forked from digitalmoleculardesign/bill_goddard_chem_120
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap09.tex
1165 lines (1046 loc) · 43.8 KB
/
chap09.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Ionic Bonding}
The bonds in homonuclear molecules, e.g., H$_2$ in Chapter 2, clearly involve
sharing of the bonding electrons between the two atoms. When the atoms are
different, e.g., CH$_4$, CF$_4$, and SiH$_4$ in Chapter 6, there will
generally be unequal sharing of the electrons; but, we were
able to understand the basic properties of the molecules in Chapter 6 by
assuming equal sharing. Some systems, however, involve so much charge
transfer that the bonds are best described as ionic. This chapter will
focus upon such systems.
\section{NaCl, An Example}
\subsection{Purely Ionic Description}
Consider, as an example, the NaCl molecule. In Figure
\ref{chap9-fig1}, we show the energy of the valence bond wavefunction
in which a covalent bond is formed between the Na $3s$ orbital and a
singly-occupied Cl $3p_z$ orbital.
\begin{figure}
\includegraphics[scale=0.75]{fg9-01}
\caption{}
\label{chap9-fig1}
\end{figure}
Because of the low overlap and very low contragradience between
these orbitals, the bonding interactions are not able to compensate for the
repulsive interactions arising from overlapping of nonbonding
orbitals, e.g., Na $3s$ with Cl $3s$, Na $2p$ with Cl $3p$.
On the other hand, consider the system Na$^+$Cl$^-$ in which the
electron on the Na is ionized, energy cost = IP (Na) = 5.139 eV, and
given to the Cl, energy gain = EA(Cl) = 3.615 eV. For $R = \infty$,
energy of the ionic wavefunction is
$$
E_{ionic} ( \infty ) = E_{atom} + IP(Na) - EA(Cl) = E_{atom} +
1.524 ~ {\rm eV}.
$$
However, at finite distances the interaction of Na$^+$ and Cl$^-$ leads to a
Coulombic attraction,
$$
E_{Coulomb}({\rm eV}) = {14.40 \over R(A)},
\label{chap9-eqno1}
$$
so that
$$
E_{ionic}(R) = E_{atom} + IP(Na) - EA(Cl) - {14.40 \over R(A)}
\label{chap9-eqno2}
$$
Substituting the experimental bond distance, $R = 2.3608$ \AA, for NaCl
leads then to
\begin{eqnarray}
E_{ionic} (R_e) &=& E_{atom} + 1.524 - 6.100\cr
&=& E_{atom} - 4.576 ~ {\rm eV}
\label{chap9-eqno3}
\end{eqnarray}
Indeed, the experimental bond energy is 4.23 eV, in close agreement
with this estimate. Of course, (\ref{chap9-eqno2}) cannot be correct
for describing the energy at small $R$ since it ignores the repulsive
effects arising from the Pauli principle, ultimately leading to a
repulsive inner well in the potential. These terms depend upon the
overlap of orbitals, and have the form
$$
E_{Pauli} \approx Ae^{-BR},
\label{chap9-eqno4}
$$
where for NaCl, $A = 5920$ eV, and $B = 3.82$ \AA$^{-1}$,
leading to an energy curve of the form
$$
E_{ionic+Pauli}(R) = E_{atom} + [IP(Na) - EA(Cl)] + E_{Pauli}(R) -
{14.40 \over R(A)}
\label{chap9-eqno5}
$$
The formula, (\ref{chap9-eqno5}) leads to
$$
D^{calc}_0 = 3.95 ~ {\rm eV}
$$
and
$$
R_e^{calc} = 2.42 ~ {\rm \AA}
$$
as indicated in Figure \ref{chap9-fig1}, in good agreement with the
experimental values
$$
D_0^{exper} = 4.23 ~ {\rm eV} ,
$$
and
$$
R^{exper}_e = 2.361 ~ {\rm \AA}.
$$
\subsection{More Exact Descriptions}
The ground state of NaCl cannot remain ionic as the bond is pulled
apart. The lowest energy at $R = \infty$ involves the neutrals Na and
Cl. The way that this occurs is shown in Figure \ref{chap9-fig2},
where the optimum orbitals are shown for each $R$. At large
distances, $R = 6$ \AA, one electron is in an Na $3s$ orbital and the
other in a Cl $3p_z$ orbital. As $R$ decreases from $\infty$ to 4.7
\AA, the Na electron is partially shared between the Na and Cl. For
shorter distances, the electron starting on the Na becomes localized
in a $3p_z$-like orbital in the Cl. However, for these distances, the
two electrons in the Cl $pz$ orbital are close enough to the Na$^+$ so
as to be stabilized.
\begin{figure}
\includegraphics[scale=0.75]{fg9-02}
\caption{GVB orbitals for the NaCl $\sigma$ bond.}
\label{chap9-fig2}
\end{figure}
\subsection{Charge Transfer}
If NaCl really had the purely ionic form Na$^+$ Cl$^-$,
the dipole moment for $R = R_e$ would be $\mu = eR_e$. In atomic
units, this is
$$
\mu = {2.361 \over 0.529} = 4.46 ~ {\rm a.u.},
$$
and in centimeter-gram-second (cgs) units, it is
$$
\mu = (4.80310^{-10} {\rm esu}) 2.361 ~ {\rm \AA} = 11.3410^{-10}
{\rm esu} ~ {\rm \AA} = 11.34 ~ {\rm Debye},
$$
where one
$$
{\rm Debye} \equiv 10^{-10} ~ {\rm esu ~ \AA} = {1 \over 2.5418} ~ {\rm
a.u.}
$$
In fact, the observed dipole moment is
$$
\mu^{obs}(NaCl) = 9.001 ~ {\rm Debye}.
$$
Thus, based on the dipole moment, we could say that 0.79 electrons transfer
from Na to Cl in forming NaCl. This is a clear experimental indication
that the simple ionic description, although useful, is oversimplified.
