-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscan_functions.py
486 lines (335 loc) · 15.9 KB
/
scan_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import numpy as np
from numba import jit
import torch
##############################################################################
# intersection metrics
@jit(nopython=True)
def intersections(bboxes1, bboxes2):
inters = np.zeros((bboxes1.shape[0], bboxes2.shape[0]))
for i, bbox in enumerate(bboxes1):
dx = - np.maximum(bbox[0], bboxes2[:, 0]) + np.minimum(bbox[2], bboxes2[:, 2])
dy = - np.maximum(bbox[1], bboxes2[:, 1]) + np.minimum(bbox[3], bboxes2[:, 3])
mask = (dx > 0) & (dy > 0)
inters[i, :] = dx * dy * mask
return inters
#@jit(nopython=True)
def intersection_metric(bboxes1, bboxes2, qids, return_no_intersection=False):
inters = intersections(bboxes1, bboxes2)
gt_areas = ((bboxes1[qids, 2] - bboxes1[qids, 0]) * (bboxes1[qids, 3] - bboxes1[qids, 1])).reshape(-1, 1)
sinters = inters.sum(axis=0, keepdims=True)
metric = inters[qids] / (gt_areas + sinters - inters[qids])
if return_no_intersection:
mask = sinters < 1e-2
metric[mask] = -1
return metric
##############################################################################
# binary search functions for finding the bbox size
@jit(nopython=True)
def find_scale(scale_cmap, i, j, max_step=100, target_scale=.5): #.5):
max_step = min(min(i+max_step, scale_cmap.shape[0]) -i, min(j+max_step, scale_cmap.shape[1])-j)
l, h = 1, max_step
while l <= h:
step = l + (h - l) // 2
pred = scale_cmap[i + step, j + step] + scale_cmap[i-1, j-1] \
- scale_cmap[i + step, j-1] - scale_cmap[i-1, j + step]
if pred > target_scale:
h = step - 1
else:
l = step + 1
return step + 1
@jit(nopython=True)
def precompute_scale(scale_cmap, area_thres=1.0, carea_ratio=.5):
steps = np.zeros(scale_cmap.shape)
for si in range(1, scale_cmap.shape[0]-1):
for sj in range(1, scale_cmap.shape[1]-1):
max_i_step = find_scale(scale_cmap, si, sj)
area_sum = scale_cmap[si - 1, sj -1] + \
scale_cmap[si + max_i_step, sj + max_i_step] - \
scale_cmap[si - 1, sj + max_i_step] - \
scale_cmap[si + max_i_step, sj - 1]
if area_sum < 1 - area_thres or area_sum > 1 + area_thres:
continue
centered_area_sum = scale_cmap[si + max_i_step // 3 - 1, sj - 1] + \
scale_cmap[si + 2 * max_i_step // 3, sj + max_i_step] - \
scale_cmap[si + max_i_step // 3 - 1, sj + max_i_step] - \
scale_cmap[si + 2 * max_i_step // 3, sj - 1]
if (centered_area_sum < carea_ratio *area_sum):
continue
steps[si, sj] = max_i_step
return steps
@jit(nopython=True)
def find_bbox(scale_cmap, target, si, sj, istep, max_rj=100, tr=.75):
l, h = 1, min(scale_cmap.shape[1], sj + max_rj) - sj
while l <= h:
step = l + (h - l) // 2
pred = scale_cmap[si + istep, sj + step] + scale_cmap[si-1, sj-1] \
- scale_cmap[si + istep, sj-1] - scale_cmap[si-1, sj + step]
if pred > tr * target:
h = step - 1
else:
l = step + 1
return step + 1
##############################################################
# first scanning step - provides a list of candidate bboxes
# integral maps are used for speed - binary search is used for finding the bbox size
@jit(nopython=True)
def scan_page(scale_cmap, steps, valid_map, starget, prob_thres=.05):
bboxes = [np.int(x) for x in range(0)]
carea_ratio = [np.float(x) for x in range(0)]
for si in range(1, scale_cmap.shape[0]-1, 1):
for sj in range(1, scale_cmap.shape[1]-1, 1):
istep = int(steps[si, sj])
if istep == 0:
continue
#if valid_map[si + istep // 2, sj + istep//4] < prob_thres:
if valid_map[si + istep // 2, sj + 1] < prob_thres:
continue
max_jstep = int(2 * istep * starget)
jstep = find_bbox(scale_cmap, starget, si, sj, istep, max_jstep)
area_sum = scale_cmap[si - 1, sj -1] + \
scale_cmap[si + istep, sj + jstep] - \
scale_cmap[si - 1, sj + jstep] - \
scale_cmap[si + istep, sj - 1]
centered_area_sum = scale_cmap[si + istep // 3 - 1, sj - 1] + \
