-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvaecd.py
359 lines (280 loc) · 16.4 KB
/
vaecd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from __future__ import division
from __future__ import print_function
import argparse
import time
import numpy as np
import scipy.sparse as sp
import torch
from torch import optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
from model import GCNModelVAE,GCNModelVAECD,GCNModelAE,GCNModelVAECE
from utils import preprocess_graph, get_roc_score, sparse_to_tuple,sparse_mx_to_torch_sparse_tensor,cluster_acc, clustering_evaluation, find_motif,drop_feature, drop_edge,choose_cluster_votes,plot_tsne,save_results,entropy_metric
from preprocessing import mask_test_feas,mask_test_edges, load_AN, check_symmetric,load_data
from tqdm import tqdm
from tensorboardX import SummaryWriter
from evaluation import clustering_latent_space
from collections import Counter
import itertools
import random
from sklearn.mixture import GaussianMixture
from hungrian import label_mapping
import warnings
warnings.simplefilter("ignore")
def training(args):
if args.cuda>=0:
device = torch.device('cuda')
else:
device = torch.device('cpu')
print("Using {} dataset".format(args.dataset))
if args.dataset in ['cora','pubmed','citeseer']:
adj_init, features, labels, idx_train, idx_val, idx_test = load_data(args.dataset)
Y = np.argmax(labels,1) # labels is in one-hot format
elif args.dataset in ['Flickr','BlogCatalog']:
adj_init, features, Y= load_AN(args.dataset)
else:
adj_init, features, Y= load_AN("synthetic_{}_{}".format(args.synthetic_num_nodes,args.synthetic_density))
# print("find motif")
# motif_matrix=find_motif(adj_init,args.dataset)
# adj_init=sp.lil_matrix(motif_matrix).multiply(adj_init)
# Store original adjacency matrix (without diagonal entries) for later
adj_init = adj_init- sp.dia_matrix((adj_init.diagonal()[np.newaxis, :], [0]), shape=adj_init.shape)
adj_init.eliminate_zeros()
assert adj_init.diagonal().sum()==0,"adj diagonal sum:{}, should be 0".format(adj_init.diagonal().sum())
n_nodes, n_features= features.shape
# assert check_symmetric(adj_init).sum()==n_nodes*n_nodes,"adj should be symmetric"
print("imported graph edge number (without selfloop):{}".format((adj_init-adj_init.diagonal()).sum()/2))
# find motif 3 nodes
args.nClusters=len(set(Y))
# args.nClusters=1
print("cluster number:{}".format(args.nClusters))
assert(adj_init.shape[0]==n_nodes)
print("node size:{}, feature size:{}".format(n_nodes,n_features))
# adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj_init)
# fea_train, train_feas, val_feas, val_feas_false, test_feas, test_feas_false = mask_test_feas(features)
features_orig = features
features_label = torch.FloatTensor(features.toarray())
features = sp.lil_matrix(features)
features = sparse_to_tuple(features.tocoo())
features_nonzero = features[1].shape[0]
print("graph edge number after mask:{}".format(adj_init.sum()/2))
# save result to files
link_predic_result_file = "result/AGAE_{}.res".format(args.dataset)
embedding_node_mean_result_file = "result/AGAE_{}_n_mu.emb".format(args.dataset)
embedding_attr_mean_result_file = "result/AGAE_{}_a_mu.emb".format(args.dataset)
embedding_node_var_result_file = "result/AGAE_{}_n_sig.emb".format(args.dataset)
embedding_attr_var_result_file = "result/AGAE_{}_a_sig.emb".format(args.dataset)
# Some preprocessing, get the support matrix, D^{-1/2}\hat{A}D^{-1/2}
adj_norm = preprocess_graph(adj_init)
print("graph edge number after normalize adjacent matrix:{}".format(adj_init.sum()/2))
pos_weight_u = torch.tensor(float(adj_init.shape[0] * adj_init.shape[0] - adj_init.sum()) / adj_init.sum()) #??
norm_u = adj_init.shape[0] * adj_init.shape[0] / float((adj_init.shape[0] * adj_init.shape[0] - adj_init.sum()) * 2) #??
