forked from Netrux/Indoor_Position_Control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobstacle_detection.cpp
124 lines (104 loc) · 3.97 KB
/
obstacle_detection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import pyrealsense2 as rs
import mavros
import rospy
from std_msgs.msg import Int32,Int32MultiArray,MultiArrayDimension
import numpy as np
import cv2
import time
areaObj = 1000
frame_cx = 320
frame_cy = 240
clipping_distance_in_meters = 1 #meters
vectors = []
a = Int32MultiArray()
a.layout.dim.append(MultiArrayDimension())
#a.layout.dim[0].label = "x"
a.data = [0,0]
z = np.zeros(2)
avg_x = 0
avg_y = 0
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 360, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
# Start streaming
lower_blue = np.array([5,5,5])
upper_blue = np.array([255,255,255])
profile = pipeline.start(config)
# Getting the depth sensor's depth scale(0.001)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
print("Depth Scale is: " , depth_scale)
# We will be removing the background of objects more than
# clipping_distance_in_meters meters away
clipping_distance = clipping_distance_in_meters / depth_scale
# Create an align object
# rs.align allows us to perform alignment of depth frames to others frames
# The "align_to" is the stream type to which we plan to align depth frames.
align_to = rs.stream.color
align = rs.align(align_to)
kernel = np.ones((5,5),np.uint8)
kernel1 = np.ones((5,5),np.uint8)
pub = rospy.Publisher('object_found', Int32MultiArray, queue_size=10)
rospy.init_node('talker', anonymous=True)
rate = rospy.Rate(30) # 10hz
# Streaming loop
try:
while True:
start = time.time()
frames = pipeline.wait_for_frames()
aligned_frames = align.process(frames)
# Get aligned frames
aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image
color_frame = aligned_frames.get_color_frame()
# Validate that both frames are valid
if not aligned_depth_frame :
continue
depth_image = np.asanyarray(aligned_depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
# print(depth_image.shape)
# print(color_image.shape)
grey_color = 3000
depth_image2 = np.where((depth_image > clipping_distance) | (depth_image <= 0), grey_color, depth_image)
sorted_depth_vector = np.argpartition(depth_image2,25,None)
sorted_depth_vector2 = sorted_depth_vector[:20]
min_depth_col = sorted_depth_vector2/640
min_depth_row = sorted_depth_vector2%640
col_centroid = (np.sum(min_depth_col))/20
row_centroid = (np.sum(min_depth_row))/20
grey_color = 0
depth_image_3d = np.dstack((depth_image,depth_image,depth_image)) #depth image is 1 channel, color is 3 channels
bg_removed = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, color_image)
bg_removed1 = bg_removed
hsv = cv2.cvtColor(bg_removed1, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_blue,upper_blue)
add = 0
i = j = 0
add_x = add_y = 0
#print(depth_image[479,639])
while i < len(mask):
while j < len(mask[0]) :
add_x = add_x + (mask[i][j]/250) * (j-320)
j += 1
add_y = add_y + (mask[i][j-1]/255) * (i-240)
i += 1
#print(add_x)
add_x = float(add_x)/640.0
add_y = float(add_y)/480.0
print(add_x,add_y)
lineThickness = 2
cv2.line(mask, (320, 240), (int(add_x) + 320, int(add_y) + 240), (255,255,0), lineThickness)
cv2.circle(mask,(int(add_x) + 320,int(add_y) +240),7,(255,0,0),-1)
a.data = [add_x,add_y]
cv2.imshow('color_image',mask)
rospy.loginfo(a)
pub.publish(a)
rate.sleep()
key = cv2.waitKey(1)
#print(1/(time.time()-start))
# Press esc or 'q' to close the image window
if key & 0xFF == ord('q') or key == 27:
cv2.destroyAllWindows()
break
finally:
pipeline.stop()