scale_cmap[si + 2 * istep // 3, sj + jstep] - \
scale_cmap[si + istep // 3 - 1, sj + jstep] - \
scale_cmap[si + 2 * istep // 3, sj - 1]
if (centered_area_sum < .5 * starget) or (area_sum < .75 * starget) or (centered_area_sum < .5 *area_sum):
continue
carea_ratio += [centered_area_sum / area_sum]
bboxes += [sj, si, min(scale_cmap.shape[1]-1, sj + jstep), min(scale_cmap.shape[0]-1, si + istep)]
return np.asarray(bboxes), np.asarray(carea_ratio)
##############################################################
# function that computes the CNN output and auxiliary maps that assist the scanning process
def generate_maps(img, cnn, mask=None, carea_ratio=.5):
img = img.view([1, 1] + list(img.size()))
# compute CNN output
with torch.no_grad():
yc, s = cnn(img, reduce=False)
# use a mask for constraining area of search !!
if mask is not None:
mask = mask.view([1, 1] + list(mask.size()))
s = s * (torch.nn.functional.interpolate(mask, size=[s.size(2), s.size(3)], mode='bilinear') > 1e-3).float()
# character probs map
rmap = torch.nn.functional.softmax(yc, 1) * s
mask = 0 #-10 * (1 - s)
# precomputed auxiliary maps
ctc_map = torch.nn.functional.softmax(torch.nn.functional.max_pool2d(1.0 * yc + mask, [3, 1], 1, [1, 0]), 1)[0].permute(1, 2, 0).cpu().detach().numpy()
valid_map = torch.nn.functional.max_pool2d(torch.nn.functional.softmax(1.0 * yc, 1), [3, 3], 1, [1, 1])[0].permute(1, 2, 0).cpu().detach().numpy()
rmap = rmap[0].permute(1, 2, 0).cpu().detach().numpy()
# integral map using cumsum
cmap = rmap[:, :, 1:].cumsum(axis=0).cumsum(axis=1)
# scale integral map
scale_cmap = cmap.sum(axis=-1) #scale_map.cumsum(axis=0).cumsum(axis=1)
# precompute character size for every pixel
steps = precompute_scale(scale_cmap, carea_ratio=carea_ratio)
return ctc_map, cmap, scale_cmap, valid_map, steps
##############################################################
# simple function that computes pyramidal counting representation on query strinfs
def phoc_like(query , cdict, levels=1):
N = len(query)
vinds = np.asarray([cdict[c] - 1 for c in query])
descriptor = []
for K in range(levels):
sep = np.linspace(0, N - 1, 2 + K)
sc = .5 * (sep[1:] + sep[:-1])
ww = np.tile(np.arange(0, N).reshape(1, -1), (K + 1, 1))
ss = 1.0 * sc[0]
ww = np.exp(-(ww - sc.reshape(-1, 1)) ** 2 / (2 * (1.0 * ss) ** 2))
ww = ww / ww.sum(0)[None, :]
cnt_targets = np.zeros((ww.shape[0], len(cdict)-1))
for i, vind in enumerate(vinds):
cnt_targets[:, vind] += ww[:, i]
descriptor += [cnt_targets.reshape(-1)]
return np.concatenate(descriptor)
# PHOC-like function that computes pyramidal counting representation of an area of the image
@jit(nopython=True)
def pyramidal_counting(cmap, si, sj, ei, ej, levels):
pred = np.zeros(levels * (levels + 1) * cmap.shape[-1] // 2)
cnt = 0
for level in range(levels):
div = level + 1
for il in range(level + 1):
tsj, tej = sj + il * (ej - sj) // div, min(cmap.shape[1] - 1, sj + (il + 1) * (ej - sj) // div)
pred[cnt * cmap.shape[-1]: (cnt + 1) * cmap.shape[-1]] = cmap[ei, tej] + cmap[si - 1, tsj - 1] - cmap[
ei, tsj - 1] - cmap[si - 1, tej]
cnt += 1
return pred #np.asarray(pred) #np.concatenate(pred)
@jit(nopython=True)
def cos_scores(cmap, bboxes, cnt_target, levels=1, phoc_activate=False):
#cnt_target = cnt_target.astype(np.float32) # numba compatibility
if phoc_activate:
cnt_target = np.clip(cnt_target, 0, 1)
scores = np.zeros(bboxes.shape[0])
#valid_inds = [np.int(x) for x in range(0)]
tnorm = np.linalg.norm(cnt_target)
starget = np.sum(cnt_target)
for i, bbox in enumerate(bboxes):
si, sj, ei, ej = bbox[1], bbox[0], bbox[3], bbox[2]
pred = pyramidal_counting(cmap, si, sj, ei, ej, levels)
if phoc_activate:
pred = np.clip(pred, 0, 1)
tscore = np.dot(pred, cnt_target)
if tscore < .5 * starget and tscore > 1.5 * starget:
continue
tscore = tscore / (1e-10 + tnorm * np.linalg.norm(pred))
scores[i] = tscore #- .1 * pred[-1] # penalize space !!
