIBD0M7I5hfge0ECtW7fOsQ3Ixz7Nnj0bd955Z8Ey33nnHUyaNMl837BhA84880xccMEFuPLKK7tVr8bGRvzxj3/Etm3bsHLlSiilcMABB6CmpqZbx+/LkBcogUAgEAj6GZkcEOvFCxSRo1VVVV7fJY5rr70WF110UcF9xo0bZ/7esGEDTj31VEyePBmPP/54j+tXU1ODf/qnf+rxcfsy5AWqB9j87/8KAMhdFiZEfOz/mgB4EuN63Lq5MJmo5WHaXdymmim0wcXAhWLkXEye77tdDoV+6JPCiT7xMW8HCdm3W4J28njZoan7Sh1u8vn+hG1xw36+MGWWhQbJh8iER/S+StkhQjcBMfVlkacu7SycF/fsw9tPQvAOJgQvssILFLpLaw8wMjam9sQ95bfrz3ziZju8NWF44OP10WdBuGKIFtlS2Mv236LjQsdwN4TqJouNO8e3sfCkHcqjEA/3zPIJ+yl8Q4mAR2gX/k3a66pLn9d2QOcLEJqag2vPE24HbdPhRJbWgieJDv4OyjMJjRPRcC2Bi9wJXBgOhOE3X9ga8DvK88UKZvFFwh2zgO23lfO2FVYkMp/reQnyP094cmJqGz2nfMfx5xOFo+17+DMtFj9uzJCgvBQ9G4LtW9rC++hDPZ5JYM77xz4/P1eGPXvta5NPRtHc5l+Sny7g1D7QUVtbi9ra2m7tu379epx66qk45phjMG/ePMTjAz/UuScgL1ACgUAgEPQz9lQIb09jw4YNOOWUUzB27Fg8+OCDjm/TyJEj98o5BwrkBaobWLEpWLr9m4lXAwCyf1kf2SffzMaezXJBMp+h2jfAMO3ky2+KfKyEDZ5zy4d8+ew4u2SXR+emGR8xATZbQDNyYnRIRE0u2r7+yLuM3GYC9N9c3Ewg5inTFc4YVS7ttJHn73KE4WQBkccbzscWZLoxO63QLMkOXb+sYa+C7RlrdpxiS+PzLVPf1GK7gAcVpv4gUblPcE5sBjFGdP2IlalIhgwDsTLEDI3XeefyWU4Ev7nCYqpvZWnUDoDfL1QnEnLbInhiRMgRm45ZowXih48MwxX0Gy2KCK1CiP0NmbN87IzPtZuza925L/PdY9wZ30YkN6CGLV7nNgj802Ydw7Hk3ms0Fuw28nFnhOGeevJjOHzPHnpu/L/VW53ffawSP56Pl0w39iVmrlC59ngItof93NaVRV8SUPvqC9SLL76IlStXYuXKlRgzZoyzTQ3yBMbCwwkEAoFAIPBi+vTpUEp5/w12CAMlEAgEAkE/Y19loAT5IS9QBfDAopUArESTeUSh9rYEC1W5wtxoGAvwU9iEfGJuu1zuvcTdnLkDd6Fz5nMxB6JCcwof+YTyCV1vxcIkdnt4HQp5RkWO4W7P5KuUDPuFC8G5T5Ptt5SvrwotBsix+tH3LktUntXhFvJ7KtFhupgnTDdmaODaTCE6fm6f95e59vo7he4o/DLU8rWh0M92LTAP+yEId7Va9abrlNa/LV/fDABI6vpTXYFwEYFZFFHhLpu2PYx4Mlt+jUdURpdcm/Fc7LrQU1u3Wf5W/zQuWBr913VBfbmvlO11xf3HTIJgRMcH+YxxmOtn3TamHOYHxUObziKGtCu45+XaQvHo2HS/235NSRP6pgTPbtJfOxTGw3F8LNngzyU+Vgs5tLcynzdqj88NnNrN3dcdfz2W2NmcT3/PIur9xZ9zFPa0Q3qpkiJ0xV3vtL2JPWWkKeg7SAhPIBAIBAKBoIcQBsqDG//n7853n/syIR/zRPAxFwTOetjLsrnlAS+vEFvVHaF5vpmOr3yeL6qZMU92/9Ayej4rJtizWTMLZqyS1zogT64qKoMYHbu36Dcqv4iJ+G2UMbfvtq7oEnwClZdjztLEeNkzQRKNE/NUWeYyAHb5+ZgnXgebGTF5/fSsntgf2qe53c4n6F+8sFULz+1+IUH5/qOrAQCrdT6x0HYgFLLTcdyyglgDXx/mG388V5tdXidjXqjt5E4NAK1d7vEkog/tAaLXnjNc9N3OR9kj1thjPWCXQb9zYbqvTl2e+8gWiQOW3YCHKeL1IwbOsEEW60hjhlhA7kTuY735eQqJ6/mzslC9zRjVWRDIlsN37+Zjznz9a55VmugMLU6CH7ZbbGZXJtenYbFsTvXKB0pCeH0PeYESCAQCgaCfoZQykofdPV7Qt5AXKIFAIBAI+hm5nOqVjkk0UH2PQf8CNWvBPwC4dH0h6pp/z+chQyAfHSAMfxBVzqnrQgmCC4UGuwtfYmMCF2faoTYKhxDdT9uIDvd59nAX4/B8YT93MT+lQiLyBNuXJ7AlFPko/jyhTftY3ib6pHHRZo0PCg2Waq+hnTuCMFkmnXW2A6G4ncTkO7Tg2icipzBcgrUhwUKRO6xrQyHBhP4kHyhfG2kMmZCsXgxAzunVFSXWvm7I5MjGQJxN4Sf7moe+TDsBFA55U0itOuWGMvk1LxjeYv4+C5duMtuOaAhCjgfWBb5VHzYFHm4kKLZDmoTtbW5Yiz7tEFy+ZLmFwuX57nMewrLbwr/7HNTzeTv5ROQc4YKKaMJuAnlp0b4U0vM994zvW9of8rbHY76E1Nw5HIhmYAhDpsF3240/38IXen7b4eB82QnII275pzucfdOe8SIQEAb9C5RAIBAIBP2N3norSQiv7zEoX6AeeGUl4km9ZHyHFtAmoqLVQvng8oG7jddaS7pzeoDTbC3fknn7N75PIcfjXX33MVC0BH38iHIAlvjYciIPHauJmXNZhErL4duIrxlL4JuxUz40Or6N5eXrtASutHyeszPcXdwHI7SmXFm6/0cNC5fi58txVsiygurfqllGwypZY4keapQLL60TlZGtQTIV1p9E6fQZ1+WkyvxsDQBs1+OXyiMhOzFxDsvGmIki5nrdbC3Vp6XmxJqWaMbJMHM7w32pfw+oqwQQMlEEmwFo2h5k+vtka5uzD11HWoRQaJyb5eq6WPveXbExELsT80mO5O20HN5apk42HJz59TE5nOXhLJUvxyPfl7NYNqgN9Gyg5wcJ/G1H+XwsErXNvuY0jqk8bklgs2wkTudC/jVb3FyPgJ1PMcqQ2bCvPWd16b4n3nNHR/Q8HHRN7PybNP5SjD2mNhdyW/9kWzAOh5YH45zGH7WtC33HQKlcLzVQEsLrc4iNgUAgEAgEAkEPMSgZKIFAIBAI9iWIiHzgYVC+QHWksyhKuBS/TW1XsrBQQXFzHufx0qL8Qtp8iYd95+xOHfKVmy/sYP89ZmjKez473Ed9xIWX3Qlx8nPbIRRyqA6F5p2RcxO4VxSFfMoKuK3zkAn5bG1vdcOXdlsoREBjwN7HlKtDixt0GCsMn0XbH2PuyBQ+pFBkZ3vUtTzHFxewhMxx61qltPCbyiXfnLJSN8Ri/02eWhRepFAelRHUK2h3kwmPuAsqbB+oMETqhmC4Qz4Qhj3J2ZuuK4WM2z3eQHTdDteeVIXCq1zMTL4+of9ReJG4TxP5m5FAvstO9BwvnOTXFkbnu+/4fVPiETfTb+RJNVRLAOz+4H5VdB/Znk4EHsbKJ4b31TNaVv5nGm2jfg73tcXvQbnhPRt3jrGfu7QtdAjXdaKxZl17vriC+orGie2aT31HvlI0DunTrUMM6Wx+Qf6ehsqFScZ393hB30JCeAKBQCAQCAQ9xKBkoIoTcXQw9meYtYSbszF8xujMBvVsqljPmEgo3kEzJ08usl0tWbbrwD99S6N5rr589bePoX3sPGUA0J7JP+MiQTGJx9dva4/sk8992fSDNYk19dSnHFkdsGGZXFukvpFjNDgDYDOJnAEhKwKf1QGhRYuyt2vhvI+d6dBsCW0j8aZPxDliZLCcfuvWoK8qhgTsRsgqhfuqtOuqzsulT7tXqJyi4rhTJ6p/pZVbLp8VBuW7c+wX9L4kaF+zORCG+xZYcOduzsba45pm+qGjuWYdaeEALTO3+rtZfy768FMA4YICKsPHRJHomlglYtDc/HadTj03t7iCbV8buVM9MV42a1PCBPxRN/DgGPteMQxUwrUM8YH2pfuwOZLbMLynS4rce4DfJ748dwTOFNlC8a6M3waFM5X2HD1f/jkfO8238fM4lgfsmUifdL8s39Bi9o2x8mgfeiZstmxnykqLkO7oQwZKVuENOAzKFyiBQCAQCPYliAZq4EFCeAKBQCAQCAQ9xKBkoJrb02jRYtvxw4MQi4+uTzE/kTIdHskVW8Jc/SeF7sj/iPu6+MBF5F5/GBYO8YmlCwnAfe2wz0n1o2NaPV4sPHxYzL7bx2RYKCIby9827utD3xuHBZ5UH3Q0m33z9UPS/B58ki8S4Pox2SAHbttTqln7NMUTbj0phJVJh33KQ3f0PWv2Da85he4oqfBOHSKgkJtdLoUXSpIJZxsda5IjW+WTSL1jZxDGmTAu6LsmfV7b+6luSOgeDoQC+eqyIHTa7vE9olAgtZX28IWbCyW6JtA2Ct2Ze02Ld8mNPe65dmU6ZLVDX+NPCjhuA0H764dS24Jyd3R4FgV0uQ7ylDh53IgKs8+w8iDEz0NeFEbbYYXchsSLnX0KLeYwbWOhNRI7d2Xzh9jonqU6+JMJu6E1nhHADptRH1EdaHwUWizCQ5sUeoueLwwB5ssIYCdJtn2v7LaFIvXos4w79hMjYyf95vdqgiW8tsP7XZmcKasvID5QAw+D8gVKIBAIBIJ9Cr18gYK8QPU5Bu0LlI95IvDfjC2Anu37BJ5cXOsTjHORI834U57cYflmfb5ZPhet5hOTF8qF51s+TqD6levZ27iaYFkwsW/NnqX+yTxCYl+OM+7qTPvYy49bO1yhrFnCrWeqtJ1YCiDsF9th24a97zZtJ0CMDrcUyFkCzRItYjbWCnpfnxg7m2cGazNPHGRtQOVwh3Pb5sDUU9dv+UdbdV2C61k1LGX23aBznA3RwnJiXgzrY7tS67bk9EVu031I+3RaTB39VqXLpbHEl+bb4CwvOZv7/gMhxi1N/aDLI9GsfR3PnzQGAPDq8s0AgHWbXVd0m4Uj5pSL9rnQGAgZplRx9F4FgEprMQZvN//uyyoQZXJcN3Ab3Nmcl+9juOh5FD6nAkbNXuQSMsrBvcQzAxSyPIjm7iP2Kuwv+puYpkIZFML73bUz8Ine+TOLLxKh/HlAeD+GjKr+rhdw2E+y1u0dyHa642dvIqcUYr0QgudERN7nEA2UQCAQCAQCQQ8xaBkogUAgEAj2FSjVSw2UMFB9jkH5AjW0vMQbNiNwapnoavJb8YW58oXRCnk7UR0KiUv5b0SnkzszEIYi8ol3ebLUQvv6zhvS9W6fEWVsJ/Rt7YiKPHsKCuWRcBcIQyckeicxKU9Ka7ermYWdKNxFQtLm7aGbNj240hntFaWvTVx/2kuEM3nEy1SuLU7nIbxCYSICT5hMIM+ouGd7jglnSQzfYYVXKQS4JeMK40nQboOHGPk+FNoDwv6l+4KuPY27HZawn8KfRWwfEsEX6pdSPebjLLT5T/sNNfu8vnILAOCoxiEAQsf0Nn3vFkpYm2T3ozOWtJ8UJVXmiznarf+8KGEygfal8BwtkvDtw0ObhbIVbNVhz4IicpbUmy9usculvhqm3c8pPO5LRs5DakUmNOgu6rC9oxLazZ0E5nQP8+/2Odu60k75Pnf7fP5mvu3kM5Yo0iJ3KkfvYr/ApCqSyBTtOsHxnoKIyAceJIQnEAgEAoFA0EMMOAbqJz/5CR544AE0NTXhsMMOwyOPPIITTzyxR2WUFHlElt2Y0Zil/xYD0cbYCJpJDilzl+HuLvIJLbfmEUYD0fr7rA84W5Avp5+N5k4t7NSbylhOLvt4zsj5UIh548eWMSuG7ZoRMOJ0HyvIWEZuA1BqXSPD3Oh96DvR4sSQAFGxZhezRUhbiwyIleLMCjFGPvdvAs2OS8uLnTrY+1HOOp9juv07EM5QeW49c36PdQD9xvNs2Tn+qJydO4JyW3X/8DyAQMiIUdt4m3keQBvUthLmnv/6is3m7ytP3A8A8OSba4LyaYGC7oc2DwPF7R3ILd22PCAGZGOzdpTX7AyxNr5l9cTkECNFiy2ofPsZQS78JMqmfYgpsjMG0CIWw/Tpfbj422k/cwqn+8e+97hVQGuHu1BjqMUI8wUfu2LtbYT3vZsLz85TmM254zjDnhWpbuQe5IsZugP3fgSU5/+KvYVcDoj1ykhzD1ZG0C0MKAbqmWeewfXXX4/bbrsN7733Hk488URMnToVa9eu7e+qCQQCgUCw26BULr35J+hbDCgG6uGHH8YVV1yBK6+8EgDwyCOPYMGCBXj00Ucxd+7cbpdTWpKIGAIWWmpN8DEln+0IZqA0Y6SZ0YF1lQBcfVA+AzlffrF8+/pYG66byHeMD74l1bwuBJpB+8w2Cx23q7rw32i2adtFUP1IF0WM1HbGxNlaJXNOWrqsHzDExGSsWW6xnuETo5PUuhJik4qTFpPTro/XM3/OotgaJWKr4np2SDNc/rsNbpzJbQ1s8LaUpPIzn0V5luAT62PrnBJ55lYxoxUJfyPLBA7SnMU99Y4xps/sq1mrImssU3+U6WtPY4xMSu1r86M/LQMAVOg8eXRPtDOzTCDMf0njpJPdC/Y452NpYzbQ3tVUlzrl28eTTojbXVCdtlv6NGKNhpSV6G3uuLa/E7NFoHuY9F2+uqRMDj83/5+9b757lM7dajFy/HkxXGvDOGNm6xi5hQnVe+tOqlO4LZ+1ie95XcgOIVJXfVwns6Kh6+obqwJBPgwYBqqrqwvvvvsuTj/9dOf3008/HW+88Yb3mM7OTrS0tDj/BAKBQCDY16Byvf8n6FsMmBeozZs3I5vNoq6uzvm9rq4OGzdu9B4zd+5cVFdXm38NDQ19UVWBQCAQCHoESibcm3+CvsWACuEBUWGqUsorVgWAW2+9FTfeeKP53tLSgoaGBnR0ZVGsDZoL5mhjtgNES9vU/tqmIG/WiYcHL3ZbaGmxR0Seb3mtTxhZwgS95CQ8XFP8G1utnG95HMdpeXMoMo2GxDht7wvBcRF6IdsEHkbkS6t9TuQRV3Rd32YrbEEhglD87toLUDjNDlOFouug/pRfTSFaBwrdUTiOh9Fynpx1Rmiurw2FAePWeKTfuLibhND2Q49CUeQCTnHmsQ3VAIDVq7ZFjiFQ6MGEFXVb7fAibaNQEtWB7h87fJGDK6o3tgY6t5pPb0H1olAgd3UHLAdo5vRuQmt6hYJtFUHbOvQ1yuhrTP1lW0XQdaQFAlt1zj1aUNDlsaDIF1py9tF9x581hXJHmnx/LJ8dua6XecKtW/R9TXXwLY7g9aMwXCGLDH6f+8T0SbZQg0KCCRZGs/8ObRZ07kX9fZPezyc1yFe3EVW2m3vwSaJ37l7u5tjzP6+5FQQQuu4n9din8UD3iX19lVIFbTX2NMTGYOBhwLxA1dbWIpFIRNimTZs2RVgpQjKZRDKZ9G4TCAQCgUAg2F0MmBeokpISHHPMMVi4cCG+9rWvmd8XLlyIc845p0dlZXMAzf246V+w3S9CJGbEZmlOP3oUgHC2M5ItifZZBxDoGDKJrLaWKhdR3jPlClw7SIhqMS3cFI/n4/OxbGHeK3eWWcjMk/qI56Mq8swyeXmFxOOmXxMuI1ddFgpQjX0BWxad0iL9Hekos0CC52yGZuZMrO7JR6dyruCcsyrB38E5yV7AlNeVX4RAs0MSmBPDUmxdc9sqwcb6DTvylpsPJH7vbA/bXMTYQWpbIuG55oyJpPb7BO3JVNAGwy5llPfYoF4uQ0bg4nFfDkE6N30S7LqU6jFDdgl07q6uaLto4QeNLcoNSIyRPaM3+fL0uKDrZtgZq76tulw6N/UHjRfORtrl0P1I+/jGFLfc4AxXLGctxc9jyElsU6W1yIWzPflYat+2fHYuhexhuEB8i8WqU73IiJM/c2whPdkg5LVSsMT6+RY8EHJWX5amipHI9d1/kcJADTwMmBcoALjxxhtx6aWXYtKkSZg8eTIef/xxrF27FldffXV/V00gEAgEgt2GJBMeeBhQL1AXXnghtmzZgjlz5qCpqQmHH344/vjHP6KxsbG/qyYQCAQCgWAQYUC9QAHANddcg2uuuaZXZSTi+X2W3P38FPbQijC0lNChBwq/Uegto6ngzywhNIXAiMqu0sdQjrmRlSEtvVnTzhTaoJxWbZra94UGuVN6iolCfeG5fK7lhfxhuHeUL4THEebTs1y0jSg9aOvQ8qD9Q7S41idATRYFfR/65rj5uuxQCgnKI/5POnTXaYUDuWM4hUco1GQLrGkfCgdQSKVcew/Z4acuJtYt0cLnjCf8QuWSBxMXBVMd7WPCcJCutx4vCQoxWf3dsdP1FmrXYb6UDocoFbaRhxipD31iWwozxdyhZGDnzSMoEz6MO22kvnR8t3JuW2Ps2tioHRasDqHx26bbnNM+WXb4LG6uI5xzUxtzvpAV3WvMSd0OtdFxXTQ+9L6dHa5rvA0KH5rQXdp/HiAMM2XSbiiPzms7tWeYSJ/6nT8bgNB5nd/vvlx4vF623x3fl8DlAlSHMuNRFV4b8sjizzYzbqz7ka41hf3amAP5iKrwubr8s50AgEzavZfomlA4GggWLWQ6/GH1vQEJ4Q08DLgXKIFAIBAIPm9QqpcvUBLC63MM2hcomp3QrMjnAs4ZG/pebOVsorgzibrTutzPjHtvyEDQOWjmRcxTmRabbrbEju1MaJrWs3hzbuvK8ZxPEVfxhJufDojOELno05cja3dQaEkxgcTiPHN8IUE7zVpJ+FpRGpRrC0bBZq1hvjh31glEmSe+BD9rXQ5bFA2ETEi6M7o0PK4F2mYpvhaKc1bJd7yxZmB1jFlMETFE+VzGbaaoQi9wIBF2nBYZEGtqjTlqN19oT8xUmTWrJybOJ8oHXPbOx+4E9ac6kIAb1jF0vMsa+JzOP9scOIQPry0DADRvde8jJ9cZY7DoPL7/xEyfUdaAUpeZs1lBYpw4u5GAy5zZrFVauWwmlUGLDuIeoT+HT1TOxwW1P+mxKyEmmZ4nEQbeunc588RZJB+TbdzQ9TOR26L4nk/EoPHclHYGAhLEE6NtFrtohnmrHhNAlNVNtwXnpv7uYqx0tg8ZKMHAw6B9gRIIBAKBYF+B6qUZpoTw+h7yAiUQCAQCQT+jtwmBJYTX9xiUL1ClJQnjTFwI+ZL97uwKQy2HjQiSBq/YGogTiT72ORQT3V1a5J6bqOciK6RAFDuF7kr196RP4KrDNJR8l+hvk6wz0+W0w9dGTtv7Qpo+F/Huwhe6o3OQaJw7H/vqy+tUr5O5UgjVDhmQ4J4cyI1/ToJEt2H5FELiTuRF8Wiog0DhMRJPk2jYEZyTqJuJr+lhZ4ftKBxMYRceuqN97VAZheW4IzuFiZTlfdXVyQTFaQpnBNtt4Xa+kCCFDLk43m53oXCTCTNloqEve7v9n0E8Qa7zun+VK5q2XcupftuagyTfPGRoh1+5uL2z3RWp2/uaBQg8pMT63f47WVrs7EPl+nygsiycWpJyH83clwsI7wE+puywLb+fS0zoLaib69MUfNLCDB4Ssz2SKGxL90k7E6X7pACtOrxO5dB9WaEX5TjJm1kCcNNGCnHGok7kO3T5FG7t0DIKO2xL92iRcbN3PcxsX7ZEIo6YGpT/RQq6CRkdAoFAIBD0M2QV3sDDoHyBskXghZyy+T503NCKUFpLrEGlnr6RiNmXW47+LiYGhJaGE0thTdzptzI9U+ogUSUJaK3q0j4kwg7zxbn2BT4WKJ9zuG+fMiN+j+dtYz7WqDv9W9YN2wW+tJr2oSXMjbXlZt+PNwV5Cjs1c1NZHsx0t23TdhIW4xKPCIpdxijnWAewfsy54uBQ9GyxJJ2udQJfem7/lmaMRY6YLcYiAFbePKq3rgMxGu2W2DZl2W8AQFIzf8TEFNJfGEbLw3Jw+wISgFM/2M7kWdM2+sE9xsdeEWNj+owxR7bDOtWP2DYO+9jQid3ts9IkOYZHc/hRfyeyrv2CUx/G3lH9iCkzwnDr2NBGg85Hx2rmuYA1gcnbyNhOIMo8DSlzx4A9ltq1qJ2E4M167OSy0b6kaxtucxlgziDZ9eP3GjFP9gsAt3PgKCoO9yU2LGRoXYbPLpfqvVPnKUxV8nsi7Od0Z7ZPw2K5nDILX3b7+L2Es88+G++//z42bdqEmpoanHbaabjvvvswatSovXbOgYD88QmBQCAQCAR9ApXL9vrf3sKpp56KZ599FsuWLcNvfvMbfPTRRzj//PP32vkGCgYlAyUQCAQCgaB7uOGGG8zfjY2NuOWWW3DuuecinU6juJibnQweDNoXqHyhIPs3CnlV61BHtQ4TVZSE3UZC5U06EWa+hJYAUE5+MJrKTpnv+evJQ3dt6ahQmUKLFEak7x0Zd0aSskIdXDRuEhuXRMXY+VAoLMcdhH114NeAthUSj3NxKhetkiAdAIbpkFWTbsu2bSQsjnowFVFCWR0G4MJcOwzFQz8UdqHQiZ0U2IjS9fWzXaLzgUK7FPIxQmgmYLa3Ga8hSo6twy92SIwLlXl77DFFx3HRNy8LCEXdJLrOwe0zO6RJ4Zt2k3CXhbvIT81K+srDKGH4MBp6NEJ2Ft4y9fYkCDZ+UjES67ticgBo0/WtGho4nVMo1niAZcJQqgnRMeE3hYvad+gkxlYyau4UbkKduk6dVqiWQtHGK4ktPrDvH54tgJ5lvgTBWfKlK9FeSyyhth0apHbTfZNi4f3NOkTW5UneS+FJCpeZvnTc1hU7xv3eZSWUputHfRgKxd2FIUDo8t+Z1eE+fY9RmNUJTcdizve9jd6ySHRsS0uL83symUQymfQdslvYunUrnn76aUyZMmVQvzwBEsITCAQCgaDfoXK5XobwghfJhoYGVFdXm39z587dI/WbOXMmysvLMWzYMKxduxb/8z//s0fKHcgYlAxUZyaLeMKdgfkcc42brmZ9bOaJYHKPMRE2Z0YAoIMv2dbHFnsoKNrWqi0TaBZIE7O0VW5OL1Un8XEx1UHPEun7TktcmW9582d65mjDJxa3f/exd7QEmjse2/3BmaZC+bSq9dJqbhNRiPEbP7zC2bZhS+BIbGb5njx0hByb1dowS9dz7pJom3kikDUAF3gaYbSdUy7NxOKaraJ6+pgiI+7W2yjfHZ3XFtTSrD1cnl/ktNEn4Dbu53qMZdPROhCIcVIR5iJkmahfiRWgfencZnm8zXAx8TixBj5GTZn65ncVzwd+jH0s9Rn1L10j2qe0PBQj82ttXO31eKal8g5zRp90zyZdZsd+PpEdAFmxECPlu09pcUWKPbvoPvlsR4f5je7ZrewZQNeq0mojv/fpOzFPSY9NDAm3iXmifWiM2myhWbzBWPQ4Y1wBIKfdwkPGdtesEbG5Rayetj1HLqciNhsDAevWrUNVVZX5no99mj17Nu68886CZb3zzjuYNGkSAOCmm27CFVdcgTVr1uDOO+/EtGnT8Pzzz/cpS7evYVC+QAkEAoFAsC9BZbNQ2V6E8PSxVVVVzgtUPlx77bW46KKLCu4zbtw483dtbS1qa2tx4IEH4pBDDkFDQwMWL16MyZMn73adBzrkBUogEAgEgn6GUr3UQKmeHUsvRLt3Lh1p6IxGLAYTBuULVDwe84ooCZwKJ5q6U9PJnZmQIm9liXzzhbmAqA9T3JSrQ29WKII8nao13d+m/VCoDva+CUOhuslVyYSaQnc+YTi1jUJiFEazk/LmE3tv0pS8HTYjLycKHXAPKrs/ePiwRgtcKclymxV+Iq+r4oqgvM3aZZjq6Suf/GwofEG0v/FisvqBwgg85GNCZEXh70q5buV0LE9IHJzL9bjh51GeUBj52VB96TzmunpcqU1oQ3+n0ITdng4d6qBwFIVUvGJb5ojNRb22+zd3zebP8c72qGs5D41mM/lDppk8CxpiLFxn/20czfMIxYN66VAYC5WW60TJO61QFvUNF+DzEBAQdR43YSDdjNAvLCyLC8DpPvQ5evMxw8PxZVadaOyXsHpT6K7N6lv+LOQeaPbzK8XazTMvtDTrsVUSbSOFLinJL/WDb8ED3S8U9jTJvq3m5JjnFJ3H5y7euj1ot50M296XjzXVi0Tqnxe8/fbbePvtt3HCCSegpqYGH3/8Me644w5MmDBhULNPwCB9gRIIBAKBYF/CnlqFt6eRSqUwf/58zJo1Czt37kR9fT3OPPNM/PrXv96jq/sGIgblC1RxPA4w0bdv6TzN6GhmRkxO2sNaEbtDM8dyPfOzdbkh4+SKgls6/YJowJcLTy/zzoUzI2KriJUi6wPapxDLxrdtbY3mzeMsEn2SuP6w0WG8nTNZtC/NWO2ZKt9ng85fNqYmpdvhYaDYdeIzYZtlIxaMt5HYFJ+lQGeXO5PO5YLv9rJ6znzQdTXC7S7bwdoVTRt3cd3mzo6Q6TO59ZgoM+5hWkz9SIRN+7LZvH2MWarNcrKRI7stzKVtZDdAs3hiq+KWizuJxyn3GHf2TlrWEvnckkPRu8u2AUCaCfqp72i5uk80bJbZMzaiMx1eX1pO36FZTOozsiywBfihUzhbbOBpDx8XESsFzRQnE+H4Mwsb6Hx0HhJwWwsstrNsB9zJ3wa/ZxNpsi0JytvhyWmYYvdNlzazt+8jus/oGUmWIVSeyRVoWVAY9/KcyxTx34GwP3i/l1KePovVNPdjzl2IQGPVZmHt7ANAOE4ynpePWDxm/p/oC+yrL1ATJ07Eyy+/vFfKHugQGwOBQCAQCASCHmJQMlACgUAgEOxL2FcZKEF+DMoXqNJEHKnSgAreqUM27R4xZbsRIQe0L9HgPoE1931KFUeF4eQQXpbSYTgdSkrpMlott2Eqd1tbNKQGAMM8vjOJBPeV0mLV4igNnc9pPMUS+tqg8FsbczG3qX3eV/TdJ7KncOEW7a1DYnje70DY5zxkV1XqOivb5XM/rzFDywAAq3Voxk7Ey92nC/kHcQ8kCtGYT9vDiHkAUbkUakuWhuEtqk+c1aFEh8B8/lVUPoUmWra2B/t6kv5SmIzKKdNhFyPYtRIPUzirujbos2Yt+KWwp088bUJXum0ZTz/T8fmczo2Y1wp7GTG9ERZrD5/i6BiN+PqwZMvcUd2u59C6wDesbUcggLZDsTwsSd8pnGgL+3nojgvYqZ/sMBR5I1FYu43dn4USgdM2CvtlrLFLuYMT+tnTrp933UkeTp9xz750fcghvbUtuoACcMefglsed6y3xzW//+gYCrfaYu8wI4Ab4o2I+BG9v/mijpIKN5lwX4KMNHtzvKBvMShfoAQCgUAg2JeQy2WBXrxA5YSB6nMMyheoeCyGZi3eJWbDdsHmLExpwhWT11WVmn1ryyhPXvBJOfFGVCSdY3zoZPntOLsChKwPX6b/SVe72WdUdVAfcv1O0uyYvDoKzF75dzqfzeTkY3noM2WJj42gXc94iQzb3OHaDgDADj173ar7jGbdJIatLgtZNjrHEN3fnA0sNKOmfqU8YGX6c+fOkHHhIuZCDBQXBfNZrb3UnWa4lIPLLMum2bIlsvW5ewPhjJrgOG8bB/KgH4h5SndE87mZ8rK0zJ7K0HW1ZvV03Ob1O9w2qrTTDiBkX8zyfOOm7XHuT1BfBd9pTPF8dzaIQTDsXcJ1JreXtKdZLsM4Y3vs/iDxcjIV3KvGZZzyxmn2zd6WY0wiz+UHhP1I5yphzuPUdzaDRm1sZ7YoFZ6FEF2M8QR7XoV3DVBfHSzIaGpud8rpZKwVYD1rdB2onqOGlwMAPtnYavbl7F8RYzdNDkjPs8cIzPUmumY2W0jH0wIEup7GtdxilbjNB93DhUBjhoTnBLI5oDpkM/JSIsiPQfkCJRAIBALBvgTRQA08yAuUQCAQCAT9DHmBGngYlC9Q6VzOeBhReMcOn5FrL3kPVehtw3RIyfaBotAdhQQrNF1PYbTikpAirtTeK6Sr3KmpcvK5GTckDBms1ZT7tuKg3O3trveLTelTkuKdOhRWXxmE9MjFPJ1LO9+BUNDa0uF38rZFq7QPF4T7wmUU7iS/KkqGTOXZAlcKV1A4oZW5itthRBK/bt1J7ufxyD68TnQdudidPGucsEgXiUkjTYrAiGD18Vy0aod1KBRBYR0Ka9G+yeJQRE5hLB72oDLC0EdY74ohwbXmIap0RzB+kpZLuBFhsxATd87m57DrwAW79r4q5oaofGEcHl4xHleUlNuzeMGIseF6asW11b7jH6TckGA264aUfKDwJ4VxSYjeYYV46ZpyZ2xzXqsOu3JZD72posd36Puc9u0qio5zE8pk4zrMFBDWbYvVBh/s+zFhwrRun326rV3X2wo5RsT4rnu+KcvqC/7/O4XRTPJsz39H5BZv6piIXkfuum+8yui+scYf3QOhy7obFraR7swi2ynCbEF+DMoXKIFAIBAI9ilks1DxXrBIvUhELNg9DMoXqFxOOaJxDhJjE/NETNT6lkBgaIt9iWEhIXh1MmAUSCRcZrEROS3ArdSz11I9UzpcL5+2MVaLP8dowfpH24Jl5Nv0jKzLElGSkJpmqWv0viT+psmVbanA7Rs4q2TbHPBcW4QS00/RvqRzxpmrts36ZPWyWxKvUs6tjvbg8xOrDtWaNeK5wUhUXlLksmNBHdwZOtV3aHkgGt5uCdo5m1akXMbFWQrNcoR1RtiasKyYZsroGJrdcyG0c27GdnC362LLTZmYJ3I0N3n0SlxRvFM+W6zgc9PmdgvEFlA/lCZLIsfwZeQEH/vD+4PDZq1MXWLkiK/tEXTbfRYClJ/PsG2JaF1omXppuWsTQceUW4tFqP3GzZ3GVpYsFcI+pTblGFPEYbedr0A39yEJu616Uz9X67FP9w+5gNtjuTrlXie+eCThEZEbd26W49EGX4BQarnNA6HNgX1s3LCXLpNK57P7ia5/siQoN5+DPWCNdbrWxWxRh8UWxiibhL72dIyPrYoXxQued09Dqd6twutpMmFB7yFO5AKBQCAQCAQ9xKBkoAQCgUAg2JegcrneMVBipNnnGJQvUGmLOvcl/SUPI4quUOirRtPUmyxhJvkecWqcjim2Ck4mAqqZxOMJE8ZwfZuAMBEw/Tai3KXifa7lRMETtU/ib58XFRdqE5VPZfh8Z0zIjoTyLNRpt3uLdlCn9vuczbuYpw6ny4nqB4AdOtxW5BHVAqFPlB2S4GFJ3g43nMhckvWzqMiEsCz/ICqvC842nzM2d6MmUbftQk0gN/EYE/NyUXmHFXrkPkTGIVsLuu0QIQ8pURgx43Glp5CGEeSyhMaOOJ05SZuwn3HejhRvwm8UajO+UJloSKxdL46g3yhkQ22zQ5rctbxU3zc5dh0AoFInraZ+5uJ6O9EzubZTP1Ai4zBMZImlWVti+prw8K0vvGr8jrrIdV0vdqkI738qZ3trVPwPuAtA6DlBYU/uCWeLyE0WAS6Cz7rJz4HoYotO5r9VUuIJqbN7l+qZ04tcsunovuZ7Iv9306/sGOoXny9bvtBcqjLs52wmh1iu74I0qpdGmrIKr+8hITyBQCAQCASCHmJQMlDxWAxJPVMNWR9rBql/I6uDZnLTbnOX1AJRloOOJZftdDZ8R21LBzNpskGoKXWFl8TaAKE1Qb12NK/VFgpUB1sQzuvAReUEX/47mgUO1TNcmoVutBx5OYNFwvgDhgW2CyScB4CtWuRu2C/K96fLTVp1ovqGLI92PPe4FyeZ8DlpZrPB75V6UYDNQH2il1/ncyknAToQCnAJ1OaMEbOG56e2NLOccr5ZLaVXqBkasB3btrY7213hLDE5epbM8qzRd58TOSEiQM+qyL7FmvWhfi4ujbppExKMgaPcfVWVSbPPVt0mLrg3bI817LgNAmdhIscibL/JsafHGLFX9kIFY6nA+0VfsyJE22ry8unyy6uCttmu1MQ42cyb3Y4uK28aZ+ts13YAyGbcttptoOcHuZdTO9pbo3YEdG2InSIbEPt+JXd/blNSzRz9bbSRlQJbAFJmseBtzB6BM0+c2fbBd24C3Uu0KIIcyYkR9QnbibXj+QrtRR30Gx8fdI3s6xuPx6D6kGIIQni7H4aTEF7fY1C+QAkEAoFAsC9BQngDD/ICJRAIBAJBP0NeoAYeBuULVE4pE57zUcwdWnBZqsND2zvchLWOMJLCQ+QLo9xwmh1qS+rDiCKnUN4m7a69aUen2XfskCDkQx5LO7RvE4XPtlkOvRSa4yE6/r0Qnd7sCU/ycsg7iwTtY3WoY6dFxZNonFzbKSRB9W61QmXb2wNanoStdJ4ECwPYKIoIZoNjqO/sxMYUaqNyjXiV/JusevNwQqEQBPUVuSRTyGa0Trq6qSW8jtwDiEIIRSXRUAJPZGzCyySsJvG0Pf5MmIILt0kMbwvO3bAQD8/ZHjglzNfHnE+HQzZvbovUwQi3dXiIfLKirtWFXdDtMoN6a6dpGkt63HFBtw3udUX9Qv0OhCEfI05n4U8bFEqKs3qb+lpjlUKjCbZYgco3ZVkhMpN4WD9zKLGu6R8V7ksCfOrn5i3BtTALCGzPMnpmsTr5BOhmzNMYpZCpPrbTWrhCbSlhmRy455p9v9K9ROHyiOO+RxhOju98oYNvwQaNTfJeI9jjj4eIaczTYgO7PzLprJEgCAQ+DMoXKIFAIBAI9iXkclnEhIEaUBiUL1DxWMzMNFo97r00myK37oK53/SMsd4S1QKuAzmB3Mrpc2t7IMQkRsNhjDQDVa1ZH2JLOjPBMdsswTmxJyQY5fXk7t0AUFbiLvvnM0ebkUkxRojaSrP69RbjQvWcenAdAOCN1VsAhExcc0V0