\subsection{Interactions at Larger Distances}
\begin{figure}
\includegraphics[scale=0.75]{fg9-03}
\caption{}
\label{chap9-fig3}
\end{figure}
Continuing the curve in Figure \ref{chap9-fig1} out to large $R$ leads
to the curve in Figure \ref{chap9-fig3}. The ionic and covalent
wavefunctions cross at a large distance $R_e$. This crossing point
can be calculated by assuming that the covalent curve is constant,
leading to
$$
E_{cov} = E_{Na} + E_{Cl} = E_{ion} = \left( e_{Na} + E_{Cl} + 1.524
\right) - {14.4 \over R} ,
$$
and, hence,
$$
R_e = {14.4 \over 1.524} = 9.45 {\rm \AA} .
$$
Near this crossing point there is a strong mixing of the ionic and
covalent wavefunctions, so that the ground state changes continuously
from covalent to ionic as $R$ decreases through $R_e$. By taking the
other, orthogonal, combination of these two wavefunctions, we obtain a
second excited state that is ionic at large $R$, and covalent at small
$R$, as indicated in Figure \ref{chap9-fig3}.
\begin{figure}
\includegraphics[scale=0.75]{fg9-04a}
\caption{}
\label{chap9-fig4a}
\end{figure}
Imagine now, a Cl atom is shot past an Na atom, as in Figure
\ref{chap9-fig4a}. At each instant $t_i$, we can determine the force
on these atoms by using the distance $R_i$ at that instant, and
calculating
$$
F = \left[ {\partial E \over \partial R} \right]_{R_i}
$$
from Figure \ref{chap9-fig3}. In this way, we could calculate the
path indicated in Figure \ref{chap9-fig4a}. In terms of Figure
\ref{chap9-fig3}, the Cl would start at $R = \infty$ and would come to
some minimum $R$, $R_{min}$ in Figure \ref{chap9-fig4a}, and then go
back to $R =
\infty$, assuming no inelastic process has caused some energy to get
lost. This is indicated in Figure \ref{chap9-fig4b}. In this
description the wavefunction changes rapidly as the atom passes
through $R = R_c$ since the electron must move from the Na to the Cl.
However, if the atoms are moving sufficiently rapidly, there will not
be time for the electron to change centers, and we will find that the
forces follow the dashed, repuslive, covalent curve. Normal
calculations of electronic wavefunctions lead to the solid curves in
Figure \ref{chap9-fig3}. These are called \emph{adiabatic}, or
\emph{Born-Oppenheimer} potential curves, since all effects of nuclear
kinetic energy are ignored. Including nuclear kinetic energy effects,
there is a term proportional to nuclear velocity that tends to prevent
the electronic wavefunction from changing rapidly. This leads to the
system following the dashed curve in Figure \ref{chap9-fig3}, a
process referred to as \emph{Born-Oppenheimer breakdown}.
\begin{figure}
\includegraphics[scale=0.75]{fg9-04b}
\caption{}
\label{chap9-fig4b}
\end{figure}
At intermediate velocities, the electron will have time to jump from
Na to Cl as the atom approaches but not enough time to jump back as it
departs. As a result, collisions of Na and Cl may lead to products of
Na$^+$ and Cl$^-$, the energy must be above 1.5 eV for these ions to
be able to separate. Since the crossing is at very large $R$, 9.5
\AA, the atoms need not get very close for this electron jump to
occur. Often this process is referred to as \emph{harpooning} (the Cl
harpoons the electron from the Na) in order to emphasize the long
distances involved in the transfer.
\section{Electronegativity}
\begin{table}
\caption{Estimates of bond energies assuming purely ionic
bonds, equation (\ref{chap9-eqno2}). Experimental data from Herzberg
and Huber, 1980.}
\label{chap9-tab1}
\begin{tabular}{ccccccc}\\ \hline
&\multicolumn{2}{c}{Experimental}&Predicted & Error
&\multicolumn{2}{c}{Group Average}\cr
& $R_e$ & $D_0$ & $D_{ion}$ & $D_{ion} - D_0$\cr
& (\AA) & (eV) & (eV) & (eV)\cr
LiF & 1.5639 & 5.91 & 7.22 & 1.30 & 0.68 & 0.33\cr
Na & 1.9259 & (5.3$^{\underline{3}}$) & 5.74 & 0.41 & '' & '' \cr
K & 2.1715 & 5.07 & 5.69 & 0.62 & '' & ''\cr
Rb & 2.2703 & 5.0$^{\underline{0}}$ & 5.56 & 0.56 & '' & ''\cr
Cs & 2.3454 & 5.1$^{\underline{5}}$ & 5.64 & 0.49 & '' & ''\cr
LiCl & 2.0207 & 4.8$^{\underline{4}}$ & 5.35 & 0.51 & 0.31 & ''\cr
Na & 2.3608 & 4.23 & 4.58 & 0.35 & '' & ''\cr
K & 2.6667 & 4.34 & 4.67 & 0.33 & '' & ''\cr
Rb & 2.7867 & 4.3$^{\underline{4}}$ & 4.61 & 0.27 & '' & ''\cr
Cs & 2.9063 & 4.58 & 4.68 & 0.10 & '' & ''\cr
LiBr & 2.1704 & 4.3$^{\underline{3}}$ & 4.6 & 0.28 & 0.19 & ''\cr
Na & 2.5020 & 3.74 & 3.98 & 0.24 & '' & ''\cr
K & 2.8208 & 3.91 & 4.13 & 0.22 & '' & ''\cr
Rb & 2.9447 & 3.9$^{\underline{0}}$ & 4.08 & 0.18 & '' & ''\cr
Cs & 3.072 & 4.17 & 4.16 & $-$0.01 & '' & ''\cr
LiI & 2.3919 & 3.51 & 3.69 & 0.15 & 0.14 & ''\cr
Na & 2.7115 & 3.00 & 3.23 & 0.23 & '' & ''\cr
K & 3.0478 & 3.31 & 3.44 & 0.13 & '' & ''\cr
Rb & 3.1769 & 3.3$^{\underline{0}}$ & 3.42 & 0.12 & '' & ''\cr
Cs & 3.3152 & 3.56 & 3.51 & $-$0.05 & '' & ''\cr
CuF & 1.7449 & 4.4$^{\underline{2}}$ & 3.93 & $-$0.49 & $-$0.52 &
$-$1.08\cr
Ag & 1.9832 & 3.6$^{\underline{4}}$ & 3.08 & $-$0.56 & '' & ''\cr
CuCl & 2.0512 & 3.9$^{\underline{3}}$ & 2.91 & $-$1.02 & $-$0.95 & ''\cr
Ag & 2.2808 & 3.22 & 2.35 & $-$0.87 & '' & ''\cr
CuBr & 2.1734 & 3.4$^{\underline{3}}$ & 2.26 & $-$1.17 & $-$1.23 &
''\cr
Ag & 2.3931 & 3.2 & 1.81 & $-$1.29 & '' & ''\cr
CuI & 2.3383 & $\leq$3.27 & 1.49 & $-$1.78 & $-$1.62 & ''\cr
Ag & 2.5446 & 2.6 & 1.14 & $-$1.46 & '' & ''\cr
\end{tabular}
\end{table}
For the alkali halide diatomics, the assumption of purely ionic
bonding leads to fairly accurate predictions of bond energies, as
indicated in Table \ref{chap9-tab1}. Of course, these predictions make
use of the experimental $R_e$. For the copper halides and the silver
halides, such predictions lead to bond energies too small, since we
are ignoring the Pauli terms, the ionic description, if correct, would
lead to too large a bond energy, and for most other molecules the
ionic model leads to very inaccurate predictions. One problem here is
that even in the alkali halides there is certainly some sharing of
electrons, see Figure \ref{chap9-fig2}. Thus, the observed dipole moments
correspond to a charge transfer of only about 0.8 electrons.
