-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
460 lines (368 loc) · 17.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import pickle as pkl
import networkx as nx
import numpy as np
import scipy.sparse as sp
import torch
from sklearn.metrics import roc_auc_score, average_precision_score,f1_score,precision_score,recall_score
from sklearn import metrics
import itertools
import os
from collections import Counter
from munkres import Munkres, print_matrix
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy.stats import entropy
def find_motif(adj, dataset_name):
path = 'data/{}_motif.npy'.format(dataset_name)
motif_matrix = None
if os.path.exists(path):
motif_matrix = np.load(path,allow_pickle=True)
else:
g = nx.Graph()
g = nx.from_scipy_sparse_matrix(adj)
target = nx.Graph()
target.add_edge(1,2)
target.add_edge(2,3)
N = g.number_of_nodes()
motif_matrix = np.zeros((N,N))
for node in g.nodes():
print(node)
neigbours = [i for i in g.neighbors(node)]
for sub_nodes in itertools.combinations(neigbours,len(target.nodes())):
subg = g.subgraph(sub_nodes)
if nx.is_connected(subg) and nx.is_isomorphic(subg, target):
for e in subg.edges():
motif_matrix[e[0]][e[1]]=1
motif_matrix[e[1]][e[0]]=1
with open(path,'wb') as wp:
np.save(wp,motif_matrix)
return motif_matrix
def load_data(dataset):
# load the data: x, tx, allx, graph
names = ['x', 'tx', 'allx', 'graph']
objects = []
for i in range(len(names)):
'''
fix Pickle incompatibility of numpy arrays between Python 2 and 3
https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3
'''
with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
u = pkl._Unpickler(rf)
u.encoding = 'latin1'
cur_data = u.load()
objects.append(cur_data)
# objects.append(
# pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
x, tx, allx, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
features = torch.FloatTensor(np.array(features.todense()))
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
return adj, features
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
def mask_test_edges(adj):
# Function to build test set with 10% positive links
# NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.
# TODO: Clean up.
# Remove diagonal elements
adj = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape)
adj.eliminate_zeros()
# Check that diag is zero:
assert np.diag(adj.todense()).sum() == 0
adj_triu = sp.triu(adj)
adj_tuple = sparse_to_tuple(adj_triu)
edges = adj_tuple[0]
edges_all = sparse_to_tuple(adj)[0]
num_test = int(np.floor(edges.shape[0] / 10.))
num_val = int(np.floor(edges.shape[0] / 20.))
all_edge_idx = list(range(edges.shape[0]))
np.random.shuffle(all_edge_idx)
val_edge_idx = all_edge_idx[:num_val]
test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
test_edges = edges[test_edge_idx]
val_edges = edges[val_edge_idx]
train_edges = np.delete(edges, np.hstack([test_edge_idx, val_edge_idx]), axis=0)
def ismember(a, b, tol=5):
rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
return np.any(rows_close)
test_edges_false = []
while len(test_edges_false) < len(test_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], edges_all):
continue
if test_edges_false:
if ismember([idx_j, idx_i], np.array(test_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(test_edges_false)):
continue
test_edges_false.append([idx_i, idx_j])
val_edges_false = []
while len(val_edges_false) < len(val_edges):
idx_i = np.random.randint(0, adj.shape[0])
idx_j = np.random.randint(0, adj.shape[0])
if idx_i == idx_j:
continue
if ismember([idx_i, idx_j], train_edges):
continue
if ismember([idx_j, idx_i], train_edges):
continue
if ismember([idx_i, idx_j], val_edges):
continue
if ismember([idx_j, idx_i], val_edges):
continue
if val_edges_false:
if ismember([idx_j, idx_i], np.array(val_edges_false)):
continue
if ismember([idx_i, idx_j], np.array(val_edges_false)):
continue
val_edges_false.append([idx_i, idx_j])
assert ~ismember(test_edges_false, edges_all)
assert ~ismember(val_edges_false, edges_all)
assert ~ismember(val_edges, train_edges)
assert ~ismember(test_edges, train_edges)
assert ~ismember(val_edges, test_edges)
data = np.ones(train_edges.shape[0])
# Re-build adj matrix
adj_train = sp.csr_matrix((data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape)
