-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsae_eval_bwd.py
142 lines (123 loc) · 4.39 KB
/
sae_eval_bwd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import socket
import urllib3
from urllib3.connection import HTTPConnection
HTTPConnection.default_socket_options = HTTPConnection.default_socket_options + [
(socket.SOL_SOCKET, socket.SO_SNDBUF, 2000000),
(socket.SOL_SOCKET, socket.SO_RCVBUF, 2000000),
]
import argparse
import json
import os
import pandas as pd
import torch
from datasets import load_dataset
from sae_lens import SAE, ActivationsStore, HookedSAETransformer
from sae_lens.config import LanguageModelSAERunnerConfig
from sae_lens.evals import EvalConfig, run_evals
from tqdm import tqdm
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
# Parse args
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--component", type=str, default="RES")
args = parser.parse_args()
default_cfg = LanguageModelSAERunnerConfig(
# Data Generating Function (Model + Training Distibuion)
model_name="pythia-160m-deduped",
hook_name=None,
hook_layer=None,
dataset_path="NeelNanda/pile-small-tokenized-2b",
is_dataset_tokenized=True,
context_size=1024,
streaming=True,
# SAE Parameters
architecture="jumprelu",
d_in=768,
d_sae=None,
b_dec_init_method="zeros",
expansion_factor=8,
activation_fn="relu", # relu, tanh-relu, topk
normalize_sae_decoder=True,
from_pretrained_path=None,
apply_b_dec_to_input=False,
# Activation Store Parameters
n_batches_in_buffer=128,
# Misc
device=device,
seed=42,
dtype="float32",
prepend_bos=False,
)
eval_cfg = EvalConfig(
batch_size_prompts=8,
# Reconstruction metrics
n_eval_reconstruction_batches=32,
compute_kl=True,
compute_ce_loss=True,
# Sparsity and variance metrics
n_eval_sparsity_variance_batches=1,
compute_l2_norms=True,
compute_sparsity_metrics=True,
compute_variance_metrics=True,
)
def update_cfg(act_layer, hook_name):
default_cfg.hook_layer = act_layer
default_cfg.hook_name = f"blocks.{act_layer}.{hook_name}"
return default_cfg
# Load SAE
if args.component == "RES":
component = "rs-post"
hook_name = "hook_resid_post"
elif args.component == "MLP":
component = "mlp-out"
hook_name = "hook_mlp_out"
elif args.component == "ATT":
component = "attn-z"
hook_name = "attn.hook_z"
else:
raise ValueError("Invalid component.")
# Create checkpoint mapping
direction = "backward"
ckpt_folder = f"/root/sae-transfer-learning/checkpoints/{direction}_TL"
ckpt_step = "final_500002816"
mapping = {}
for _dir in os.listdir(ckpt_folder):
try:
cfg = json.load(open(os.path.join(ckpt_folder, _dir, ckpt_step, "cfg.json")))
mapping[_dir] = f"L{cfg['hook_name'].split('.')[1]}"
except FileNotFoundError:
continue
inv_mapping = {v: k for k, v in mapping.items()}
# Load model
model = HookedSAETransformer.from_pretrained("pythia-160m-deduped").to(device)
checkpoints = ["100003840", "200003584", "300003328", "400003072", "final_500002816"]
start_layer = 1
end_layer = model.cfg.n_layers
direction = "backward"
ckpt_folder = f"/root/sae-transfer-learning/checkpoints/{direction}_TL"
dataset = load_dataset("NeelNanda/pile-small-tokenized-2b", streaming=True, split="train")
for ckpt_step in checkpoints:
print(f"Checkpoint: {ckpt_step}")
all_transfer_metrics = []
for act_idx in range(model.cfg.n_layers):
# Set activation store
cfg = update_cfg(act_idx, hook_name)
activations_store = ActivationsStore.from_config(model, cfg)
for sae_idx in tqdm(range(start_layer, end_layer)):
try:
# Load SAE
TRANSFER_SAE_PATH = os.path.join(ckpt_folder, inv_mapping[f"L{sae_idx-1}"], ckpt_step)
sae = SAE.load_from_pretrained(TRANSFER_SAE_PATH).to(device)
metrics = run_evals(sae, activations_store, model, eval_cfg)
metrics = {k.split("/")[-1]: v for k, v in metrics.items()}
print(f"L{sae_idx} SAE on L{act_idx} activations. C/E: {metrics['ce_loss_score']:.3f}")
all_transfer_metrics.append(pd.Series(metrics, name=f"{act_idx}-{sae_idx}"))
except Exception as e:
print(f"Failed to load L{sae_idx} SAE.", e)
continue
all_transfer_metrics = pd.concat(all_transfer_metrics, axis=1).T
all_transfer_metrics.to_csv(f"eval/{component}_transfer_backward_{ckpt_step}_all_mse.csv")