-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormscalc.m
66 lines (62 loc) · 2.56 KB
/
normscalc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
if calcnorms == 1
fprintf('Calculating norms...\n')
for idx = 1:length(invChains)
fprintf('\t%d/%d\n',idx,length(N)*length(controllers))
n = invChains(idx).sys.n;
y = invChains(idx).y;
P = invChains(idx).P;
% y(:,1:n) = wrapTo2Pi(y(:,1:n));
time = invChains(idx).time;
delta = y(:,1:n);
% delta = wrapTo2Pi(y(:,1:n));
omegastart = conf.omegaast*time;
% omegastart = wrapTo2Pi(conf.omegaast*time);
xi = y(:,3*n+1:4*n);
l2norma = zeros(size(y,1),n); % ok
z = reshape(y, size(y,1),n,(size(y,2))/n); % ok
[~, idx_DistOff] = min(abs(time - flag.DistOffT));
for tt = time' % every time step
idx_t = find(ismember(time,tt));
for idx_a = 1:n % every agent
ztemp = z(idx_t,idx_a,:); % ok
ztemp = reshape(ztemp,1,(size(y,2))/n);
ztemp(2) = ztemp(2) - conf.omegaast;
ztemp(3) = ztemp(3) - conf.Vast;
% disturbance on?
if flag.Dist && tt > flag.DistOnT && tt < flag.DistOffT
% [~, idx_DistOn] = min(abs(time - flag.DistOnT));
ztemp(1) = ztemp(1) - omegastart(idx_t) - ...
(delta(idx_DistOff-1,idx_a) - omegastart(idx_DistOff-1));
ztemp(1) = ztemp(1).*180/pi;
ztemp(4) = ztemp(4) - xi(idx_DistOff-1,idx_a);
elseif flag.Dist && flag.DistOffT==sys.simtime
ztemp(1) = ztemp(1) - omegastart(idx_t) - ...
(delta(idx_DistOn-1,idx_a) - omegastart(idx_DistOn-1));
ztemp(1) = ztemp(1).*180/pi;
ztemp(4) = ztemp(4) - xi(end-1,idx_a);
else
ztemp(1) = ztemp(1) - omegastart(idx_t) - ...
(delta(end-1,idx_a) - omegastart(end-1));
ztemp(1) = ztemp(1).*180/pi;
ztemp(4) = ztemp(4) - xi(end-1,idx_a);
end
% ztemp(1) = 0;
ztemp(5) = 0;
% l2 norm for each agent
l2norma(idx_t,idx_a) = norm(ztemp);
end
end
% max l2 norm among agents
l2normt = max(l2norma,[],2);
% supreme max l2
[linfnorm, ~] = max(max(l2norma));
invChains(idx).norms.l2 = l2normt;
invChains(idx).norms.linf = linfnorm;
% norms=0;
%%% --- ----------------- --- %%%
% y = y(find(time>10):end,:);
% P_final = P_final(find(time>10):end,:);
% Q_final = Q_final(find(time>10):end,:);
% time = time(time>10);
end
end