Performance for deepseek-r1 1.73 quantized inference in llama.cpp #11881
Unanswered
Jackarry188
asked this question in
Q&A
Replies: 1 comment
-
This is expected, you are loading 28 layers to GPUs and 34 layers to CPU, |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Deploying the deepseek 1.73 quantized version model using llama.cpp, ngl offloaded 28 layers to the GPU, and it was found that the VRAM was nearly full. However, during inference, the CPU utilization nearly 3000%, while the GPU utilization averaged only around 3%-5%. The context length was set to the default of 4096, and changing it to 2048 did not resolve the issue. What could be the reason for this? Are there any parameters that can increase GPU utilization? The same problem occurs when deploying via ollama.
env:
OS:Ubuntu 22.04
CPU:Eypc 7542 32c
GPU: 3090 * 2, 4090 *1
ollama-cli detail:
$ llama-cli -m "DeepSeek-R1-UD-IQ1_M.gguf" -ngl 28 -cnv -c 2048
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
Device 2: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 4654 (9ab42dc) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4090) - 48144 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) - 23901 MiB free
llama_model_load_from_file_impl: using device CUDA2 (NVIDIA GeForce RTX 3090) - 23901 MiB free
llama_model_loader: loaded meta data with 52 key-value pairs and 1025 tensors from DeepSeek-R1-UD-IQ1_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = deepseek2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = DeepSeek R1 BF16
llama_model_loader: - kv 3: general.quantized_by str = Unsloth
llama_model_loader: - kv 4: general.size_label str = 256x20B
llama_model_loader: - kv 5: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 6: deepseek2.block_count u32 = 61
llama_model_loader: - kv 7: deepseek2.context_length u32 = 163840
llama_model_loader: - kv 8: deepseek2.embedding_length u32 = 7168
llama_model_loader: - kv 9: deepseek2.feed_forward_length u32 = 18432
llama_model_loader: - kv 10: deepseek2.attention.head_count u32 = 128
llama_model_loader: - kv 11: deepseek2.attention.head_count_kv u32 = 128
llama_model_loader: - kv 12: deepseek2.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 13: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: deepseek2.expert_used_count u32 = 8
llama_model_loader: - kv 15: deepseek2.leading_dense_block_count u32 = 3
llama_model_loader: - kv 16: deepseek2.vocab_size u32 = 129280
llama_model_loader: - kv 17: deepseek2.attention.q_lora_rank u32 = 1536
llama_model_loader: - kv 18: deepseek2.attention.kv_lora_rank u32 = 512
llama_model_loader: - kv 19: deepseek2.attention.key_length u32 = 192
llama_model_loader: - kv 20: deepseek2.attention.value_length u32 = 128
llama_model_loader: - kv 21: deepseek2.expert_feed_forward_length u32 = 2048
llama_model_loader: - kv 22: deepseek2.expert_count u32 = 256
llama_model_loader: - kv 23: deepseek2.expert_shared_count u32 = 1
llama_model_loader: - kv 24: deepseek2.expert_weights_scale f32 = 2.500000
llama_model_loader: - kv 25: deepseek2.expert_weights_norm bool = true
llama_model_loader: - kv 26: deepseek2.expert_gating_func u32 = 2
llama_model_loader: - kv 27: deepseek2.rope.dimension_count u32 = 64
llama_model_loader: - kv 28: deepseek2.rope.scaling.type str = yarn
llama_model_loader: - kv 29: deepseek2.rope.scaling.factor f32 = 40.000000
llama_model_loader: - kv 30: deepseek2.rope.scaling.original_context_length u32 = 4096
llama_model_loader: - kv 31: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.100000
llama_model_loader: - kv 32: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 33: tokenizer.ggml.pre str = deepseek-v3
llama_model_loader: - kv 34: tokenizer.ggml.tokens arr[str,129280] = ["<|begin▁of▁sentence|>", "<�...