Compounding this problem, different atoms have different affinities
for electrons so that the amount of charge transfer should be
different for each pair of electrons. To illustrate this, some
properties of various diatomics formed from alkalis, halogens, and
hydrogen are listed in Table \ref{chap9-tab2}. In Table
\ref{chap9-tab3} we list the fractional ionic character of various
bonds based on the observed dipole moments.
\begin{table}
\caption{Properties of heteronuclear diatomic molecules.}
\label{chap9-tab2}
\begin{tabular}{ccccc}\\ \hline
& $R_e$$^a$ & $\omega_e$$^b$ & $\mu_o$$^a$ & $D_o$$^c$\cr
& (\AA) & (cm$^{-1}$) & (D) & (eV)\cr
BrC & 2.136 & & 0.57 & 2.23??\cr
BrCs & 3.072 & & 10.82 & 4.07?\cr
BrF & 1.756 & & 1.29 & 2.384\cr
BrH & 2.415 & & 0.828 & 3.75?\cr
BrI & 2.485 & & -- & 2.817\cr
BrK & 2.821 & & 10.626 & 3.94?\cr
BrLi & 2.022 & & 7.268 & 4.35?\cr
BrNa & 2.502 & & 9.118 & 3.8?\cr
BrRb & 2.945 & & 10.86 & 4.0?\cr
C$\ell$Cs & 2.906 & & 10.387 & 4.55?\cr
C$\ell$F & 1.628 & & 0.888 & 2.558\cr
C$\ell$H & 1.275 & & 1.109 & 4.431\cr
C$\ell$I & 2.321 & & 1.24 & 2.152\cr
C$\ell$K & 2.667 & & 10.269 & 4.36?\cr
C$\ell$Li & 2.021 & & 7.129 & 4.9??\cr
C$\ell$Na & 2.361 & & 9.001 & 4.25?\cr
C$\ell$Rb & 2.787 & & 10.510 & 4.4??\cr
CsF & 2.345 & & 7.884 & 5.33?\cr
CsH & 2.494$^b$ & 891.29 & -- & 1.8??\cr
CsI & 3.315 & & 11.69 & 3.4??\cr
FH & 0.917 & & 1.827 & 5.84?\cr
FI & 1.910 & & -- & 2.87?\cr
FK & 2.171 & & 8.593 & 5.07?\cr
FLi & 1.564 & & 6.327 & 5.95?\cr
FNa & 1.926 & & 8.156 & 4.95?\cr
FRb & 2.270 & & 8.547 & 5.2??\cr
HI & 1.609 & & 0.448 & 3.06?\cr
HK & 2.242$^b$ & 983.63 & -- & 1.86?\cr
HLi & 1.595 & & 5.884 & 2.429\cr
HNa & 1.887$^b$ & 1172.2 & -- & 2.05?\cr
HRb & 2.367$^b$ & 936.94 & -- & 1.7??\cr
IK & 3.048 & & 10.82 & 3.4??\cr
ILi & 2.392 & & 7.429 & 3.57?\cr
INa & 2.711 & & 9.236 & 3.05?\cr
IRb & 3.177 & & 11.48 & 3.47?\cr
NaK & -- & 123.29 & -- & 0.62?\cr
NaRb & -- & 106.64 & -- & 0.57?\cr
\hline
\end{tabular}\\
$^a$ Unless indicated otherwise, all values are from J. Phys.
Chem. Res. Data, 1974.
$^b$ From Rosen.
$^c$ From Gaydon,
\end{table}
In order to provide a measure for predicting how polar various bonds should
be, Linus Pauling$^1$ developed a scale of electronegativities where the
atom that gains extra charge is said to be more electronegative and the
one that loses charge is said to be more electropositive. The greater the
difference in electronegativity, the greater the ionic character in
the bond.
One measure used, for the ionic character in the bond, is the dipole
moment, vide supra. Pauling$^1$ suggested the relationship
$$
{\rm amount ~ ionic ~ character} = 1 - e^{-[(\chi_A -
\chi_B)/4]}
\label{chap9-eqno6}
$$
which provides very rough agreement with experiment. A second criterion
involved ionic contributions to bond energies, vide infra. The final
electronegativities are given in Table \ref{chap9-tab4}.