+T7VYaterk5l2HWgfYZpUT0xTbRM28cYtXe6/RG6rruCWn6cjXZPn9K5qNU0w92gmQBbfEsz6a6MZiqLXEbABs8HlzRibze/mz375su9yR7B5L2zRNrccbuYCZV9YmxiGrgVgS22DVkk1/Ig3enW2waxPCSWpv7g3+1zk9EyCYoNq5KI5sIjlo5YDWo75b0DXDbKPtaXl4/aS2wXWScQG2SzgibfGhtTZItAQvy0bUXCmBF7G+DaBtC5aF/u6O2zRzB5GzWjkokRqxllcviCDWKEOy3deK1mATvZs4UWd2Ry0WtOzBOJ3Ykp8+VMjMHtO8oXGs9F2+jLY2fDHn90Dm6dQr/bTJfKdS835p6CyuaAWC9eoLJ9WFkBALExEAgEAoFAIOgxBswL1Lhx4xCLxZx/t9xyS39XSyAQCASCXkOpLFSuF/8kF16fY0CF8ObMmYOrrrrKfK+oiCbh7Q7aujIoTuzalTofbHFzKXPjJr+mFVt2AgCaLSp+h3EFdkNI9Dm8KgwDmhCVDiPu0KEDSmi84tNWs29rh+v7lGAiSgrBJRAVdPK2csG4vW99ZZBctbmDPK6U8x0IvbNeWvEZAOC0A4YDAH713icAwv4CgFodjouK4POH+dq73D5MsXCD66BO4be4c6xvXy5Yp21Ufpl1no06VGdcy+GGAZKWANs4kRfwvOHgIQnbaRtwRcKVWvxKXkw8nEOhK/u3LNy6hE7qCes3f90o5KE8wnACOaUbJ+54NDRowk36mpPoO2x7NOkvhXqGad8jCgkd1jDE7Evj7+ONO5w6pVjIGgi9jKhcZe7HHKtLGEb1iZcBloSW3MTTrlt56OkUBH9t8TsX9vMxUJT0LKhg4vcwPGxlNCCHcDNW6dhoKJlCl50mJOtmEai1nk8UuqP7gq4FRfn4s83+O8fCy9RWO2RKoWju+2QSPrOkv4DtMQZ9nvxj1LiUs/veDg2qnOrRfdtbqFy2dyE80UD1OQbUC1RlZSVGjhzZ39UQCAQCgUAwyDGgXqDuu+8+3HXXXWhoaMAFF1yAm266CSUlJXn37+zsRGdnKHBuaWkBEMxC+RL/oVauKS4ar9RWAsbOwBLbkm3BuuaAGVq2OWCeSNxsL9unWRrN2uicdB57CX4LOZnrupBL+Wd6ub49s6PZIAk3i+LB9+GaMaJl+9mYlVuO1YUvQ054lh837ehwzkdotZgdOhc5qc9ZuAyA35KAfhuvl/9v18wFMUcuQ+TWk0D7tDPBv40trR3eY3zC8Uom2qdl2JstoTyxMDRbJfaBnLHtOrbRNSFxvhHiRtkZbgdAy+yLk67INm4t996uxx0te+dO38niqB0BzxEWLv+2GRd9LtZHOcNOhL/RPtQfxGSQo7eduy/L2A1+PmKebDFvGSuHxvnB9VUAwmsGhGOoXju/E9Y2BYytzeZFmCfN3JBgfKd1zek3c83zCLntthnbgkzGOZbGScJiEhMJd1wb1/Uul8Wyy6U6cXbGFk2TFYZK01gKjiF2xifALvLcq4Dr1m8WUrBnAWek7Husi1zRWR7BTJfHwZ/yE2oWj1tMxGPRehNCq4nguy3IV8zpnec/tMd7JpOL2FXsTQgDNfAwYF6grrvuOhx99NGoqanB22+/jVtvvRWrVq3Cf/zHf+Q9Zu7cubjzzjv7sJYCgUAgEPQc8gI18NCvL1CzZ8/e5QvOO++8g0mTJuGGG24wvx1xxBGoqanB+eefj/vuuw/Dhg3zHnvrrbfixhtvNN+bm5sxduxYdOxsRWfM1cO0x8KZOs9aX9QVdFNHp9Z2WAxAjmbxekbUrtmTDj3r6ewIBzUZ0SUywWyqQ5/TMCKZ8HLENOOi9MyrXVsedGjdRlfbTrNvWhs65mjmpavXldC6BJrpWvWmtlFdirJFbl08DFQsrbVEWZf1a0+HfUnLjYvSus92BgxJzjOrzWnmoz2r83K1ter2RFk26huqL4H26UpHl5ObOrW719os6bbaSH+nFbEGeuauq53pCNdwZzpdRkERAxgL6pguyUb2hVliTjnqPPqgPAxUhnIEepYpU3lZzY4qxkCpRLTfDWtCecF2g4GykY+BSuj+yHRYDBTTRfEZviJNosVAZUoyTjnpdq3VadNsQja8b8jcNN3uso6ZjuB+ialw/BAbwRmosN4hA2V+4wxUl2t4abcN2YSzTzatj4nR73aSQLefVUb3A40x6zLGdLmZRLFzPsWYUQDIkiEnWTQonT+QGBf7vLrceJZp7jxMbYzyM9J9o68r5f5Md0T/Mzf3DY1V6jNfDklufUF9Sboyi4GiZwsfzya3pG0XYQxK9Xdi+HS9lX0PdGWR7Qr0jj4rjj2ObBq9Oks2vxmyYO8gpvpkZPixefNmbN68ueA+48aNQ2lpaeT39evXY8yYMVi8eDGOO+64bp3vk08+QUNDw27VVSAQCASDE+vWrcOYMWP2StkdHR3Yb7/9sHHjxl6XNXLkSKxatcr7f6Zgz6NfGaja2lrU1tbu1rHvvfceAKC+vr7bx4waNQrr1q1DZWVlJNP4voqWlhY0NDRg3bp1qKqq6u/qfO4g/bv3IH27dyH9u3dB/fvhhx9i1KhRe+08paWlWLVqFbq6una98y5QUlIiL099iAGhgXrzzTexePFinHrqqaiursY777yDG264AWeffTbGjh3b7XLi8fhem0XsbVRVVclDci9C+nfvQfp270L6d+9i9OjRiMf9wvo9hdLSUnnxGYAYEC9QyWQSzzzzDO688050dnaisbERV111FW6++eb+rppAIBAIBIJBiAHxAnX00Udj8eLF/V0NgUAgEAgEAgADKJXLYEUymcSsWbOQTCZ3vbOgx5D+3XuQvt27kP7du5D+FewK/boKTyAQCAQCgWAgQhgogUAgEAgEgh5CXqAEAoFAIBAIegh5gRIIBAKBQCDoIeQFSiAQCAQCgaCHkBeofQCzZ89GLBZz/o0cOdJsV0ph9uzZGDVqFFKpFE455RR88MEH/VjjgYf169fjkksuwbBhw1BWVoYvfOELePfdd8126ePdw7hx4yJjNxaL4Tvf+Q4A6dfeIpPJ4Pbbb8d+++2HVCqF8ePHY86cOcjlwnx30se9w44dO3D99dejsbERqVQKU6ZMwTvvvGO2S/8K8kIJ+h2zZs1Shx12mGpqajL/Nm3aZLbfe++9qrKyUv3mN79RS5YsURdeeKGqr69XLS0t/VjrgYOtW7eqxsZGNX36dPXWW2+pVatWqZdeekmtXLnS7CN9vHvYtGmTM24XLlyoAKg///nPSinp197i+9//vho2bJh6/vnn1apVq9R//dd/qYqKCvXII4+YfaSPe4evf/3r6tBDD1WLFi1SK1asULNmzVJVVVXqk08+UUpJ/wryQ16g9gHMmjVLHXnkkd5tuVxOjRw5Ut17773mt46ODlVdXa1++tOf9lENBzZmzpypTjjhhLzbpY/3HK677jo1YcIElcvlpF/3AL785S+ryy+/3PntvPPOU5dccolSSsZub9HW1qYSiYR6/vnnnd+PPPJIddttt0n/CgpCQnj7CFasWIFRo0Zhv/32w0UXXYSPP/4YALBq1Sps3LgRp59+utk3mUzi5JNPxhtvvNFf1R1Q+N3vfodJkybhggsuwIgRI3DUUUfhiSeeMNulj/cMurq68NRTT+Hyyy9HLBaTft0DOOGEE/C///u/WL58OQDgr3/9K1577TWcddZZAGTs9haZTAbZbDaShy6VSuG1116T/hUUhLxA7QM47rjj8OSTT2LBggV44oknsHHjRkyZMgVbtmzBxo0bAQB1dXXOMXV1dWaboDA+/vhjPProozjggAOwYMECXH311ZgxYwaefPJJAJA+3kP47W9/i+3bt2P69OkApF/3BGbOnImLL74YBx98MIqLi3HUUUfh+uuvx8UXXwxA+ri3qKysxOTJk3HXXXdhw4YNyGazeOqpp/DWW2+hqalJ+ldQEAMiF97nHVOnTjV/T5w4EZMnT8aECRPwi1/8Al/84hcBALFYzDlGKRX5TeBHLpfDpEmTcM899wAAjjrqKHzwwQd49NFHMW3aNLOf9HHv8LOf/QxTp07FqFGjnN+lX3cfzzzzDJ566in86le/wmGHHYb3338f119/PUaNGoXLLrvM7Cd9vPv45S9/icsvvxyjR49GIpHA0UcfjW984xv4v//7P7OP9K/AB2Gg9kGUl5dj4sSJWLFihVmNx2c7mzZtisyKBH7U19fj0EMPdX475JBDsHbtWgCQPt4DWLNmDV566SVceeWV5jfp197jpptuwi233IKLLroIEydOxKWXXoobbrgBc+fOBSB9vCcwYcIELFq0CK2trVi3bh3efvttpNNp7LffftK/goKQF6h9EJ2dnVi6dCnq6+vNTbxw4UKzvaurC4sWLcKUKVP6sZYDB8cffzyWLVvm/LZ8+XI0NjYCgPTxHsC8efMwYsQIfPnLXza/Sb/2Hm1tbYjH3cd0IpEwNgbSx3sO5eXlqK+vx7Zt27BgwQKcc8450r+CwuhXCbtAKaXUv/7rv6pXXnlFffzxx2rx4sXqK1/5iqqsrFSrV69WSgXLaKurq9X8+fPVkiVL1MUXXyzLaHuAt99+WxUVFam7775brVixQj399NOqrKxMPfXUU2Yf6ePdRzabVWPHjlUzZ86MbJN+7R0uu+wyNXr0aGNjMH/+fFVbW6tuvvlms4/0ce/wwgsvqD/96U/q448/Vi+++KI68sgj1bHHHqu6urqUUtK/gvyQF6h9AOQrUlxcrEaNGqXOO+889cEHH5jtuVxOzZo1S40cOVIlk0l10kknqSVLlvRjjQcefv/736vDDz9cJZNJdfDBB6vHH3/c2S59vPtYsGCBAqCWLVsW2Sb92ju0tLSo6667To0dO1aVlpaq8ePHq9tuu011dnaafaSPe4dnnnlGjR8/XpWUlKiRI0eq73znO2r79u1mu/SvIB9iSinV3yyYQCAQCAQCwUCCaKAEAoFAIBAIegh5gRIIBAKBQCDoIeQFSiAQCAQCgaCHkBcogUAgEAgEgh5CXqAEAoFAIBAIegh5gRIIBAKBQCDoIeQFSiAQCAQCgaCHkBcowYDDKaecguuvv/5zdd7p06fj3HPP7VUZ48aNQywWQywWw/bt2/Pu9/Of/xxDhgzp1bkE+TF9+nRzHX7729/2d3UEAsFegrxACQTdxPz583HXXXeZ7+PGjcMjjzzSfxXyYM6cOWhqakJ1dXV/V+Vzj1deecX7svrDH/4QTU1N/VMpgUDQZyjq7woIBAMFQ4cO7e8q7BKVlZUmg3x/I51Oo7i4uL+r0eeorq6WF1iBYBBAGCjBgMe2bdswbdo01NTUoKysDFOnTsWKFSvMdgpZLViwAIcccggqKipw5plnOixBJpPBjBkzMGTIEAwbNgwzZ87EZZdd5oTV7BDeKaecgjVr1uCGG24w4RoAmD17Nr7whS849XvkkUcwbtw48z2bzeLGG28057r55pvBMyoppXD//fdj/PjxSKVSOPLII/Hf//3fu9U/P//5zzF27FiUlZXha1/7GrZs2RLZ5/e//z2OOeYYlJaWYvz48bjzzjuRyWTM9n/84x844YQTUFpaikMPPRQvvfSSE6JavXo1YrEYnn32WZxyyikoLS3FU089BQCYN28eDjnkEJSWluLggw/GT37yE+fc69evx4UXXoiamhoMGzYM55xzDlavXm22v/LKKzj22GNRXl6OIUOG4Pjjj8eaNWu61fZdtevhhx/GxIkTUV5ejoaGBlxzzTVobW0129esWYOvfvWrqKmpQXl5OQ477DD88Y9/xOrVq3HqqacCAGpqahCLxTB9+vRu1UkgEHw+IC9QggGP6dOn4y9/+Qt+97vf4c0334RSCmeddRbS6bTZp62tDQ8++CB++ctf4tVXX8XatWvxve99z2y/77778PTTT2PevHl4/fXX0dLSUlC/Mn/+fIwZM8aEzHoSsnnooYfwn//5n/jZz36G1157DVu3bsVzzz3n7HP77bdj3rx5ePTRR/HBBx/ghhtuwCWXXIJFixZ1v2MAvPXWW7j88stxzTXX4P3338epp56K73//+84+CxYswCWXXIIZM2bgww8/xGOPPYaf//znuPvuuwEAuVwO5557LsrKyvDWW2/h8ccfx2233eY938yZMzFjxgwsXboUZ5xxBp544gncdtttuPvuu7F06VLcc889+Ld/+zf84he/ABBcl1NPPRUVFRV49dVX8dprr5kX3K6uLmQyGZx77rk4+eST8be//Q1vvvkmvvWtb5kX1kLYVbsAIB6P49///d/x97//Hb/4xS/w8ssv4+abbzbbv/Od76CzsxOvvvoqlixZgvvuuw8VFRVoaGjAb37zGwDAsmXL0NTUhB/+8Ic9ujYCgWCAo19TGQsEu4GTTz5ZXXfddUoppZYvX64AqNdff91s37x5s0qlUurZZ59VSik1b948BUCtXLnS7PPjH/9Y1dXVme91dXXqgQceMN8zmYwaO3asOuecc7znVUqpxsZG9YMf/MCp26xZs9SRRx7p/PaDH/xANTY2mu/19fXq3nvvNd/T6bQaM2aMOVdra6sqLS1Vb7zxhlPOFVdcoS6++OK8/eKrz8UXX6zOPPNM57cLL7xQVVdXm+8nnniiuueee5x9fvnLX6r6+nqllFJ/+tOfVFFRkWpqajLbFy5cqACo5557Timl1KpVqxQA9cgjjzjlNDQ0qF/96lfOb3fddZeaPHmyUkqpn/3sZ+qggw5SuVzObO/s7FSpVEotWLBAbdmyRQFQr7zySt5258Ou2uXDs88+q4YNG2a+T5w4Uc2ePdu775///GcFQG3bts273e4fgUDw+YNooAQDGkuXLkVRURGOO+4489uwYcNw0EEHYenSpea3srIyTJgwwXyvr6/Hpk2bAADNzc349NNPceyxx5rtiUQCxxxzDHK53B6tb3NzM5qamjB58mTzW1FRESZNmmTCeB9++CE6OjrwpS99yTm2q6sLRx11VI/Ot3TpUnzta19zfps8eTJeeOEF8/3dd9/FO++84zAz2WwWHR0daGtrw7Jly9DQ0OBoq+y+sjFp0iTz92effYZ169bhiiuuwFVXXWV+z2QyRiP07rvvYuXKlaisrHTK6ejowEcffYTTTz8d06dPxxlnnIEvfelLOO200/D1r38d9fX1u2z7rtpVVlaGP//5z7jnnnvw4YcfoqWlBZlMBh0dHdi5cyfKy8sxY8YMfPvb38aLL76I0047Df/8z/+MI444YpfnFggEn3/IC5RgQEMx7ZD9ux3m4WLmWCwWOZaHhfKVXQjxeDxynB1K7A7ope0Pf/gDRo8e7WxLJpM9Kqs7bcjlcrjzzjtx3nnnRbaVlpZG+rIQysvLnXIB4IknnnBecIHgBZX2OeaYY/D0009Hyho+fDiAQEM1Y8YMvPDCC3jmmWdw++23Y+HChfjiF7/Yq3atWbMGZ511Fq6++mrcddddGDp0KF577TVcccUV5ppdeeWVOOOMM/CHP/wBL774IubOnYuHHnoI3/3ud7vVHwKB4PMLeYESDGgceuihyGQyeOuttzBlyhQAwJYtW7B8+XIccsgh3SqjuroadXV1ePvtt3HiiScCCJiK9957LyIIt1FSUoJsNuv8Nnz4cGzcuNF56Xj//fedc9XX12Px4sU46aSTAASMzLvvvoujjz7atCmZTGLt2rU4+eSTu9WGfDj00EOxePFi5zf+/eijj8ayZcuw//77e8s4+OCDsXbtWnz66aeoq6sDALzzzju7PHddXR1Gjx6Njz/+GN/85je9+xx99NF45plnMGLECFRVVeUt66ijjsJRRx2FW2+9FZMnT8avfvWrXb5A7apdf/nLX5DJZPDQQw8hHg/koM8++2xkv4aGBlx99dW4+uqrceutt+KJJ57Ad7/7XZSUlABAZAwIBILBAXmBEgxoHHDAATjnnHNw1VVX4bHHHkNlZSVuueUWjB49Guecc063y/nud7+LuXPnYv/998fBBx+MH/3oR9i2bVtB5mXcuHF49dVXcdFFFyGZTKK2thannHIKPvvsM9x///04//zz8cILL+BPf/qT83Jw3XXX4d5778UBBxyAQw45BA8//LDjJVRZWYnvfe97uOGGG5DL5XDCCSegpaUFb7zxBioqKnDZZZd1u10zZszAWJck5AAABBlJREFUlClTcP/99+Pcc8/Fiy++6ITvAOCOO+7AV77yFTQ0NOCCCy5APB7H3/72NyxZsgTf//738aUvfQkTJkzAZZddhvvvvx87duwwIvJdMVOzZ8/GjBkzUFVVhalTp6KzsxN/+ctfsG3bNtx444345je/iQceeADnnHMO5syZgzFjxmDt2rWYP38+brrpJqTTaTz++OM4++yzMWrUKCxbtgzLly/HtGnTdtn2XbVrwoQJyGQy+NGPfoSvfvWreP311/HTn/7UKeP666/H1KlTceCBB2Lbtm14+eWXzYt5Y2MjYrEYnn/+eZx11llIpVKoqKjo9rURCAQDHP2mvhIIdhNczL1161Z16aWXqurqapVKpdQZZ5yhli9fbrbPmzfPEU0rpdRzzz2n7OGfTqfVtddeq6qqqlRNTY2aOXOmuuCCC9RFF12U97xvvvmmOuKII1QymXTKevTRR1VDQ4MqLy9X06ZNU3fffbcjIk+n0+q6665TVVVVasiQIerGG29U06ZNcwTruVxO/fCHP1QHHXSQKi4uVsOHD1dnnHGGWrRoUd5+8YnIlQqE2mPGjFGpVEp99atfVQ8++GCkP1544QU1ZcoUlUqlVFVVlTr22GPV448/brYvXbpUHX/88aqkpEQdfPDB6ve//70CoF544QWlVCgif++99yLnf/rpp9UXvvAFVVJSompqatRJJ52k5s+fb7Y3NTWpadOmqdraWpVMJtX48ePVVVddpZqbm9XGjRvVueeeq+rr61VJSYlqbGxUd9xxh8pms3n7oSftevjhh1V9fb0ZN08++aQjDL/22mvVhAkTVDKZVMOHD1eXXnqp2rx5szl+zpw5auTIkSoWi6nLLrvMOTdERC4QfK4RU2o3hB4CweccuVwOhxxyCL7+9a877uP7MsaNG4frr7++T9LcvP766zjhhBOwcuVKR5wvCBGLxfDcc8/1OkWPQCDYNyE+UAIBAsPEJ554AsuXL8eSJUvw7W9/G6tWrcI3vvGN/q5ajzBz5kxUVFSgubl5j5b73HPPYeHChVi9ejVeeuklfOtb38Lxxx8vL08eXH311RLKEwgGAYSBEggArFu3DhdddBH+/ve/QymFww8/HPfee68Reg8ErFmzxqweGz9+vBFG7wk8+eSTuOuuu7Bu3TrU1tbitNNOw0MPPYRhw4btsXP0FIcddlheR/LHHnssr3B9b2PTpk1oaWkBENhl2CsTBQLB5wfyAiUQCAYk7BdGjrq6uoi3lEAgEOxJyAuUQCAQCAQCQQ8hGiiBQCAQCASCHkJeoAQCgUAgEAh6CHmBEggEAoFAIOgh5AVKIBAIBAKBoIeQFyiBQCAQCASCHkJeoAQCgUAgEAh6CHmBEggEAoFAIOgh5AVKIBAIBAKBoIf4/yLGexOdtMy6AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2826,7 +2846,7 @@
],
"source": [
"# log scale\n",
- "np.log(zarr_CHL.sel(time='2020-09-02').CHL).plot(y='lat', x='lon')"
+ "np.log(zarr_CHL.sel(time='2020-07-02').CHL).plot(y='lat', x='lon')"
]
},
{
diff --git a/book/notebooks/images/simple_cnn.jpg b/book/notebooks/images/simple_cnn.jpg
new file mode 100644
index 0000000..254116a
Binary files /dev/null and b/book/notebooks/images/simple_cnn.jpg differ