pos_weight_a = torch.tensor(float(features[2][0] * features[2][1] - len(features[1])) / len(features[1]))
norm_a = features[2][0] * features[2][1] / float((features[2][0] * features[2][1] - len(features[1])) * 2)
features_training = sparse_mx_to_torch_sparse_tensor(features_orig)
# clustering pretraining for GMM paramter initialization
# writer=SummaryWriter('./logs')
adj_label = torch.FloatTensor(adj_init.toarray()+sp.eye(adj_init.shape[0])) # add the identity matrix to the adj as label
mean_h=[]
mean_c=[]
mean_v=[]
mean_ari=[]
mean_ami=[]
mean_nmi=[]
mean_purity=[]
mean_accuracy=[]
mean_f1=[]
mean_precision=[]
mean_recall = []
mean_entropy = []
mean_time= []
# drop features
features_training = features_training.to_dense().to(device)
# features_training = drop_feature(features_training,1.0).cuda()
adj_norm = adj_norm.to_dense().to(device)
pos_weight_u = pos_weight_u.to(device)
pos_weight_a = pos_weight_a.to(device)
adj_label = adj_label.to(device)
features_label = features_label.to(device)
features_training, adj_norm = Variable(features_training), Variable(adj_norm)
pos_weight_u = Variable(pos_weight_u)
pos_weight_a = Variable(pos_weight_a)
features_training, adj_norm = Variable(features_training), Variable(adj_norm)
pos_weight_u = Variable(pos_weight_u)
pos_weight_a = Variable(pos_weight_a)
for r in range(args.num_run):
# random.seed(args.seed)
# np.random.seed(args.seed)
torch.manual_seed(args.seed)
model = GCNModelVAECE(n_features,n_nodes, args.hidden1, args.hidden2, args.dropout,args)
# using GMM to pretrain the clustering parameters
model.to(device)
optimizer2 = optim.Adam(model.parameters(), lr=args.lr)
hidden_emb_u = None
hidden_emb_a = None
cost_val = []
acc_val = []
val_roc_score = []
lr_s=StepLR(optimizer2,step_size=30,gamma=1) # it seems that fix leanring rate is better
loss_list=None
pretrain_flag = False
start_time = time.time()
for epoch in range(args.epochs):
t = time.time()
model.train()
# (recovered_u, recovered_a), mu_u, logvar_u, mu_a, logvar_a = model(features_training, adj_norm)
# soft cluster assignment
loss_list,[mu_u, logvar_u, mu_a, logvar_a,z] = model.loss(features_training,adj_norm,labels = (adj_label, features_label), n_nodes = n_nodes, n_features = n_features,norm = (norm_u, norm_a), pos_weight = (pos_weight_u, pos_weight_a))
pre,gamma,z = model.predict_soft_assignment(mu_u,logvar_u,z)
H, C, V, ari, ami, nmi, purity, f1_score,precision,recall = clustering_evaluation(Y,pre)
print("purity, NMI f1_score:",purity,nmi,f1_score)
if epoch <200:
loss =loss_list[0]+loss_list[2]+loss_list[4]
# model.change_nn_grad_true()
model.change_cluster_grad_false()
else:
if pretrain_flag == False:
pretrain_flag = True
print('pre_train',pretrain_flag)
gmm = GaussianMixture(n_components=args.nClusters,covariance_type='diag')
pre = gmm.fit_predict(z.cpu().detach().numpy())
H, C, V, ari, ami, nmi, purity,f1_score,precision_score,recall = clustering_evaluation(pre,Y)
print("GMM purity, NMI:",purity,nmi)
# plot_tsne(args.dataset,args.model,epoch,z.cpu(),model.mu_c.cpu(),Y,pre)
model.init_clustering_params(gmm)
loss = loss_list[0]+loss_list[2]+loss_list[4]
# if epoch%10 < 5:
# model.change_nn_grad_true()
# model.change_cluster_grad_false()
# else:
# model.change_nn_grad_false()
# model.change_cluster_grad_true()
optimizer2.zero_grad()
loss.backward()
optimizer2.step()
(recovered_u, recovered_a), mu_u, logvar_u, mu_a, logvar_a = model(features_training, adj_norm)
lr_s.step()
correct_prediction_u = ((torch.sigmoid(recovered_u.to('cpu'))>=0.5)==adj_label.type(torch.LongTensor))