\begin{table}
\caption{Fractional ionic character of bonds, obtained
from $\Delta q = \mu$(a.u.)/$R$(a.u.) = $C \mu(D)/R$(\AA) where $C$ =
0.743470. Positive implies that the head of the column is more
electronegative.}
\label{chap9-tab3}
\begin{tabular}{cccccc}\\ \hline
& F & Cl & Br & I & H\cr
F & 0.0 & $-$0.1136 & $-$0.1529 & -- & $-$0.4148\cr
Cl & 0.1136 & 0.0 & $-$0.0556 & $-$0.1112 & $-$0.1811\cr
Br & 0.1529 & 0.0556 & 0.0 & -- & $-$0.1218\cr
I & -- & 0.1112 & -- & 0.0 & $-$0.0579\cr
H & 0.4148 & 0.1811 & 0.1218 & 0.0579 & 0.0\cr
Li & 0.8423 & 0.7345 & 0.7485 & 0.6466 & 0.7678\cr
Na & 0.8816 & 0.7938 & 0.7587 & 0.7092\cr
K & 0.8238 & 0.8017 & 0.7844 & 0.7391\cr
Rb & 0.7837 & 0.7852 & 0.7678 & 0.7523\cr
Cs & 0.6998 & 0.7441 & 0.7333 & 0.7341\cr
\hline
\end{tabular}
\end{table}
\begin{table}
\caption{Comparison of Mulliken, and Pauling electronegativities,
alkali and halogen atoms.}
\label{chap9-tab5}
\begin{tabular}{ccccc}\\ \hline
& IP$^a$ & EA$^b$ & X$_{Mulliken}$$^c$ & X$_{Pauling}$\cr
& (eV) & (eV)\cr
F & 17.422 & 3.399 & 4.00 & 4.0\cr
Cl & 12.967 & 3.615 & 3.19 & 3.0\cr
Br & 11.814 & 3.364 & 2.92 & 2.8\cr
I & 10.451 & 3.061 & 2.60 & 2.5\cr
H & 13.598 & 0.75421 & 2.76 & 2.1\cr
Li & 5.392 & 0.620 & 1.15 & 1.0\cr
Na & 5.239 & 0.546 & 1.09 & 0.9\cr
K & 4.341 & 0.501 & 0.93 & 0.8\cr
Rb & 4.177& $\sim$0.486 & 0.90 & 0.8\cr
Cs & 3.894 & $\sim$0.472 & 0.84 & 0.7\cr
\hline
\end{tabular} \\
$^a$ From NSRDS-NBS 34.
$^b$ H. Notep and W. C. Lineburger, J. Phys. Chem. Ref.
Data, Volume 4, page 539, 1975.
$^c$ (IP + EA)/5.2053.
\end{table}
As expected, the charge transfer, Table \ref{chap9-tab3}, increases
nearly monotonically with the electronegativity difference. Note that
nearly all alkali halides have between 70 and 90 percent ionic
character. Unfortunately, this definition of $\Delta q$ has flaws
since, for example, it does not take into account the contribution to
the dipole moment arising from hybridization of the orbitals, which
may be quite large.
Mulliken formulated another set of electronegatives based solely upon the
properties of the atoms
$$
\chi^M = {(IP + EA) \over 5.2}
$$
where $IP$ is the ionization potential of an atom and $EA$ is the
electron affinity, positive values indicating that the atom will
accept an electron. The 5.2 is a normalization factor so that
$\chi^M(F) = 4.0$, just as on the Pauling scale. The final values for
a selection of atoms are listed in Table \ref{chap9-tab5}, where they
are compared with the Pauling values. The Pauling and Mulliken values
compare well except for H. Comparing with the properties of the
molecules, e.g., $\Delta q(HI)$ in Table \ref{chap9-tab4}, it seems
clear that the Pauling value for $\chi_H$ is the better choice.
Note that the most electronegative elements are in the upper right hand
corner of the periodic table in the order F, O, with N and Cl tied for
third, Br next, and then a tie between C, S, and I, while the most
electropositive elements are in the lower left hand corner, Cs and Fr.
\subsection{Ionic Contributions to Bonding}
Pauling assumed for a covalent bond between atoms A and B, that the bond
energies are related by
$$
D(A - B) = \sqrt{D(A-A) \cdot D(B-B)}.
\label{chap9-eqno7}
$$
This can be derived by assuming that bond energies are proportional to
orbital overlaps. The long-range form for an atomic $n \ell$ orbital
is $\varphi_{n \ell} \approx e^{- \zeta r}$, where $\zeta = 1/n
\sqrt{2IP}$, and the $IP$ is in atomic units. Consequently, the
overlap of the orbital on two atoms, $a$ and $b$, behaves approximately as
$$
S_{ab} = e^{-\sqrt{\zeta_a \zeta_b R}}.
$$
If the bond energy $D_{ab}$ is proportional to $S_{ab}$, $D_{ab} =
\eta S_{ab}$, we then obtain
$$
{D_{ab} \over \sqrt{D_{aa} D_{bb}}} = {S_{ab} \over \sqrt{S_{aa}
S_{bb}}} = 1,
$$
leading to (\ref{chap9-eqno7}). Writing the actual bond energy as
$$
D(A-B) = \sqrt{D(A-A) \cdot D(B-B)} + \Delta (A-B).
\label{chap9-eqno8}
$$
Pauling attributed the extra bond energy $\Delta (A-B)$ to the ionic nature
of the bond. His tables of electronegativities were then adjusted to
fit, approximately
$$
\Delta (A-B ) = 30 ( \chi_A - \chi_B)^2.
\label{chap9-eqno9}
$$
Table \ref{chap9-tab6} contains the ionic contributions to the bond
energy defined as
$$
\Delta(A-B) = D(A-B) - \sqrt{D(A-A) \cdot D(B-B)}.
\label{chap9-eqno10}
$$
This table is based on Tables \ref{chap9-tab2} and \ref{chap9-tab7}.
As expected, this is large for cases with large electronegativity
differences.
\begin{table}
\caption{Ionic contribution to the bond energy, m eV. Defined
as $\Delta(A - B) = D(A-B) - \sqrt{D(A-A) \cdot D(B-B)}$.}
\label{chap9-tab6}
\begin{tabular}{cccccc}\\ \hline
& F & Cl & Br & I & H\cr
F & 0.0\cr
Cl & 0.538 & 0.0\cr
Br & 0.606 & 0.02 & 0.0\cr
I & 1.30 & 0.197 & 0.073 & 0.0\cr
H & 2.16 & 1.101 & 0.78 & 0.43 & 0.0\cr
Li & 4.61 & 3.2 & 2.86 & 2.25 & 0.19\cr
Na & 3.85 & 2.89 & 2.6 & 1.98 & 0.22\cr
K & 4.16 & 3.24 & 2.94 & 2.5 & 0.35\cr
Rb & 4.3 & 3.3 & 3.0 & 2.62 & 0.25\cr
Cs & 4.48 & 3.49 & 3.1 & 2.6 & 0.38\cr
\hline
\end{tabular}
\end{table}
\subsection{Ionic Contributions to Bond Distance}
\begin{table}
\caption{Properties of homonuclear diatomic molecules.}
\label{chap9-tab7}
\begin{tabular}{cccccc}\\ \hline
& $R_e$$^a$ & $\omega_e$$^a$ & $D_0$$^b$ & $D_0$ & IP$^a$\cr
& (\AA) & (cm$^{-1}$) & (eV) & (kcal) & (eV)\cr
F$_2$ & 1.417 & 891.8$_5$ & 1.60$_5$ & 37.7\cr
Cl$_2$ & 1.9878 & 559.71 & 2.476 & 57.18 & 11.48\cr
Br$_2$ & 2.2809 & 323.33 & 1.970 & 45.44 & 10.55\cr
I$_2$ & 2.667 & 214.52 & 1.5439 & & 9.28\cr
H$_2$ & 0.74116 & 4403.19 & 4.4773\cr
Li$_2$ & 2.67 & 351.35 & 1.12 & 26.3\cr
Na$_2$ & 3.08 & 159.23 & 0.75 & 17.2\cr
K$_2$ & & 3.92$_3$ & 92.64 & 0.51\cr
Rb$_2$ & & 57.31 & 0.4$_7$ & 11.3\cr
Cs$_2$ & & & 0.45 & 10.4\cr
F$^+_2$ & (1.326) & & & 73.5\cr
Cl$^+_2$ & 1.8917 & 645.61 & & 99.2\cr
H$^+_2$ & 1.06 & 2297\cr
Li$^+_2$\cr
Na$^+_2$\cr
\hline
\end{tabular}\\
$^a$ From Rosen.