return bboxes, scores
##############################################################
# non maximum suppression function
@jit(nopython=True)
def np_nms(dets, scores, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1] # get boxes with more ious first
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1) # maximum width
h = np.maximum(0.0, yy2 - yy1 + 1) # maximum height
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def nms_update(bboxes, scores, nms_iou, k):
valid_indices = np_nms(bboxes, scores, nms_iou)
if len(valid_indices) > k:
valid_indices = valid_indices[:k]
bboxes = bboxes[valid_indices]
scores = scores[valid_indices]
return bboxes, scores
##############################################################
# basic reimplementation of ctc in jit for speed
# has some extra properties like:
# hard mode: if true acts like viterbi decoding, else acts as the typical soft ctc process
# min mode: if true returns the index of the best score of the last query character
@jit(nopython=True)
def myctc(log_probs, labels, hard_mode=False, min_mode=True):
extended_labels = [0]
for label in labels:
extended_labels += [label, 0]
# logD matrix
D = -np.inf * np.ones((len(extended_labels), log_probs.shape[0]))
D[0, :] = log_probs[:, extended_labels[0]]
D[1, 0] = log_probs[0, extended_labels[1]]
for t in range(1, log_probs.shape[0]):
D[0, t] += D[0, t-1]
for t in range(1, log_probs.shape[0]):
if hard_mode:
D[1, t] = log_probs[t, extended_labels[1]] + max(D[1, t - 1], D[0, t - 1])
else:
D[1, t] = log_probs[t, extended_labels[1]] + np.logaddexp(D[1, t-1], D[0, t-1])
for t in range(1, log_probs.shape[0]):
for c in range(2, len(extended_labels)):
if hard_mode:
tmp = max(D[c, t - 1], D[c - 1, t - 1])
else:
tmp = np.logaddexp(D[c, t - 1], D[c-1, t - 1])
if (extended_labels[c] == 0) or (extended_labels[c] == extended_labels[c-2]):
D[c, t] = log_probs[t, extended_labels[c]] + tmp
else:
if hard_mode:
D[c, t] = log_probs[t, extended_labels[c]] + max(tmp, D[c - 2, t - 1])
else:
D[c, t] = log_probs[t, extended_labels[c]] + np.logaddexp(tmp, D[c-2, t - 1])
# traceback - assume monotone last section
if hard_mode:
fscores = -np.maximum(D[-1, :], D[-2, :])
else:
fscores = -np.logaddexp(D[-1, :], D[-2, :])
if min_mode:
offset = min(np.argmin(fscores) + 2, D.shape[1] - 1)
else:
offset = D.shape[1] - 1 #
return fscores[offset]/len(labels), offset
# compute ctc scores for every candidate bbox
# ctc_thres is the threshold for the ctc score that prunes candidates
# ctc_mode: 0: typical ctc, 1: ctc with min mode, 2: ctc with min mode and backward pass
@jit(nopython=True)
def ctc_scores(rmap, bboxes, labels, ctc_thres, ctc_mode=2):
offset = 5
nbboxes, nscores = [np.int(x) for x in range(0)], [np.float(x) for x in range(0)]
for bbox in bboxes:
sj, si, ej, ei = bbox
sj = max(sj, 0)
si = max(si, 0)
ei = min(max(ei, si + 1), rmap.shape[0])
ej = min(max(ej, sj + 1), rmap.shape[1])
tmap = rmap[(si + ei + 1) // 2, sj:min(ej + offset + 1, rmap.shape[1])]
#tmap = np.maximum(rmap[(si + ei + 1) // 2, sj:ej + 1], rmap[(si + ei + 1) // 2 - 1, sj:ej + 1])
tmap = np.log(1e-10 + tmap)
#tmap = np.log(tmap + 1e-10) - np.log(tmap.sum(axis=-1, keepdims=True) + 1e-10)
if ctc_mode == 0:
ctc_score, _ = myctc(tmap, labels, hard_mode=False, min_mode=False)
elif ctc_mode == 1 or ctc_mode == 2:
ctc_score, jstep = myctc(tmap, labels, hard_mode=False, min_mode=True)
ej = max(sj + jstep, sj + 1)
if ctc_mode == 2:
