-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathnifpp.h
1133 lines (944 loc) · 28.8 KB
/
nifpp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright Daniel Goertzen 2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// nifpp is a C++11 Wrapper for the Erlang NIF API
//
//
// Boost license was chosen for nifpp because resource_ptr is derived
// from boost::intrusive_ptr. License header from intrusive_ptr.hpp is...
//
// intrusive_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/smart_ptr/intrusive_ptr.html for documentation.
//
#ifndef NIFPP_H
#define NIFPP_H
// Suppress warning
// erlang/26.0/erts-14.0/include/erl_nif.h:192:21: warning: comma at end of enumerator list [-Wpedantic]
// 192 | ERL_NIF_UTF8 = 2,
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#include <erl_nif.h>
#pragma GCC diagnostic pop
// Only define map functions if they are available
#define NIFPP_HAS_MAPS ((ERL_NIF_MAJOR_VERSION > 2) || (ERL_NIF_MAJOR_VERSION==2 && ERL_NIF_MINOR_VERSION >= 6))
#include <string>
#include <tuple>
#include <array>
#include <vector>
#include <list>
#include <deque>
#include <set>
#include <unordered_set>
#if NIFPP_HAS_MAPS
#include <map>
#include <unordered_map>
#endif
#include <cassert>
#include <cstring>
namespace nifpp
{
class badarg{};
struct TERM
{
ERL_NIF_TERM v;
TERM() {}
explicit TERM(ERL_NIF_TERM x):v(x){}
inline operator ERL_NIF_TERM() const
{return v;}
bool operator<(const TERM rhs) const
{return v<rhs.v;}
// There's no need to overload operator==, since the TERM has
// implicit cast to ERL_NIF_TERM, which is long int.
};
static_assert(sizeof(TERM)==sizeof(ERL_NIF_TERM), "TERM size does not match ERL_NIF_TERM");
class str_atom: public std::string
{
public:
template<class ... Args>
str_atom(Args&& ... args) : std::string(args...) { }
};
class atom
{
public:
atom() : val(0) {}
atom(ErlNifEnv* env, const char* val) : val(enif_make_atom(env, val)) {}
atom(ErlNifEnv* env, ERL_NIF_TERM v)
{
if (!enif_is_atom(env, v)) [[unlikely]]
throw badarg();
val = v;
}
atom(atom&& v) : val(v) {}
atom(const atom& v) : val(v) {}
bool init(ErlNifEnv* env, const char* v)
{
assert(v == 0);
size_t len = strlen(v);
val = enif_make_atom_len(env, v, len);
return len > 255 ? false : true;
}
bool init(ErlNifEnv* env, ERL_NIF_TERM v)
{
assert(val == 0);
if(!enif_is_atom(env, v)) [[unlikely]]
return false;
val = v;
return true;
}
bool initialized() const { return val != 0; }
void operator=(atom&& v) { val = v.val; }
void operator=(const atom& v) { val = v.val; }
bool operator==(ERL_NIF_TERM rhs) const { return enif_is_identical(val, rhs); }
bool operator!=(ERL_NIF_TERM rhs) const { return !enif_is_identical(val, rhs); }
bool operator==(const atom& rhs) const { return enif_is_identical(val, rhs.val); }
bool operator!=(const atom& rhs) const { return !enif_is_identical(val, rhs.val); }
operator ERL_NIF_TERM() const { return val; }
std::string to_string(ErlNifEnv* env, ErlNifCharEncoding encoding = ERL_NIF_LATIN1) const
{
assert(val);
char buf[256];
enif_get_atom(env, val, buf, sizeof(buf), encoding);
return buf;
}
private:
ERL_NIF_TERM val;
};
} //namespace nifpp
// Add std::hash specializations.