$^b$ From Gaydon.
\end{table}
Experimental values for various properties of diatomic molecules are
given in Tables \ref{chap9-tab2} and \ref{chap9-tab7}. Here, $R_e$ is
the bond length for the minimum in the potential curve; $\omega_e =
\sqrt{k_e/\mu}$ is related to the force constant $k_e$ at $R_e$, and
$\mu$ is the reduced mass; $D_0$ is the bond dissociation energy from
the $v = 0$ level, thus, this does not include the zero point energy;
IP is the ionization potential.
Using Table \ref{chap9-tab2}, we obtain the values in Table
\ref{chap9-tab8} as the bond radii for covalent bonds. In Table
\ref{chap9-tab9}, we compare these actual bond lengths with the
predictions from Table \ref{chap9-tab8},
$$
\Delta R = R_{AB} - {1 \over 2} \left( R_{AA} + R_{BB}
\right).
\label{chap9-eqno11}
$$
For nearly all cases, $\Delta R$ is negative so that increased ionic
character in the bond leads to a decrease in the bond length. The
magnitude of $\Delta R$ increases roughly with the
electronegativity difference.
\begin{table}
\caption{Covalent bond radii.}
\label{chap9-tab8}
\begin{tabular}{cc}\\ \hline
& $R_e$ in \AA$^a$\cr
F & 0.709\cr
Cl & 0.994\cr
Br & 1.141\cr
I & 1.334\cr
H & 0.371\cr
Li & 1.33$_5$\cr
Na & 1.54\cr
K & 1.96$_2$\cr
Rb & (2.10)$^b$\cr
Cs & (2.25)$^b$\cr
\hline
\end{tabular}\\
$^a$ From Table \ref{chap9-tab7}.
$^b$ Based on comparison of RbX, CsX, and KX molecules with X =
Cl, Br, I, and H, including the idea that K, Rb, and Cs become
successively more electronegative.
\end{table}
\begin{table}
\caption{Comparison, in \AA, of actual bond length with
predicted value from adding the covalent radii. Negatives imply an
actual bond length less than the predicted value.}
\label{chap9-tab9}
\begin{tabular}{cccccc}\\ \hline
& F & Cl & Br & I & H\cr
F & 0.0\cr
Cl & $-$0.074 & 0.0\cr
Br & $-$0.093 & $-$0.146 & 0.0\cr
I & $-$0.132 & $-$0.191 & +0.011 & 0.0\cr
H & $-$0.162 & $-$0.090 & $-$0.096 & $-$0.095 & 0.0\cr
Li & $-$0.480 & $-$0.308 & $-$0.454 & $-$0.277 & $-$0.111\cr
Na & $-$0.323 & $-$0.173 & $-$0.179 & $-$0.163 & $-$0.024\cr
K & $-$0.500 & $-$0.289 & $-$0.282 & $-$0.248 & $-$0.091\cr
Rb & $-$0.54 & $-$0.31 & $-$0.30 & $-$0.26 & $-$0.10\cr
Cs & $-$0.61 & $-$0.34 & $-$0.32 & $-$0.27 & $-$0.13\cr
\hline
\end{tabular}\\
$^a$ See footnote $b$ of Table \ref{chap9-tab8}.
\end{table}
\section{Ionic Crystals}
\subsection{Monovalent Ionic Structures}
Earlier, we saw that diatomic molecules such as NaCl involve nearly
complete charge transfer so that the molecule can be thought of as
Na$^+$Cl$^-$. Bonding together two such
molecules, leads to a tightly bound direct,
\begin{equation}
\includegraphics{fg9-04c}
\label{chap9-eqno12}
\end{equation}
in which each atom is bonded equally to two others. Because of the presence
of electrostatic repulsions between like charges, the bond lengths are
0.26 \AA\ larger than in the monomer. The bond energy of the dimer, relative
to the monomer, is 2.10 eV$^2$, at 0$^{\circ}$K), in reasonable
agreement with the purely electrostatic estimate of 1.68 eV. Dimer
$$
E_{elect} = \left[ - {4 \over 2.624} + {1 \over 3.070} + {1 \over
4.256} \right] 14.4 = 13.88 {\rm eV}.
$$
Monomer
$$
E_{elect} = - {14.4 \over 2.361} = - 6.10 {\rm eV}.
$$
Similarly, two dimers combine to form a strongly bonded tetramer,
\begin{equation}
\includegraphics{fg9-04d}
\label{chap9-eqno13}
\end{equation}
and $4(10^{18})$ such dimers make a grain of salt in which the
arrangement of atoms is as given in Figure \ref{chap9-fig5}, where
each Na has six Cl neighbors and each Na has six Cl neighbors
\begin{figure}
\includegraphics[scale=0.75]{fg9-05}
\caption{The NaCl structure (B1). In such systems, the bonding is best
thought of in terms of interactions of isolated cations and anions,
rather than the localized two-electron bonds characteristic of Si and
GaAs.}
\label{chap9-fig5}
\end{figure}
Starting with a cubic unit cell of length $a$, the Na
are placed at the center, $({1 \over 2}a, {1 \over 2} a, {1 \over
2}a)$, and at the center of each edge, $(0 , 0 , {1 \over 2}a)$,
$(0 , {1 \over 2}a , 0)$, $({1 \over 2} a , 0 , 0)$,
the Cl are at the corners (0,0,0) and at the center of each face, $(
0 , {1 \over 2}a , {1 \over 2} a)$, $({1 \over 2} a , 0 , {1 \over 2}
a)$, $({1 \over 2} a , {1 \over 2} a , 0)$. All together, this cell
contains four Na and four Cl, with an NaCl bond
distance of ${1 \over 2}a$. Each Na has six Cl neighbors and vice versa.