# correct_prediction_a = ((torch.sigmoid(recovered_a)>=0.5).type(torch.LongTensor)==features_label.type(torch.LongTensor)).type(torch.FloatTensor)
accuracy = torch.mean(correct_prediction_u*1.0)
#clustering#############
pre=[]
tru=[]
gamma = None
tru=Y
print("Epoch:", '%04d' % (epoch + 1),
"LR={:.4f}".format(lr_s.get_last_lr()[0]),
"train_loss_total=", "{:.5f}".format(loss.item()),
"train_loss_parts=", "{}".format([round(l.item(),4) for l in loss_list]),
"mutual dist loss=", "{:.5f}".format(args.beta*loss_list[5]),
"soft clustering loss=", "{:.5f}".format(args.omega*loss_list[6]),
# "KL_u=", "{:.5f}".format(KLD_u.item()),
# "KL_a=", "{:.5f}".format(KLD_a.item()),
# "yita_loss=", "{:.5f}".format(yita_loss.item()),
"link_pred_train_acc=", "{:.5f}".format(accuracy.item()),
# "val_edge_roc=", "{:.5f}".format(val_roc_score[-1]),
# "val_edge_ap=", "{:.5f}".format(ap_curr),
# "val_attr_roc=", "{:.5f}".format(roc_curr_a),
# "val_attr_ap=", "{:.5f}".format(ap_curr_a),
"time=", "{:.5f}".format(time.time() - t),
"total time=", "{:.5f}".format(time.time() - start_time))
print("Optimization Finished!")
end_time = time.time()
print("total time spend:", end_time- start_time)
if args.kmeans:
pre,mu_c=clustering_latent_space(z.cpu().detach().numpy(),tru)
else:
pre,gamma_c,z = model.predict_soft_assignment(mu_u,logvar_u,z)
pre = label_mapping(tru,pre)
with open("save_prediction.log",'w') as wp:
for label in pre:
wp.write("{}\n".format(label))
# print('gamma_c:',gamma_c)
# print('gamma_c argmax:',np.argmax(gamma_c,1))
# print('gamma_c argmax counter:',Counter(np.argmax(gamma_c,1).tolist()))
# print("label mapping using Hungarian algorithm ")
# new_prediction=choose_cluster_votes(adj_label,pre)
# H, C, V, ari, ami, nmi, purity,f1_score,precision,recall = clustering_evaluation(tru,new_prediction)
# print("new prediction nmi",nmi)
H, C, V, ari, ami, nmi, purity,f1_score, precision, recall= clustering_evaluation(tru,pre)
entropy = entropy_metric(tru,pre)
acc = cluster_acc(pre,tru)[0]
mean_h.append(round(H,4))
mean_c.append(round(C,4))
mean_v.append(round(V,4))
mean_ari.append(round(ari,4))
mean_ami.append(round(ami,4))
mean_nmi.append(round(nmi,4))
mean_purity.append(round(purity,4))
mean_accuracy.append(round(acc,4))
mean_f1.append(round(f1_score,4))
mean_precision.append(round(precision,4))
mean_recall.append(round(recall,4))
mean_entropy.append(round(entropy,4))
mean_time.append(round(end_time-start_time,4))
# if args.model in ['gcn_vaecd','gcn_vaece']:
# # pre,gamma,z = model.predict_soft_assignment(mu_u,logvar_u)
# # plot_tsne(args.dataset,args.model,epoch,z.cpu().float(),model.mu_c.cpu().float(),Y,pre)
# pass
# else:
# pre=clustering_latent_space(mu_u.detach().numpy(),tru)
# plot_tsne(args.dataset,args.model,epoch,z.cpu(),model.mu_c.cpu(),Y,pre)
# np.save(embedding_node_mean_result_file, mu_u.data.numpy())
# np.save(embedding_attr_mean_result_file, mu_a.data.numpy())
# np.save(embedding_node_var_result_file, logvar_u.data.numpy())
# np.save(embedding_attr_var_result_file, logvar_a.data.numpy())
# roc_score, ap_score = get_roc_score(np.dot(hidden_emb_u,hidden_emb_u.T), adj, test_edges, test_edges_false)
# roc_score_a, ap_score_a = get_roc_score(np.dot(hidden_emb_u,hidden_emb_a.T), features_orig, test_feas, test_feas_false)
# print('Test edge ROC score: ' + str(roc_score))
# print('Test edge AP score: ' + str(ap_score))
# print('Test attr ROC score: ' + str(roc_score_a))
# print('Test attr AP score: ' + str(ap_score_a))
metrics_list=[mean_h,mean_c,mean_v,mean_ari,mean_ami,mean_nmi,mean_purity,mean_accuracy,mean_f1,mean_precision,mean_recall,mean_entropy,mean_time]