// This allows nifpp types to be used in unordered_xxx containers.
namespace std {
template<> struct hash<nifpp::TERM>
{
std::size_t operator()(const nifpp::TERM& k) const
{
return hash<ERL_NIF_TERM>()(k.v);
}
};
template<> struct hash<nifpp::str_atom>
{
std::size_t operator()(const nifpp::str_atom& k) const
{
return hash<std::string>()(k);
}
};
template<> struct hash<nifpp::atom>
{
std::size_t operator()(const nifpp::atom& k) const
{
return hash<ERL_NIF_TERM>()(k);
}
};
} //namespace std
namespace nifpp
{
struct binary;
TERM make(ErlNifEnv *env, binary &var);
struct binary: public ErlNifBinary
{
public:
//binary(): needs_release(false) {}
explicit binary(size_t _size)
{
needs_release = enif_alloc_binary(_size, this);
}
#ifdef NIFPP_INTRUSIVE_UNIT_TEST
static int release_counter;
#endif
~binary()
{
if(needs_release)
{
#ifdef NIFPP_INTRUSIVE_UNIT_TEST
release_counter++;
#endif
enif_release_binary(this);
}
}
friend TERM make(ErlNifEnv *env, binary &var); // make can set owns_data to false
protected:
bool needs_release;
private:
// there's no nice way to keep track of owns_data in copies, so just prevent copying
binary(const binary &) = delete;
binary & operator=(const binary &) = delete;
};
#ifdef NIFPP_INTRUSIVE_UNIT_TEST
int binary::release_counter=0;
#endif
//
// get()/make() functions
//
// forward declare all container overloads so they can be used recursively
template<typename ...Ts> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::tuple<Ts...> &var);
template<typename ...Ts> TERM make(ErlNifEnv *env, const std::tuple<Ts...> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::vector<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::vector<T> &var);
TERM make(ErlNifEnv *env, const std::vector<TERM> &var);
template<typename T, size_t N> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::array<T, N> &var);
template<typename T, size_t N> TERM make(ErlNifEnv *env, const std::array<T, N> &var);
template<size_t N>TERM make(ErlNifEnv *env, const std::array<TERM, N> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::list<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::list<T> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::deque<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::deque<T> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::set<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::set<T> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::unordered_set<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::unordered_set<T> &var);
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::multiset<T> &var);
template<typename T> TERM make(ErlNifEnv *env, const std::multiset<T> &var);
#if NIFPP_HAS_MAPS
template<typename TK, typename TV> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::map<TK,TV> &var);
template<typename TK, typename TV> TERM make(ErlNifEnv *env, const std::map<TK,TV> &var);
template<typename TK, typename TV> bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::unordered_map<TK,TV> &var);
template<typename TK, typename TV> TERM make(ErlNifEnv *env, const std::unordered_map<TK,TV> &var);
#endif
// ERL_NIF_TERM
inline bool get(ErlNifEnv *, ERL_NIF_TERM term, TERM &var)
{
var = TERM(term);
return true;
}
inline TERM make(ErlNifEnv *, const TERM term)
{
return TERM(term);
}
// str_atom
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, str_atom &var, ErlNifCharEncoding encoding = ERL_NIF_LATIN1)
{
unsigned len;
int ret = enif_get_atom_length(env, term, &len, encoding);
if(!ret) [[unlikely]] return false;
var.resize(len+1); // +1 for terminating null
ret = enif_get_atom(env, term, var.data(), var.size(), encoding);
if(!ret) [[unlikely]] return false;
var.resize(len); // trim terminating null
return true;
}
inline TERM make(ErlNifEnv *env, const str_atom &var)
{
return TERM(enif_make_atom(env, var.c_str()));
}
// atom
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, atom &var)
{
return var.init(env, term);
}
inline TERM make(ErlNifEnv *, const atom &var)
{
assert(var.initialized());
return TERM(var);
}
// std::string
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::string &var, ErlNifCharEncoding encoding = ERL_NIF_LATIN1)
{
// The implementation below iterates through the list twice. It may
// be faster to iterate through the list and append bytes one at a time.
unsigned len;
int ret = enif_get_list_length(env, term, &len); // full list iteration
if(!ret)
{
// not a list, try as binary
ErlNifBinary bin;
ret = enif_inspect_binary(env, term, &bin);
if(!ret) [[unlikely]]
{
// not a binary either, so fail.