llama_model_loader: - kv 35: tokenizer.ggml.token_type arr[i32,129280] = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 36: tokenizer.ggml.merges arr[str,127741] = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
llama_model_loader: - kv 37: tokenizer.ggml.bos_token_id u32 = 0
llama_model_loader: - kv 38: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 39: tokenizer.ggml.padding_token_id u32 = 128815
llama_model_loader: - kv 40: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 41: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 42: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 43: general.quantization_version u32 = 2
llama_model_loader: - kv 44: general.file_type u32 = 24
llama_model_loader: - kv 45: quantize.imatrix.file str = DeepSeek-R1.imatrix
llama_model_loader: - kv 46: quantize.imatrix.dataset str = /training_data/calibration_datav3.txt
llama_model_loader: - kv 47: quantize.imatrix.entries_count i32 = 720
llama_model_loader: - kv 48: quantize.imatrix.chunks_count i32 = 124
llama_model_loader: - kv 49: split.no u16 = 0
llama_model_loader: - kv 50: split.tensors.count i32 = 1025
llama_model_loader: - kv 51: split.count u16 = 0
llama_model_loader: - type f32: 361 tensors
llama_model_loader: - type q2_K: 55 tensors
llama_model_loader: - type q3_K: 3 tensors
llama_model_loader: - type q4_K: 190 tensors
llama_model_loader: - type q5_K: 116 tensors
llama_model_loader: - type q6_K: 184 tensors
llama_model_loader: - type iq1_s: 116 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = IQ1_S - 1.5625 bpw
print_info: file size = 157.31 GiB (2.01 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 819
load: token to piece cache size = 0.8223 MB
print_info: arch = deepseek2
print_info: vocab_only = 0
print_info: n_ctx_train = 163840
print_info: n_embd = 7168
print_info: n_layer = 61
print_info: n_head = 128
print_info: n_head_kv = 128
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_embd_head_k = 192
print_info: n_embd_head_v = 128
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 24576
print_info: n_embd_v_gqa = 16384
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 18432
print_info: n_expert = 256
print_info: n_expert_used = 8
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = yarn
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn = 4096
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 671B
print_info: model params = 671.03 B
print_info: general.name = DeepSeek R1 BF16
print_info: n_layer_dense_lead = 3
print_info: n_lora_q = 1536
print_info: n_lora_kv = 512
print_info: n_ff_exp = 2048
print_info: n_expert_shared = 1
print_info: expert_weights_scale = 2.5
print_info: expert_weights_norm = 1
print_info: expert_gating_func = sigmoid
print_info: rope_yarn_log_mul = 0.1000
print_info: vocab type = BPE
print_info: n_vocab = 129280
print_info: n_merges = 127741
print_info: BOS token = 0 '<|begin▁of▁sentence|>'
print_info: EOS token = 1 '<|end▁of▁sentence|>'
print_info: EOT token = 1 '<|end▁of▁sentence|>'
print_info: PAD token = 128815 '<|PAD▁TOKEN|>'
print_info: LF token = 201 'Ċ'
print_info: FIM PRE token = 128801 '<|fim▁begin|>'
print_info: FIM SUF token = 128800 '<|fim▁hole|>'
print_info: FIM MID token = 128802 '<|fim▁end|>'
print_info: EOG token = 1 '<|end▁of▁sentence|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloaded 28/62 layers to GPU
load_tensors: CPU_Mapped model buffer size = 84945.41 MiB
load_tensors: CUDA0 model buffer size = 40789.64 MiB
load_tensors: CUDA1 model buffer size = 19035.16 MiB
load_tensors: CUDA2 model buffer size = 16315.85 MiB
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 2048
llama_init_from_model: n_ctx_per_seq = 2048
llama_init_from_model: n_batch = 2048
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 0
llama_init_from_model: freq_base = 10000.0
llama_init_from_model: freq_scale = 0.025
llama_init_from_model: n_ctx_per_seq (2048) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 2048, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 61, can_shift = 0
llama_kv_cache_init: CPU KV buffer size = 5280.00 MiB
llama_kv_cache_init: CUDA0 KV buffer size = 2400.00 MiB
llama_kv_cache_init: CUDA1 KV buffer size = 1120.00 MiB
llama_kv_cache_init: CUDA2 KV buffer size = 960.00 MiB
llama_init_from_model: KV self size = 9760.00 MiB, K (f16): 5856.00 MiB, V (f16): 3904.00 MiB
llama_init_from_model: CPU output buffer size = 0.49 MiB
llama_init_from_model: CUDA0 compute buffer size = 2314.00 MiB
llama_init_from_model: CUDA1 compute buffer size = 670.00 MiB
llama_init_from_model: CUDA2 compute buffer size = 670.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 84.01 MiB
llama_init_from_model: graph nodes = 5025
llama_init_from_model: graph splits = 618 (with bs=512), 5 (with bs=1)
common_init_from_params: KV cache shifting is not supported for this model, disabling KV cache shifting
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 32
Beta Was this translation helpful? Give feedback.
All reactions