save_results(args,metrics_list)
###### Report Final Results ######
print('Homogeneity:{}\t mean:{}\t std:{}\n'.format(mean_h,round(np.mean(mean_h),4),round(np.std(mean_h),4)))
print('Completeness:{}\t mean:{}\t std:{}\n'.format(mean_c,round(np.mean(mean_c),4),round(np.std(mean_c),4)))
print('V_measure_score:{}\t mean:{}\t std:{}\n'.format(mean_v,round(np.mean(mean_v),4),round(np.std(mean_v),4)))
print('adjusted Rand Score:{}\t mean:{}\t std:{}\n'.format(mean_ari,round(np.mean(mean_ari),4),round(np.std(mean_ari),4)))
print('adjusted Mutual Information:{}\t mean:{}\t std:{}\n'.format(mean_ami,round(np.mean(mean_ami),4),round(np.std(mean_ami),4)))
print('Normalized Mutual Information:{}\t mean:{}\t std:{}\n'.format(mean_nmi,round(np.mean(mean_nmi),4),round(np.std(mean_nmi),4)))
print('Purity:{}\t mean:{}\t std:{}\n'.format(mean_purity,round(np.mean(mean_purity),4),round(np.std(mean_purity),4)))
print('Accuracy:{}\t mean:{}\t std:{}\n'.format(mean_accuracy,round(np.mean(mean_accuracy),4),round(np.std(mean_accuracy),4)))
print('F1-score:{}\t mean:{}\t std:{}\n'.format(mean_f1,round(np.mean(mean_f1),4),round(np.std(mean_f1),4)))
print('precision_score:{}\t mean:{}\t std:{}\n'.format(mean_precision,round(np.mean(mean_precision),4),round(np.std(mean_precision),4)))
print('recall_score:{}\t mean:{}\t std:{}\n'.format(mean_recall,round(np.mean(mean_recall),4),round(np.std(mean_recall),4)))
print('entropy:{}\t mean:{}\t std:{}\n'.format(mean_entropy,round(np.mean(mean_entropy),4),round(np.std(mean_entropy),4)))
print("True label distribution:{}".format(tru))
print(Counter(tru))
print("Predicted label distribution:{}".format(pre))
print(Counter(pre))
def parse_args():
parser = argparse.ArgumentParser(description="Node clustering")
parser.add_argument('--model', type=str, default='gcn_vaecd')
parser.add_argument('--seed', type=int, default=20, help='Random seed.')
parser.add_argument('--epochs', type=int, default=300, help='Number of epochs to train.')
parser.add_argument('--hidden1', type=int, default=64, help='Number of units in hidden layer 1.')
parser.add_argument('--hidden2', type=int, default=32, help='Number of units in hidden layer 2.')
parser.add_argument('--lr', type=float, default=0.002, help='Initial learning rate.')
parser.add_argument('--dropout', type=float, default=0.0, help='Dropout rate (1 - keep probability).')
parser.add_argument('--omega', type=float, default=1, help='weight for the soft clustering loss')
parser.add_argument('--beta', type=float, default=1, help='weight for the mutual distance loss')
parser.add_argument('--dataset', type=str, default='cora', help='type of dataset.')
parser.add_argument('--synthetic_num_nodes',type=int,default=1000)
parser.add_argument('--synthetic_density', type=float, default=0.1)
parser.add_argument('--nClusters',type=int,default=7)
parser.add_argument('--mutual_loss',type=int,default=1)
parser.add_argument('--clustering_loss',type=int,default=1)
parser.add_argument('--kmeans',type=int,default=0)
parser.add_argument('--num_run',type=int,default=5,help='Number of running times')
parser.add_argument('--cuda', type=int, default=0, help='training with GPU.')
args, unknown = parser.parse_known_args()
return args
if __name__ == '__main__':
args = parse_args()
# args.seed = np.random.randint(200,250)
# torch.cuda.manual_seed(args.seed)
# random.seed(args.seed)
# np.random.seed(args.seed)
# torch.manual_seed(args.seed)
training(args)