return false;
}
var = std::string((const char*)bin.data, bin.size);
return ret;
}
var.resize(len+1); // +1 for terminating null
ret = enif_get_string(env, term, var.data(), var.size(), encoding); // full list iteration
if(ret > 0)
{
var.resize(ret-1); // trim terminating null
}
else if(ret==0)
{
var.resize(0);
}
else
{
// oops string somehow got truncated
// var is correct size so do nothing
}
return ret;
}
inline TERM make(ErlNifEnv *env, const std::string &var, ErlNifCharEncoding encoding = ERL_NIF_LATIN1)
{
return TERM(enif_make_string_len(env, var.data(), var.size(), encoding));
}
// bool
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, bool &var)
{
char buf[6]; // max( len("true"), len("false")) + 1
if(!enif_get_atom(env, term, buf, sizeof(buf), ERL_NIF_LATIN1)) [[unlikely]]
return false;
if(strcmp(buf, "true")==0)
{
var = true;
return 1;
}
else if(strcmp(buf, "false")==0)
{
var = false;
return 1;
}
return false; // some other atom, return error
}
inline TERM make(ErlNifEnv *env, const bool var)
{
return TERM(enif_make_atom(env, var?"true":"false"));
}
// Number conversions
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, double &var)
{
return enif_get_double(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const double var)
{
return TERM(enif_make_double(env, var));
}
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, int &var)
{
return enif_get_int(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const int var)
{
return TERM(enif_make_int(env, var));
}
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, unsigned int &var)
{
return enif_get_uint(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const unsigned int var)
{
return TERM(enif_make_uint(env, var));
}
#if SIZEOF_LONG != 8
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, ErlNifSInt64 &var)
{
return enif_get_int64(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const ErlNifSInt64 var)
{
return TERM(enif_make_int64(env, var));
}
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, ErlNifUInt64 &var)
{
return enif_get_uint64(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const ErlNifUInt64 var)
{
return TERM(enif_make_uint64(env, var));
}
#endif
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, long &var)
{
return enif_get_long(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const long var)
{
return TERM(enif_make_long(env, var));
}
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, unsigned long &var)
{
return enif_get_ulong(env, term, &var);
}
inline TERM make(ErlNifEnv *env, const unsigned long var)
{
return TERM(enif_make_ulong(env, var));
}
// binary and ErlNifBinary
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, ErlNifBinary &var)
{
return enif_inspect_binary(env, term, &var);
}
inline TERM make(ErlNifEnv *env, ErlNifBinary &var)
{
return TERM(enif_make_binary(env, &var));
}
inline TERM make(ErlNifEnv *env, binary &var)
{
var.needs_release = false;
return TERM(enif_make_binary(env, &var));
}
// ErlNifPid
inline bool get(ErlNifEnv *env, ERL_NIF_TERM term, ErlNifPid &var)
{
return TERM(enif_get_local_pid(env, term, &var));
}
inline TERM make(ErlNifEnv *env, const ErlNifPid &var)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
return TERM(enif_make_pid(env, &var));
#pragma GCC diagnostic pop
}
//
// resource wrappers
//
// forward declarations for friend statements
template<class T> class resource_ptr;
template<typename T> bool get(ErlNifEnv *env, ERL_NIF_TERM term, resource_ptr<T> &var);
template<typename T, typename ...Args> resource_ptr<T> construct_resource(Args&&... args);
template<class T> class resource_ptr
{
private:
typedef resource_ptr this_type;
public:
typedef T element_type;
resource_ptr(): px( 0 )
{
}
private:
resource_ptr( T * p, bool add_ref ): px( p )
{
if( px != 0 && add_ref ) enif_keep_resource((void*)px);
}
// construction only permitted from these functions:
template<typename U, typename ...Args>
friend resource_ptr<U> construct_resource(Args&&... args);
template<typename U>
friend bool get(ErlNifEnv *env, ERL_NIF_TERM term, resource_ptr<U> &var);
// I would have liked to specialize these to T instead of granting access
// to all U, but this is just simpler.