adj_train = adj_train + adj_train.T
# NOTE: these edge lists only contain single direction of edge!
return adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false
def preprocess_graph(adj):
adj = sp.coo_matrix(adj)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
# return sparse_to_tuple(adj_normalized)
return sparse_mx_to_torch_sparse_tensor(adj_normalized)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def get_roc_score(rec, adj_orig, edges_pos, edges_neg):
def sigmoid(x):
x = np.clip(x, -500, 500)
return 1 / (1 + np.exp(-x))
# predict on test set of edges
adj_rec = rec
preds = []
pos = []
for e in edges_pos:
preds.append(sigmoid(adj_rec[e[0], e[1]]))
pos.append(sigmoid(adj_orig[e[0], e[1]]))
preds_neg = []
neg = []
for e in edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]]))
neg.append(sigmoid(adj_orig[e[0], e[1]]))
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score
def cluster_acc(Y_pred, Y):
from scipy.optimize import linear_sum_assignment
assert Y_pred.size == Y.size
D = max(Y_pred.max(), Y.max())+1
w = np.zeros((D,D), dtype=np.int64)
for i in range(Y_pred.size):
w[Y_pred[i], Y[i]] += 1
ind = np.array(linear_sum_assignment(w.max() - w)).T
return sum([w[i,j] for i,j in ind])*1.0/Y_pred.size, w
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
def clustering_evaluation(labels_true, labels):
# logger.info("------------------------clustering result-----------------------------")
# logger.info("original dataset length:{},pred dataset length:{}".format(
# len(labels_true), len(labels)))
# logger.info('number of clusters in dataset: %d' % len(set(labels_true)))
# logger.info('number of clusters estimated: %d' % len(set(labels)))
# logger.info("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
# logger.info("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
# logger.info("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
# logger.info("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
# logger.info("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels))
# logger.info("Normalized Mutual Information: %0.3f" % metrics.normalized_mutual_info_score(labels_true, labels))
# logger.info("Purity Score: %0.3f" % purity_score(labels_true, labels))
# logger.info("------------------------end ----------------------------------------")
return metrics.homogeneity_score(labels_true, labels),\
metrics.completeness_score(labels_true, labels), \
metrics.v_measure_score(labels_true, labels), \
metrics.adjusted_rand_score(labels_true, labels),\
metrics.adjusted_mutual_info_score(labels_true, labels), \
metrics.normalized_mutual_info_score(labels_true,labels), \
purity_score(labels_true, labels),\
f1_score(labels_true,labels,average='weighted'),\
precision_score(labels_true,labels,average='weighted'),\
recall_score(labels_true,labels,average='weighted')
def drop_feature(feature_matrix,delta):
num_nodes, num_features = feature_matrix.shape
mask = torch.tensor(np.random.binomial(1,delta,[num_nodes,1]))
feature_matrix_dropped = feature_matrix*mask
return feature_matrix_dropped
def drop_edge(adj,Y,delta=1):
num_nodes, num_features = adj.shape
# mask = torch.tensor(np.random.binomial(1,delta,[num_nodes,num_features]))
for row in range(num_nodes):
print(row)
for col in range(num_nodes):
if row!=col and adj[row,col]==1:
if Y[row]!=Y[col]:
adj[row,col]=0
adj[col,row]=0
print("after drop edge: edge number",adj.sum())
return adj
def choose_cluster_votes(adj,prediction):
n_nodes = adj.shape[0]
new_prediction=[]
for i in range(n_nodes):
labels=prediction[(adj[i]>=1).tolist()]
labels_max = Counter(labels)
max_value = 0
candicate_label =0
for key,value in labels_max.items():
if value > max_value:
candicate_label = key
max_value = value
new_prediction.append(candicate_label)
print("new prediction duplicate rate:",np.sum(np.array(new_prediction)==prediction)/len(prediction))
return np.array(new_prediction)
def plot_tsne_non_centers(dataset,model_name,epoch,z,true_label,pred_label):
tsne = TSNE(n_components=2, init='pca',perplexity=50.0)
zs_tsne = tsne.fit_transform(z)
cluster_labels=set(true_label)
print(cluster_labels)
index_group= [np.array(true_label)==y for y in cluster_labels]
colors = cm.Set1(range(len(index_group)))
fig, ax = plt.subplots(figsize=[5,5])
for index,c in zip(index_group,colors):
ax.scatter(zs_tsne[np.ix_(index), 0], zs_tsne[np.ix_(index), 1],color=c,s=30)
