-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_utils.py
49 lines (40 loc) · 1.54 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copied from tensorflow tutorial file:
# https://github.com/tensorflow/nmt/blob/tf-1.4/nmt/utils/evaluation_utils.py
import codecs
import os
import re
import subprocess
import tensorflow as tf
import bleu as _bleu
def _clean(sentence):
"""Clean and handle BPE outputs."""
sentence = sentence.strip()
sentence = re.sub("@@ ", "", sentence)
return sentence
# Follow //transconsole/localization/machine_translation/metrics/bleu_calc.py
def bleu(ref_file, trans_file):
"""Compute BLEU scores and handling BPE."""
max_order = 4
smooth = False
ref_files = [ref_file]
reference_text = []
for reference_filename in ref_files:
with codecs.getreader("utf-8")(tf.gfile.GFile(reference_filename,
"rb")) as fh:
reference_text.append(fh.readlines())
per_segment_references = []
for references in zip(*reference_text):
reference_list = []
for reference in references:
reference = _clean(reference)
reference_list.append(reference.split(" "))
per_segment_references.append(reference_list)
translations = []
with codecs.getreader("utf-8")(tf.gfile.GFile(trans_file, "rb")) as fh:
for line in fh:
line = _clean(line)
translations.append(line.split(" "))
# bleu_score, precisions, bp, ratio, translation_length, reference_length
bleu_score, _, _, _, _, _ = _bleu.compute_bleu(
per_segment_references, translations, max_order, smooth)
return 100 * bleu_score