The NaCl or B1 structure, is the stable structure for all alkali
halides XY, X = Li, Na, K, Rb, Cs, and Y = F, Cl, Br,I, except for
CsCl, CsBr, and CsI, which exhibit the CsCl or B2 structure shown in
Figure \ref{chap9-fig6}.
\begin{figure}
\includegraphics[scale=0.75]{fg9-06}
\caption{The CsCl structure, B2.}
\label{chap9-fig6}
\end{figure}
Crystal structures are generally referred to by the name of a prototype
molecule, exhibiting this structure, e.g., NaCl or CsCl, or by a numerical
designation, e.g., B1 or B2, assigned by the review journal,
Structure Reports or Strukturbericht, that first served the role of
summarizing the results of various crystal structure determinations.
In Figure \ref{chap9-fig6}, starting with a cubic unit cell of length
$a$, one Cs is placed at the center of each cube, $({1 \over 2} a, {1
\over 2} a, {1 \over 2}a)$, and one Cl is placed at the corner,
(0,0,0). The CsCl bond distance is ${1 \over 2} \sqrt{3} a$. Each Cs
has eight Cl neighbors, and vice versa. The drawing contains four
cubic unit cells.
\begin{table}
\caption{}
\label{chap9-tab10}
\begin{tabular}{cccc}\\ \hline
& CN & R\cr
Na$^+$ & 4 & 0.990 & $-$3\% \cr
& 5 & 1.000 & $-$2\% \cr
& 6 & 1.020 & 0\cr
& 7 & 1.120 & +10\% \cr
& 8 & 1.180 & 16\% \cr
& 9 & 1.240 & 22\% \cr
& 12 & 1.390 & 37\% \cr
Mg$^{2+}$ & 4 & 0.570 & $-$21\% \cr
& 5 & 0.660 & $-$7\% \cr
& 6 & 0.720 & 0\cr
& 8 & 0.89 & +21\% \cr
Al${^3+}$ & 4 & 0.390 & $-$27\% \cr
& 5 & 0.480 & $-$10\% \cr
& 6 & 0.535 & 0\cr
Ti$^{4+}$ & 4 & 0.420 & $-$31\% \cr
& 5 & 0.510 & $-$16\% \cr
& 6 & 0.605 & 0\cr
& 8 & 0.740 & +22\% \cr
\hline
\end{tabular}
\end{table}
There is not yet a good real understanding of the fundamental reasons
why some compounds exhibit one crystal structure and others exhibit a
different structure. However, for ionic crystals a consideration of
ion sizes provides a useful qualitative guide. Assuming that each ion
is spherical and that the shortest bond distance is the sum of the two
ionic radii leads to the effective ionic radii in Table
\ref{chap9-tab10}. Actually, the values in Table \ref{chap9-tab10}
were obtained with the restriction that $R(O^{2-})$ = 1.40 \AA. This
somewhat arbitrary assumption is based on the distances between anions
for systems with very small cations. A completely unconstrained fit
leads to anions that are 0.14 \AA\ smaller and cations that are 0.14
\AA\ larger.
\begin{figure}
\includegraphics[scale=0.75]{fg9-07}
\caption{}
\label{chap9-fig7}
\end{figure}
In order to see how relative ion sizes might affect the choice of crystal
structure, we will assume that the anions are in contact and calculate
how big the hole is that is left for the cation. For the B1 or NaCl
structure, the cation is at the center of an octahedron of anions
(see Figure \ref{chap9-fig7})
so that $(R_A + R_C)/L = V1/\sqrt{2}$. Since $2R_A < L =
\sqrt{2}(R_A + R_C)$, we see that $R_C > 0.414 R_A$. If the cation is
any smaller than this, we cannot have the cation and anion
touching without having the anions overlap each other. Consequently, the
NaCl structure should be stable for
$$
{R_C \over R_A} \geq 0.414 .
\label{chap9-eqno14}
$$
For the CsCl structure, the same analysis leads to $(R_A + R_C)/L =
\sqrt{3}/2$, so that $L \geq 2R_A$ leads to
$$
{R_C \over R_A} \geq 0.732 .
\label{chap9-eqno15}
$$
Consequently, for $0.414 \leq R_C/R_A \leq 0.723$, we expect the NaCl
structure. For $R_C /R_A < 0.414$
we expect some other structure to be favored, vide infra, while for
$R_C / R_A > 0.732$ either CsCl or NaCl is allowed.
\begin{table}
\caption{Radius ratios for alkali halides and noble metal
halides. The ionic radius is given adjacent to each ion. Next to the radius
ratio is the observed structure, B1, B2, B3, or B4. Below the radius ratio
is the difference between the observed and predicted bond distance for the BI
structure.$^a$}
\label{chap9-tab11}
\begin{tabular}{cccccc}\\ \hline
& & F$^-$ & C$^-$ & Br$^-$ & I$^-$\cr
& & 1.33 & 1.81 & 1.96 & 2.20\cr
Li$^+$ & 0.76 & 0.57 B1 & 0.42 B1 & 0.39 B1 & 0.35 B1\cr
& & $-$0.08 & +0.01 & +0.03 & +0.04\cr
Na$^+$ & 1.02 & 0.77 B1 & 0.56 B1 & 0.52 B1 & 0.46 B1\cr
& & $-$0.04 & $-$0.01 & +0.01 & +0.02\cr
K$^+$ & 1.38 & 1.04 B1 & 0.76 B1 & 0.70 B1 & 0.63 B1\cr
& & $-$0.04 & $-$0.04 & $-$0.04 & $-$0.05\cr
Rb$^+$ & 1.52 & 1.14 B1 & 0.84 B1 (B2) & 0.78 B1 & 0.69 B1\cr
& & $-$0.01 & $-$0.04 & $-$0.05 & +0.05\cr
Cs$^+$ & 1.67 & 1.26 B1 & 0.92 B2 (B1) & 0.85 B2 & 0.76 B2\cr
& & 0.00 & +0.02\cr
Fr$^+$ & 1.94 & 1.46 & 1.07 & 0.99 & 0.88\cr
Cu$^+$ & 0.77 & 0.58 & 0.43 B4 & 0.39 B4 & 0.35 B4\cr
Ag$^+$ & 1.15 & 0.86 B1 & 0.64 B1 & 0.59 B1 & 0.52 B3, B4\cr
Au$^+$ & 1.37 & 1.03 & 0.76 & 0.70 & 0.62 Tet\cr
\hline
\end{tabular}\\
$^a$ Based on R. W. G. Wyckoff, Crystal Structures Second Edition,
Volume 1, 1963.