# ax.legend(cluster_labels)
# ax.scatter(zs_tsne[z.shape[0]:, 0], zs_tsne[z.shape[0]:, 1],marker='^',color='b',s=40)
# plt.title('true label')
# ax.legend()
ax.axis('off')
plt.tight_layout()
plt.savefig("./visualization/{}_{}_{}_tsne_{}.pdf".format(model_name,dataset,epoch,'true_label'))
cluster_labels=set(pred_label)
print(cluster_labels)
index_group= [np.array(pred_label)==y for y in cluster_labels]
colors = cm.tab10(range(len(index_group)))
fig, ax = plt.subplots(figsize=[5,5])
for index,c in zip(index_group,colors):
ax.scatter(zs_tsne[np.ix_(index), 0], zs_tsne[np.ix_(index), 1],color=c,s=30)
# for index,c in enumerate(colors):
# ax.scatter(zs_tsne[z.shape[0]+index:z.shape[0]+index+1, 0], zs_tsne[z.shape[0]+index:z.shape[0]+index+1, 1],marker='^',color=c,s=40)
ax.axis('off')
# ax.legend(cluster_labels)
# plt.title('pred label')
# ax.legend()
plt.tight_layout()
plt.savefig("./visualization/{}_{}_{}_tsne_{}.pdf".format(model_name,dataset,epoch,'pred_label'))
def plot_tsne(dataset,model_name,epoch,z,mu_c,true_label,pred_label):
tsne = TSNE(n_components=2, init='pca',perplexity=50.0)
data = torch.cat([z,mu_c],dim=0).detach().numpy()
zs_tsne = tsne.fit_transform(data)
cluster_labels=set(true_label)
print(cluster_labels)
index_group= [np.array(true_label)==y for y in cluster_labels]
colors = cm.Set1(range(len(index_group)))
fig, ax = plt.subplots(figsize=[5,5])
for index,c in zip(index_group,colors):
ax.scatter(zs_tsne[np.ix_(index), 0], zs_tsne[np.ix_(index), 1],color=c,s=30)
ax.axis('off')
# ax.legend(cluster_labels)
# ax.scatter(zs_tsne[z.shape[0]:, 0], zs_tsne[z.shape[0]:, 1],marker='^',color='b',s=40)
# plt.title('true label')
# ax.legend()
plt.tight_layout()
plt.savefig("./visualization/{}_{}_{}_tsne_{}.pdf".format(model_name,dataset,epoch,'true_label'))
cluster_labels=set(pred_label)
print(cluster_labels)
index_group= [np.array(pred_label)==y for y in cluster_labels]
colors = cm.tab10(range(len(index_group)))
fig, ax = plt.subplots(figsize=[5,5])
for index,c in zip(index_group,colors):
ax.scatter(zs_tsne[np.ix_(index), 0], zs_tsne[np.ix_(index), 1],color=c,s=30)
# for index,c in enumerate(colors):
# ax.scatter(zs_tsne[z.shape[0]+index:z.shape[0]+index+1, 0], zs_tsne[z.shape[0]+index:z.shape[0]+index+1, 1],marker='^',color=c,s=40)
# ax.legend(cluster_labels)
ax.axis('off')
# plt.title('pred label')
# ax.legend()
plt.tight_layout()
plt.savefig("./visualization/{}_{}_{}_tsne_{}.pdf".format(model_name,dataset,epoch,'pred_label'))
def save_results(args,metrics_list):
'''
metrics_list=[mean_h,mean_c,mean_v,mean_ari,mean_ami,mean_nmi,mean_purity,mean_accuracy,mean_f1,mean_precision]
'''
metrics_name=['H','C','V','Ari','Ami','Nmi','purity','accuracy','f1','precision','recall','entropy','time']
wp = open('./result_logs/{}_{}_{}'.format(args.model,args.dataset,args.epochs),'a')
wp.write("\n\n")
if args.model =='gcn_vaece':
wp.write("hidden1:{},hidden2:{},learning_rate:{},epochs:{},seed:{},beta:{}, omega:{}, mutual_loss:{}, clustering_loss:{}, using kmeans:{}, coembedding:{}, encoder:{}\n".format(args.hidden1,args.hidden2,args.lr,args.epochs,args.seed,args.beta,args.omega,args.mutual_loss, args.clustering_loss, args.kmeans, args.coembedding,args.encoder))
else:
wp.write("hidden1:{},hidden2:{},learning_rate:{},epochs:{},seed:{}\n".format(args.hidden1,args.hidden2,args.lr,args.epochs,args.seed))
for index,metric in enumerate(metrics_list):
wp.write("{}\t".format(metrics_name[index]))
for value in metric:
wp.write("{}\t".format(value))
wp.write("{}\t".format(round(np.mean(metric),3)))
wp.write("{}\n".format(round(np.std(metric),3)))
wp.write("mean list for latex table\n")
wp.write("'Nmi','purity','Ari','f1','precision','recall','entropy'\n")
for metric in ['Nmi','purity','Ari','f1','precision','recall','entropy']:
for index, temp_metric in enumerate(metrics_name):
if metric == temp_metric:
wp.write("{} &".format(round(np.mean(sorted(metrics_list[index],reverse=True)[0:10]),3)))
wp.write("\n")
wp.close()
def entropy_metric(tru,pre):
size = len(tru)
unique_labels = len(set(tru))
tru_d = []
pre_d = []
tru_s= Counter(tru)
pre_s = Counter(pre)
print(tru_s)
print(pre_s)
for i in range(unique_labels):
tru_d.append(tru_s[i]/size)
pre_d.append( pre_s[i]/size)
print("label distribution for entropy")
print('true labels:',tru_d)
print('pred labels:',pre_d)
return entropy(tru_d,pre_d)