public:
resource_ptr(resource_ptr const & rhs): px( rhs.px )
{
if( px != 0 ) enif_keep_resource((void*)px);
}
~resource_ptr()
{
if( px != 0 ) enif_release_resource((void*)px);
}
resource_ptr(resource_ptr && rhs): px( rhs.px )
{
rhs.px = 0;
}
resource_ptr & operator=(resource_ptr && rhs)
{
this_type( static_cast< resource_ptr && >( rhs ) ).swap(*this);
return *this;
}
resource_ptr & operator=(resource_ptr const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
resource_ptr & operator=(T * rhs)
{
this_type(rhs).swap(*this);
return *this;
}
void reset()
{
this_type().swap( *this );
}
void reset( T * rhs )
{
this_type( rhs ).swap( *this );
}
T * get() const
{
return px;
}
T & operator*() const
{
assert( px != 0 );
return *px;
}
T * operator->() const
{
assert( px != 0 );
return px;
}
operator bool () const
{
return px != 0;
}
void swap(resource_ptr & rhs)
{
T * tmp = px;
px = rhs.px;
rhs.px = tmp;
}
private:
T * px;
};
template<class T, class U> inline bool operator==(resource_ptr<T> const & a, resource_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(resource_ptr<T> const & a, resource_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T, class U> inline bool operator==(resource_ptr<T> const & a, U * b)
{
return a.get() == b;
}
template<class T, class U> inline bool operator!=(resource_ptr<T> const & a, U * b)
{
return a.get() != b;
}
template<class T, class U> inline bool operator==(T * a, resource_ptr<U> const & b)
{
return a == b.get();
}
template<class T, class U> inline bool operator!=(T * a, resource_ptr<U> const & b)
{
return a != b.get();
}
template<class T> inline bool operator<(resource_ptr<T> const & a, resource_ptr<T> const & b)
{
return std::less<T *>()(a.get(), b.get());
}
template<class T> void swap(resource_ptr<T> & lhs, resource_ptr<T> & rhs)
{
lhs.swap(rhs);
}
// mem_fn support
template<class T> T * get_pointer(resource_ptr<T> const & p)
{
return p.get();
}
template<class T, class U> resource_ptr<T> static_pointer_cast(resource_ptr<U> const & p)
{
return static_cast<T *>(p.get());
}
template<class T, class U> resource_ptr<T> const_pointer_cast(resource_ptr<U> const & p)
{
return const_cast<T *>(p.get());
}
template<class T, class U> resource_ptr<T> dynamic_pointer_cast(resource_ptr<U> const & p)
{
return dynamic_cast<T *>(p.get());
}
namespace detail //(resource detail)
{
template<typename T>
struct dtor_wrapper
{
T obj;
bool constructed;
};
template<typename T>
void resource_dtor(ErlNifEnv*, void* obj)
{
// invoke destructor only if object was successfully constructed
if(reinterpret_cast<dtor_wrapper<T>*>(obj)->constructed)
{
reinterpret_cast<T*>(obj)->~T();
}
}
template<typename T>
struct resource_data
{
static ErlNifResourceType* type;
};
template<typename T> ErlNifResourceType* resource_data<T>::type=0;
/*
The above definition deserves some explanation:
As the compiler sees usages of register_resource<T>() and get(..., resource_ptr<T>),
instances of the above variable will pop into existance to hold the Erlang
resource type (ErlNifResourceType*). register_resource<T>() initializes the
value, and get(..., resource_ptr<T>) uses it.
Definitions of static data members have external linkage, so if you are using
the same resource type in multiple source files, each compiled object will
have a duplicate instance of resource_data<T>::type. For non-template static
data members you will get duplicate symbol errors at link-time. For *template*
static data members, the consensus seems to be that the linker should eliminate
all duplicates (which is what we want). The C++ standard isn't very explicit
about this (at least to me), so if you do run into duplicate symbol issues with
the above definition, simply move the above def into your source file where all
your register_resource<T>() calls are. This will ensure that the above
definition appears only once in the final binary.