\end{table}
In Table \ref{chap9-tab11} we indicate the stable structures and
radius cations for a number of ionic molecules. Here, we see that the
radius ratio for the B1 or NaCl structure is 0.35 to 1.26, while the
radius ratio for the CsCl structure is 0.76 to 0.92. Thus, the
observed structures are in reasonable agreement with the criteria in
(\ref{chap9-eqno14}) and (\ref{chap9-eqno15}). However, the analysis
does not explain which structure should be observed for $R_C / R_A >$
0.73.
\subsubsection{Coordination Dependence of Ion Sizes}
Although the B2 structure is the stable one for CsCl, it can also be
prepared in the B1 structure. However, the CsCl bond distances in
these structures are different:
\smallskip
\centerline{B1: $R_{CsCl} =$ 3.51\AA}
\centerline{B2: $R_{CsCl} +$ 3.57\AA}
\smallskip
\noindent
This is typical, the effective size of an ion increases as its
coordination number increases. The values in Table \ref{chap9-tab10}
are for a coordination number of 6 and must be modified for other
cases. Typical corrections are given in Table \ref{chap9-tab10},
where we see that the effects are significant and increase as the
charge increases.
\subsection{Divalent Ionic Structures}
For the divalent ionic crystals MX where X$^{2-} =$ O, S, Se, or Te
and M$^{2+}$ = Be, Mg, Ca, Sr, Ba, Zn, Cd, or Hg, we also include Mn
since the Mn$^{++}$ ion is a spherically symmetric $d^5$
configuration, the cations lead to small radius ratios, in some cases
much smaller than 0.4. As a result, some MX cases lead to structures
in which M is tetrahedrally coordinated, as in Figures
\ref{chap9-fig8} and \ref{chap9-fig9}.
\begin{figure}
\includegraphics[scale=0.75]{fg9-08}
\caption{The Wurtzite (ZnS), or zincite (ZnO)
structure (B4). Each Zn is in a tetrahedron of O, and each O has four
Zn nearest neighbors. The O, and Zn, are each in an hexagonal
closest-packed arrangement. At each atom, there is threefold symmetry
about the z axis. The dashed lines outline the orthogonal unit cell
with a $L_x/L_y = \sqrt{3}$.}
\label{chap9-fig8}
\end{figure}
\begin{figure}
\includegraphics[scale=0.75]{fg9-09}
\caption{The sphalerite or zincblende (ZnS)
structure (B3). This is identical to
diamond except that two types of atoms are present. Each
Zn is in a tetrahedron of S and each S has four Zn nearest neighbors. If
$a$ is the size of the cubic unit cell, there are Zn at $({1 \over
4}a, {1 \over 4} a, {1 \over 4}a)$, (${3 \over 4} a, {3 \over 4}a ,
{1 \over 4} a)$, $({1 \over 4} a , {3 \over 4} a , {3 \over 4} a)$,
and $({3 \over 4} a, {1 \over 4} a, {3 \over 4} a)$, and S at the
corners (0,0,0), and face centers $(0 , {1 \over 2} a , {1 \over 2}
a)$, $({1 \over 2} a , 0 , {1 \over 2} a)$, and $({1 \over 2} a , {1
\over 2} a , 0)$. The S, and Zn, are each in a
cubic closest-packed arrangement.}
\label{chap9-fig9}
\end{figure}
\begin{figure}
\includegraphics[scale=0.75]{fg9-10}
\caption{}
\label{chap9-fig10}
\end{figure}
As is clear in Figure \ref{chap9-fig10}(a), the height of a
tetrahedron is $2/3\sqrt{3}a$, where $a$ is the side of the
circumscribed cube. Therefore, the midpoint of the tetrahedron, also
the midpoint of the cube, is $1/2 \sqrt{3}a$ from the vertex, and
hence, from Figure \ref{chap9-fig10}(b)
$$
{R_C + R_A \over L} = {{1 \over 2} \sqrt{3}a \over \sqrt{2}a} =
\sqrt{{3 \over 8}} = 0.612.
$$
Thus,
$$
2R_A < L = \sqrt{{3 \over 8}} \left( R_C + R_A \right) = 1.633 \left(
R_C + R_A \right)
$$
or $1.225 R_A < R_C + R_A$ or $R_C / R_A > 0.225$. Thus, in the range
$0.225 < R_C / R_A < 0.414$, the B4 and B3 structures with tetrahedral
coordination should be stable.
As indicated in Table \ref{chap9-tab12}, the overall trends are
basically in agreement with these expectations, with B4 and B3
observed for $0.20 < R_C / R_A < 0.55$ and B1 observed for $0.36 < R_C
/ R_A < 0.96$.
\begin{table}
\caption{Radius ratios and observed structures for
divalent XY systems. The ionic radius is given next to each ion.$^a$}
\label{chap9-tab12}
\begin{tabular}{cccccc}\\ \hline
& & O$^-$ & S$^-$ & Se$^-$ & Te$^-$\cr
& & 1.40 & 1.84 & 1.98 & 2.21\cr
Be & 0.45 & 0.32 B4 & 0.24 B3 & 0.23 B3 & 0.20 B3\cr
Mg & 0.72 & 0.51 B1 & 0.39 B1 & 0.36 B1 & 0.33 B4\cr
Ca & 1.00 & 0.71 B1 & 0.54 B1 & 0.51 B1 & 0.45 B1\cr
Sr & 1.18 & 0.84 B1 & 0.64 B1 & 0.60 B1 & 0.53 B1\cr
Ba & 1.35 & 0.96 B1 & 0.73 B1 & 0.68 B1 & 0.61 B1\cr
Zn & 0.74 & 0.53 B4 & 0.40 B3,4 & 0.37 B3,4 & 0.33 B3,4\cr
Cd & 0.95 & 0.68 B1 & 0.52 B3,4 & 0.48 B4 & 0.43 B3,4\cr
Hg & 1.02 & 0.73 & 0.55 B3 & 0.52 B3 & 0.46 B3\cr
Mn & 0.83 & 0.59 B1 & 0.45 B1,3,4 & 0.42 B1,3,4 & 0.38 B4\cr
\hline
\end{tabular}\\
$^a$ Based on Wyckoff, loc. cit.