## backward!!
tmap = rmap[(si + ei + 1) // 2, max(sj - offset, 0):ej +1]
#tmap = np.maximum(rmap[(si + ei + 1) // 2, sj:ej + 1], rmap[(si + ei + 1) // 2 - 1, sj:ej + 1])
tmap = np.log(1e-10 + tmap)
ctc_score, bjstep = myctc(tmap[::-1], labels[::-1], hard_mode=False, min_mode=True)
sj = ej - bjstep - 1
else:
print('not valid ctc mode!!')
if ctc_score > ctc_thres:
continue
else:
nbboxes += [sj, si, ej, ei]
nscores += [ctc_score]
bboxes, scores = np.asarray(nbboxes).reshape(-1, 4), np.asarray(nscores)
return bboxes, scores
##############################################################
# main function for keyword spotting
def form_kws(rmap, cmap, scale_cmap, valid_map, steps, query, query_desc, classes, k=30, nms_iou=.1, cos_thres=.66, clevels=1, ctc_thres=None, ctc_mode=2, prob_thres=.01):
cdict = {c: i for i, c in enumerate(classes)}
cnt_target = np.zeros(len(classes) - 1)
for c in query:
if c in classes[1:-1]:
cnt_target[cdict[c] - 1] += 1.0 #.8 #1.0
starget = cnt_target.sum()
# !!!!!!!!!!!!!!
tvmap = valid_map[..., cdict[query[0]]]
bboxes, carea_ratio = scan_page(scale_cmap, steps, tvmap, starget, prob_thres)
bboxes = np.asarray(bboxes).reshape(-1, 4)
scores = np.zeros(bboxes.shape[0])
#enlarge area of interest by a small margin
dilate_r = 0.1
if bboxes.shape[0] > 0:
bboxes[:, 0] = bboxes[:, 0] - dilate_r * (bboxes[:, 2] - bboxes[:, 0])
bboxes[:, 2] = bboxes[:, 2] + dilate_r * (bboxes[:, 2] - bboxes[:, 0])
bboxes[:, 1] = bboxes[:, 1] - 2
bboxes[:, 3] = bboxes[:, 3] + 2
# first similarity matching step - pyramidal counting
if bboxes.shape[0] > 0:
bboxes, scores = cos_scores(cmap, bboxes, query_desc, levels=clevels)
mask = scores > cos_thres
bboxes = bboxes[mask]
scores = scores[mask]
# non maxima suppression
if bboxes.shape[0] > 0:
bboxes, scores = nms_update(bboxes, scores, nms_iou, k)
# second similarity matching step - ctc scoring
if bboxes.shape[0] > 0:
if ctc_thres is not None:
bboxes, scores = ctc_scores(rmap, bboxes, np.asarray([cdict[c] for c in query]), ctc_thres, ctc_mode)
if bboxes.shape[0] > 0:
# non maxima suppression
bboxes, scores = nms_update(bboxes, -scores, .01, k)
scores = - scores
else:
scores = 1 - scores # cosine similarity to cosine distance
#if bboxes.shape[0] > 0:
# bboxes[:, 1] = bboxes[:, 1] - 1
# bboxes[:, 3] = bboxes[:, 3] + 1
return bboxes, scores