References:
http://stackoverflow.com/questions/19366615/static-member-variable-in-class-template
*/
} // namespace detail (resource detail)
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, resource_ptr<T> &var)
{
void *rawptr;
if(!enif_get_resource(env, term, detail::resource_data<T>::type, &rawptr)) [[unlikely]]
return false;
var=resource_ptr<T>((T*)rawptr, true);
return true;
}
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, T* &var)
{
return enif_get_resource(env, term, detail::resource_data<T>::type, (void**)&var);
}
template<typename T>
TERM make(ErlNifEnv *env, const resource_ptr<T> &var)
{
return TERM(enif_make_resource(env, (void*)var.get()));
}
template<typename T>
TERM make_resource_binary(ErlNifEnv *env, const resource_ptr<T> &var, const void* data, size_t size)
{
return TERM(enif_make_resource_binary(env, (void*)var.get(), data, size));
}
template<typename T>
bool register_resource(ErlNifEnv* env,
const char* module_str,
const char* name,
ErlNifResourceFlags flags = ErlNifResourceFlags(ERL_NIF_RT_CREATE|ERL_NIF_RT_TAKEOVER),
ErlNifResourceFlags* tried = nullptr)
{
ErlNifResourceType* type = enif_open_resource_type(env,
module_str,
name,
&detail::resource_dtor<T>,
flags,
tried);
if(!type)
{
detail::resource_data<T>::type = 0;
return false;
}
else
{
detail::resource_data<T>::type = type;
return true;
}
}
template<typename T, typename ...Args>
resource_ptr<T> construct_resource(Args&&... args)
{
ErlNifResourceType* type = detail::resource_data<T>::type;
assert(type!=0);
if(type)
{
void *mem = enif_alloc_resource(type, sizeof(detail::dtor_wrapper<T>));
// immediately assign to resource pointer so that release will be called if construction fails
resource_ptr<T> rptr(reinterpret_cast<T*>(mem), false); //note: private ctor
// inhibit destructor in case ctor fails
reinterpret_cast<detail::dtor_wrapper<T>*>(mem)->constructed = false;
// invoke constructor with "placement new"
new(mem) T(std::forward<Args>(args)...);
// ctor succeeded, enable dtor
reinterpret_cast<detail::dtor_wrapper<T>*>(mem)->constructed = true;
return rptr;
}
else
{
return resource_ptr<T>();
}
}
//
// container get()/make()
//
// tuple
template<typename ...Ts>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::tuple<Ts...> &var)
{
int arity;
const ERL_NIF_TERM *array;
int ret = enif_get_tuple(env, term, &arity, &array);
// check if tuple
if(!ret)
return ret;
// check for matching arity
if(size_t(arity) != sizeof...(Ts)) [[unlikely]]
return false;
auto res = true;
auto set = [env, &res, &array](auto&& x) { res &= get(env, *array++, x); };
std::apply([&set](auto&&... arg) { (set(std::forward<decltype(arg)>(arg)), ...); }, var);
return res;
}
template<typename T1, typename T2>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::pair<T1, T2>& var)
{
int arity;
const ERL_NIF_TERM *array;
int ret = enif_get_tuple(env, term, &arity, &array);
// check if tuple of size 2
if(!ret || arity != 2) [[unlikely]]
return false;
return get(env, array[0], var.first) && get(env, array[1], var.second);
}
template<typename ...Ts>
TERM make(ErlNifEnv *env, const std::tuple<Ts...> &var)
{
std::array<ERL_NIF_TERM, sizeof...(Ts)> array;
auto it = array.begin();
std::apply([env, &it](auto&&... x) { ((*it++ = make(env, x)), ...); }, var);
return TERM(enif_make_tuple_from_array(env, array.begin(), array.size()));
}
template<typename T1, typename T2>
TERM make(ErlNifEnv *env, const std::pair<T1, T2>& var)
{
std::array<ERL_NIF_TERM, 2> array{ make(env, var.first), make(env, var.second)};
return TERM(enif_make_tuple_from_array(env, array.begin(), array.size()));
}
/*
Disabling for now. These feel too "loose". Just use an explicit tuple