\end{table}
\subsection{MX$_2$ Structures, Fluorite and Rutile}
A number of compounds have unqual numbers of cations and anions. For
example, fluorite, CaF$_2$, has the structure in Figure
\ref{chap9-fig11}, in which the anions are arranged in a simple cubic
array, and Ca occupies alternate sites at the center of the cubes.
\begin{figure}
\includegraphics[scale=0.75]{fg9-11}
\caption{The structure of the cubic crystal fluorite,
CaF$_2$. Small circles represent calcium ions and large circles fluoride
ions. Using a cubic unit cell of side $a$, the Ca are at $({1 \over
4} a , {1 \over 4} a , {1 \over 4} a)$, $({3 \over 4}a , {3 \over 4}
a, {1 \over 4} a)$, $({3 \over 4} a , {1 \over 4} a , {3 \over 4} a)$,
and $({1 \over 4} a, {3 \over 4} a , {3 \over 4} a)$, while the F are at
the corners, centers of edges, centers of faces, and center of cube. Each
Ca is in a cube of F, and each F has four nearest neighbor Ca's.
}
\label{chap9-fig11}
\end{figure}
This is just like the CsCl structure but with half the Cs missing.
Another common structure is the rutile, TiO$_2$, or cassiterite,
SnO$_2$, crystal structure in Figure \ref{chap9-fig12}.
\begin{figure}
\includegraphics[scale=0.75]{fg9-12}
\caption{The unit cell for the rutile (TiO$_2$) or cassiterite
(SnO$_2$) crystal structure. Ti atoms are at the corners and center
of the unit cell, $(0,0,0)$, $({1 \over 2} a , {1 \over 2} a, {1 \over
2} a)$. O atoms are in the $z = 0$, and $z = c$, planes at $({1
\over 4}a , {1 \over 4} a, 0)$ and $( {3 \over 4} a, {3 \over 4} a,
0)$, and in the $x = c/2$ plane at $({1 \over 4} a, {3 \over 4} a, {1
\over 2} c)$, and $({3 \over 4} a, {1 \over 4} a , {1 \over 2} c)$. The
full, distorted, octahedron of O for the central Ti is
shown. Each O is coordinated to three Ti, all in the same plane, as is
clear for the two oxygens in the $z = 1/2c$ plane.}
\label{chap9-fig12}
\end{figure}
This is related to the NaCl structure, but with half of the cations
missing. Just as with NaCl versus CsCl, the rutile structure prefers
smaller cations than does fluorite. In Table \ref{chap9-tab13} we
list all known MX$_2$ and MO$_2$ cases of c these two structures. For
MF$_2$ we see that rutile is always found for $R_C/R_A < 0.67$, while
fluorite is always found for $R_C/R_A > 0.71$, a result that is in
excellent agreement with the critical ratio of 0.73 in
(\ref{chap9-eqno15}). For Cl the fluorite structure is observed
above, $R_C/R_A = 0.65$, still reasonably close to expectations. For
MO$_2$ the dividing line is $R_C/R_A = 0.50$, if the questionable
structures RuO$_2$, PbO$_2$, and TeO$_2$ are excluded. This is not in
good agreement with (\ref{chap9-eqno15}), suggesting that the O$^{2-}$
anions are not allowed to approach as close as $2R_A$. These
correlations suggest that TeO$_2$ should not have the rutile
structure, and that RuO$_2$ and PbO$_2$ should be reexamined.
\begin{table}
\caption{Observed structures for MF$_2$ and MO$_2$
crystals. Compounds above the solid line exhibit the rutile
crystal structure, while those below the line exhibit the fluorite crystal
structure. (d) indicates a strongely distorted rutile structure, and ?
indicates that the data reported in the literature are old and without the
intensity analyses needed to prove structure.$^a$}
\label{chap9-tab13}
\begin{tabular}{cccc}\\ \hline
NiF$_2$ & 0.52 & GeO$_2$ & 0.38\cr
MgF$_2$ & 0.54 & $\beta$-MnO$_2$ & 0.38\cr
CuF$_2$ (d) & 0.55 & CrO$_2$ & 0.39\cr
ZnF$_2$ & 0.56 & VO$_2$ & 0.41\cr
FeF$_2$ & 0.59 & ReO$_2$ (d)$^b$ & 0.41\cr
MnF$_2$ & 0.62 & TiO$_2$ & 0.43\cr
PdF$_2$ {\rm (?)} & 0.65 & IrO$_2$ {\rm (?)} & 0.45\cr
CoF$_2$ & 0.67 & OsO$_2$ {\rm (?)} & 0.45\cr
& & TcO$_2$ (d)$^b$ & 0.46\cr
& & MoO$_2$ (d) & 0.46\cr
& & WO$_2$ (d) & 0.47\cr
& & NbO$_2$ (d) & 0.49\cr
& & TaO$_2$ & 0.49\cr
& & SnO$_2$ & 0.49\cr
& & RuO$_2$ {\rm (?)} & 0.54\cr
& & PbO$_2$ & 0.55\cr
& & TeO$_2$ & 0.69\cr
CdF$_2$ & 0.71 & HfO$_2$ & 0.51\cr
SrCl$_2$ & 0.65 & ZrO$_2$ & 0.51\cr
BaCl$_2$ & 0.75 & TbO$_2$ & 0.54\cr
CaF$_2$ & 0.75 & AmO$_2$ & 0.61\cr
EuF$_2$ & 0.88 & CmO$_2$ & 0.61\cr
SrF$_2$ & 0.89 & PrO$_2$ & 0.61\cr
HgF$_2$ & 0.89 & PuO$_2$ & 0.61\cr
BaF$_2$ & 1.02 & CeO$_2$ & 0.62\cr
RaF$_2$ & 1.08 & NpO$_2$ & 0.62\cr
& & UO$_2$ & 0.64\cr
& & PaO$_2$ & 0.64\cr