forked from gwastro/pycbc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_matchedfilter.py
150 lines (126 loc) · 5.77 KB
/
test_matchedfilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (C) 2012 Alex Nitz, Josh Willis
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# =============================================================================
#
# Preamble
#
# =============================================================================
#
"""
These are the unittests for the pycbc.filter.matchedfilter module
"""
import sys
import pycbc
import unittest
from pycbc.types import *
from pycbc.scheme import *
from pycbc.filter import *
from math import sqrt
import pycbc.fft
import numpy
from utils import parse_args_all_schemes, simple_exit
_scheme, _context = parse_args_all_schemes("Matched Filter")
import pycbc.fft.fftw
pycbc.fft.fftw.set_measure_level(0)
class TestMatchedFilter(unittest.TestCase):
def setUp(self,*args):
self.context = _context
self.scheme = _scheme
from math import sin
# Use sine wave as test signal
data = numpy.sin(numpy.arange(0,100,100/(4096.0*64)))
self.filt = TimeSeries(data,dtype=float32,delta_t=1.0/4096)
self.filt2 = (self.filt*1)
self.filt2[0:len(self.filt2)/2].fill(0)
self.filt_offset = TimeSeries(numpy.roll(data,4096*32), dtype=float32,
delta_t=1.0/4096)
self.filtD = TimeSeries(data,dtype=float64,delta_t=1.0/4096)
self.filt2D = (self.filtD*1)
self.filt2D[0:len(self.filt2D)/2].fill(0)
self.filt_offsetD = TimeSeries(numpy.roll(data,4096*32), dtype=float64,
delta_t=1.0/4096)
self.filt_short =TimeSeries([0,1,2,3,4],dtype=float32,delta_t=1.0/4096)
def test_correlate (self):
from pycbc.filter.matchedfilter import correlate
with self.context:
a = Array([1j], dtype=complex64)
b = Array([1j], dtype=complex64)
c = zeros(1, dtype=complex64)
correlate (a, b, c)
self.assertEqual(1, c[0])
def test_ave_snr_noise(self):
with self.context:
#Test that the average snr in noise is 2
from numpy.random import normal
noise = normal(0.0,2,4096*64)
nplus= TimeSeries(noise,dtype=float32,delta_t=1.0/4096)
ntilde = make_frequency_series(nplus) / nplus.delta_t
# Calculate a Faux psd for normalization, replace with better algorithm
psd = (ntilde).squared_norm() / float(len(nplus)) * nplus.delta_t *2.0
snr = matched_filter(self.filt, nplus, psd=psd)
ave = snr.squared_norm().sum() /len(snr)
self.assertAlmostEqual(2,ave,places=5)
noise = normal(0.0,2,4096*64)
nplus= TimeSeries(noise,dtype=float64,delta_t=1.0/4096)
ntilde = make_frequency_series(nplus) / nplus.delta_t
# Calculate a Faux psd for normalization, replace with better algorithm
psd = (ntilde).squared_norm() / float(len(nplus)) * nplus.delta_t *2.0
snr = matched_filter(self.filtD,nplus,psd=psd)
ave = snr.squared_norm().sum() /len(snr)
self.assertAlmostEqual(2,ave,places=5)
def test_perfect_match(self):
with self.context:
o,i = match(self.filt,self.filt)
self.assertAlmostEqual(1,o,places=4)
self.assertEqual(0,i)
o,i = match(self.filtD,self.filtD)
self.assertAlmostEqual(1,o,places=4)
self.assertEqual(0,i)
def test_perfect_match_offset(self):
with self.context:
o,i = match(self.filt,self.filt_offset)
self.assertAlmostEqual(1,o,places=4)
self.assertEqual(4096*32,i)
o,i = match(self.filtD,self.filt_offsetD)
self.assertAlmostEqual(1,o,places=4)
self.assertEqual(4096*32,i)
def test_imperfect_match(self):
with self.context:
f = make_frequency_series(self.filt)
f2 = make_frequency_series(self.filt2)
o,i = match(self.filt,self.filt2)
self.assertAlmostEqual(sqrt(0.5),o,places=3)
f = make_frequency_series(self.filtD)
f2 = make_frequency_series(self.filt2D)
o,i = match(self.filtD,self.filt2D)
self.assertAlmostEqual(sqrt(0.5),o,places=3)
def test_errors(self):
with self.context:
#Check that an incompatible data and filter produce an error
self.assertRaises(ValueError,match,self.filt,self.filt[0:5])
#Check that an incompatible psd produces an error
self.assertRaises(TypeError,match,self.filt,self.filt,psd=self.filt)
psd = FrequencySeries(zeros(len(self.filt)/2+1),delta_f=100000)
self.assertRaises(TypeError,match,self.filt,self.filt,psd=psd)
#Check that only TimeSeries or FrequencySeries are accepted
self.assertRaises(TypeError,match,zeros(10),zeros(10))
self.assertRaises(ValueError,match,self.filt,self.filt[0:len(self.filt)-1])
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestMatchedFilter))
if __name__ == '__main__':
results = unittest.TextTestRunner(verbosity=2).run(suite)
simple_exit(results)