template<typename T0, typename T1, typename ...Ts>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, T0 &t0, T1 &t1, Ts&... ts)
{
auto tup = std::tie(t0, t1, ts...);
return get(env, term, tup);
}
template<typename T0, typename T1, typename ...Ts>
ERL_NIF_TERM make(ErlNifEnv *env, const T0 &t0, const T1 &t1, const Ts&... ts)
{
return make(env, std::make_tuple(t0, t1, ts...));
}
*/
/*
template<typename T=ERL_NIF_TERM, typename F>
int niftuple_for_each(ErlNifEnv *env, ERL_NIF_TERM term, const F &f)
{
int arity;
ERL_NIF_TERM *array;
if(!enif_get_tuple(env, term, &arity, &array)) return 0;
for(int i=0; i<arity; i++)
{
T var;
if(!get(env, array[i], var)) return 0; // conversion failure
f(std::move(var));
}
return 1;
}
*/
// list
template<typename T=ERL_NIF_TERM, typename F>
bool list_for_each(ErlNifEnv *env, ERL_NIF_TERM term, const F &f)
{
if(!enif_is_list(env, term)) [[unlikely]] return false;
ERL_NIF_TERM head, tail = term;
while(enif_get_list_cell(env, tail, &head, &tail))
{
T var;
if(!get(env, head, var)) [[unlikely]] return false; // conversion failure
f(std::move(var));
}
return true;
}
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::vector<T> &var)
{
unsigned len;
int ret = enif_get_list_length(env, term, &len);
if(!ret) [[unlikely]] return false;
var.clear();
return list_for_each<T>(env, term, [&var](T item){var.push_back(item);});
}
template<typename T>
TERM make(ErlNifEnv *env, const std::vector<T> &var)
{
ERL_NIF_TERM tail;
tail = enif_make_list(env, 0);
for(auto i=var.rbegin(); i!=var.rend(); i++)
{
tail = enif_make_list_cell(env, make(env,*i), tail);
}
return TERM(tail);
}
inline TERM make(ErlNifEnv *env, const std::vector<TERM> &var)
{
return TERM(enif_make_list_from_array(env, (ERL_NIF_TERM*)&var[0], var.size()));
}
template<typename T, size_t N>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::array<T, N> &var)
{
unsigned len;
int ret = enif_get_list_length(env, term, &len);
if(!ret) [[unlikely]] return false;
// arrays are statically sized so size must match.
if(size_t(len) != var.size()) [[unlikely]] return false;
int i=0;
return list_for_each<T>(env, term, [&var, &i](T item){var[i++] = item;});
}
template<typename T, size_t N>
TERM make(ErlNifEnv *env, const std::array<T, N> &var)
{
ERL_NIF_TERM tail;
tail = enif_make_list(env, 0);
for(auto i=var.rbegin(); i!=var.rend(); i++)
{
tail = enif_make_list_cell(env, make(env,*i), tail);
}
return TERM(tail);
}
template<size_t N>
TERM make(ErlNifEnv *env, const std::array<TERM, N> &var)
{
return TERM(enif_make_list_from_array(env, (ERL_NIF_TERM*)&var[0], var.size()));
}
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::list<T> &var)
{
var.clear();
return list_for_each<T>(env, term, [&var](T item){var.push_back(item);});
}
template<typename T>
TERM make(ErlNifEnv *env, const std::list<T> &var)
{
ERL_NIF_TERM tail;
tail = enif_make_list(env, 0);
for(auto i=var.rbegin(); i!=var.rend(); i++)
{
tail = enif_make_list_cell(env, make(env,*i), tail);
}
return TERM(tail);
}
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::deque<T> &var)
{
var.clear();
return list_for_each<T>(env, term, [&var](T item){var.push_back(item);});
}
template<typename T>
TERM make(ErlNifEnv *env, const std::deque<T> &var)
{
ERL_NIF_TERM tail;
tail = enif_make_list(env, 0);
for(auto i=var.rbegin(); i!=var.rend(); i++)
{
tail = enif_make_list_cell(env, make(env,*i), tail);
}
return TERM(tail);
}
template<typename T>
bool get(ErlNifEnv *env, ERL_NIF_TERM term, std::set<T> &var)
{
var.clear();
return list_for_each<T>(env, term, [&var](T item){var.insert(item);});
}
template<typename T>
TERM make(ErlNifEnv *env, const std::set<T> &var)
{
ERL_NIF_TERM tail;
tail = enif_make_list(env, 0);
for(auto i=var.rbegin(); i!=var.rend(); i++)