-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrun.py
172 lines (135 loc) · 4.92 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Runs the human eval dataset through code-davinci for a pass@k evaluation.
I didn't test pass@100 because I started running into the rate limit for
tokens/minute.
"""
import asyncio
import json
import os
import re
import tqdm
import time
import openai
from dotenv import load_dotenv
from azure import azure_complete
from prompts import (
gpt4_prompt,
gpt_3_5_prompt,
azure_prompt,
claude_prompt
)
from claude import claude_complete
load_dotenv()
HEADERS = {
"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}",
"Content-Type": "application/json",
}
HUMAN_EVAL = os.environ['PWD'] + '/data/HumanEval.jsonl'
OUT_FILE = os.environ['PWD'] + '/results/results-{}-{}.jsonl'
async def retry(sem, fn):
for i in range(1, 3):
try:
async with sem:
return await fn()
except Exception as e:
print(e)
print('retrying')
time.sleep(0.3*i)
return await fn()
async def get_completion(sem, prompt, num_tries=1, model='code-davinci-002', num_errors=0):
#print(num_tries)
if num_tries == 1:
temperature = 0.0
elif num_tries == 10:
temperature = 0.6
elif num_tries == 100:
temperature = 0.8
else:
raise ValueError("num_tries must be 1, 10, or 100")
if model in {'gpt-3.5-turbo', 'gpt-4'}:
completion = await retry(sem, lambda: openai.ChatCompletion.acreate(messages=prompt, model=model, temperature=temperature, max_tokens=1000, n=num_tries))
choices = completion.choices
return [choice['message']['content'] for choice in choices]
elif model in {'azure-gpt-3.5-turbo'}:
completion = await retry(sem, lambda: azure_complete(prompt))
return [choice['text'] for choice in completion['choices']]
elif 'claude' in model:
return await retry(sem, lambda: claude_complete(prompt, model))
else:
completion = await retry(sem, lambda: openai.Completion.acreate(prompt=prompt, model=model, temperature=temperature, max_tokens=1000, n=num_tries))
choices = completion.choices
return [choice['text'] for choice in choices]
def iter_hval():
all_lines = []
with open(HUMAN_EVAL) as f:
for line in f:
all_lines.append(json.loads(line))
return all_lines
async def get_results(num_tries=10, model='gpt-4'):
out_file = OUT_FILE.format(model, num_tries)
with open(out_file, 'w') as f:
pass
sem = asyncio.Semaphore(10)
async def output(prompt, task_id):
if model == 'gpt-3.5-turbo':
full_prompt = gpt_3_5_prompt(prompt)
elif model == 'gpt-4':
full_prompt = gpt4_prompt(prompt)
elif model == 'azure-gpt-3.5-turbo':
full_prompt = azure_prompt(prompt)
elif 'claude' in model:
full_prompt = claude_prompt(prompt)
async with sem:
completions = await get_completion(sem, full_prompt, num_tries=num_tries, model=model)
outs = []
# print(completions)
for idx, completion in enumerate(completions):
if '<|start_of_completion|>' in completion:
completion = completion.split('<|start_of_completion|>')[1]
else:
pass
# print('no <|start_of_completion|> token')
# print(completion)
# print('______')
# print(prompt)
# print('')
outs.append({'task_id': task_id, 'completion': completion})
return outs
futures = []
for line in tqdm.tqdm(iter_hval()):
prompt = line['prompt']
task_id = line['task_id']
futures.append(output(prompt, task_id))
with open(out_file, 'a') as out_f:
for future in tqdm.tqdm(asyncio.as_completed(futures), total=len(futures)):
outs = await future
for out in outs:
out_f.write(json.dumps(out) + '\n')
remove_bloat(out_file)
def remove_bloat(in_jsonl):
new_results = []
with open(in_jsonl, 'r') as f:
for line in f:
out = json.loads(line)
special_token = re.search('\<\|\S+\|\>', out['completion'])
if special_token:
print(special_token)
out['completion'] = out['completion'][:special_token.start()]
stop_token = re.search('\n\S', out['completion'])
if stop_token:
out['completion'] = out['completion'][:stop_token.start()]
new_results.append(out)
with open(in_jsonl, 'w') as f:
for result in new_results:
f.write(json.dumps(result) + '\n')
if __name__ == '__main__':
num_tries=1
# model = 'gpt-4'
model = 'azure-gpt-3.5-turbo'
# model = 'claude-v1.3'
# model = 'claude-instant-v1.1'
# model = 'gpt-3.5-turbo'
asyncio.run(get_results(num_tries=num_tries, model=model))
out_f = OUT_FILE.format(model, num_tries)
remove_bloat(out_f)
print(out_f)