-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathotfusion_lib.py
497 lines (437 loc) · 25.8 KB
/
otfusion_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# OTfusion Library Fuctions
#
# Author: Moritz Imfeld <[email protected]>
# Imports
import torch, logging, copy, ot
import numpy as np
from ground_metric import GroundMetric
from utils import matrix_stats, dict_get, dict_write, matrix_to_heatmap
#----------------#
# Encoder Fusion #
#----------------#
def encoder_fusion(args: dict, keys: dict, w_0: dict, w_1: dict, acts_0: dict, acts_1: dict, t_in: torch.Tensor, last_layer, device: torch.device, enc_key, log, alpha = 0.5, prev_out_acts = None):
'''
## Description
Performs OTFusion of two encoder layers.
------
## Parameters
`args` Dictionary from YAML-based configuration file\\
`keys`: Dictionary containing key lists to access data from the nested weight and acts dicts. The key list must be ordered in the order of the access of the nested dictionary.\\
`w_0` Dictionary containing all weights of a encoder layer of model 0\\
`w_1` Dictionary containing all weights of a encoder layer of model 1\\
`acts_0` Dictionary containing all activations of a encoder layer of model 0\\
`acts_1` Dictionary containing all activations of a encoder layer of model 1\\
`t_in` Input transportation map (set to 'None' if previous layer had no permutations)\\
`last_layer` Flag that indicates if this is the last layer that will be fused in the current experiment\\
`device` torch.device()\\
`enc_key` Used for logging\\
`log` logging instance\\
`prev_out_acts` Output activations of the last layer (needed to weigh residual transporation map)
------
## Outputs
`t_out` Transportation map of current layer\\
`w_fused` Fused Weights
'''
# Retrieve key lists
ln0_keys = keys['enc_ln0_keys']
ln1_keys = keys['enc_ln1_keys']
sa_keys = keys['enc_sa_keys']
ff0_keys = keys['enc_ff0_keys']
ff1_keys = keys['enc_ff1_keys']
# Init w_fused
w_fused = {}
# save transportation map for residual connection
t_resid = t_in
# Fuse Layer Normalization Layer (for bert there is no layernorm at the input)
if args['model']['type'] != 'hf_bert_masked' and args['model']['type'] != 'hf_bert_class':
if (args['fusion']['fuse_norm']):
log.info(' Fusing encoder {0}: norm 0'.format(enc_key))
w_norm_0_fused, t_out = ln_fusion(args = args, keys = keys, t_in = t_in, w_0 = dict_get(ln0_keys, w_0), w_1 = dict_get(ln0_keys, w_1), device = device)
else:
w_norm_0_fused = copy.deepcopy(dict_get(ln1_keys, w_0))
t_out = t_in
else:
t_out = t_in
# Fuse Self-Attention Layer
if (args['fusion']['fuse_sa']):
log.info(' Fusing encoder {0}: self-attention'.format(enc_key))
w_self_attention_fused, t_out = act_attention_fusion(args = args, keys = keys, w_sa_0 = dict_get(sa_keys, w_0), w_sa_1 = dict_get(sa_keys, w_1),
acts_sa_0 = dict_get(sa_keys, acts_0), acts_sa_1 = dict_get(sa_keys, acts_1),
t_q_in = t_out, t_k_in = t_out, t_v_in = t_out, device = device, log = log, last_layer = last_layer and not args['fusion']['fuse_fc'])
else:
w_self_attention_fused = copy.deepcopy(dict_get(sa_keys, w_0))
# Apply residual connection policy
# Note: For the weighted policy, the activations generated by the self-attention are used to weight t_in and
# the activations generated by the previous layer are used to weight t_resid.
if t_in != None:
t_out = resid_policy(policy = args.get('fusion').get('resid_policy'), t_resid = t_resid, t_in = t_out,
resid_acts = prev_out_acts, in_acts = dict_get(sa_keys + ['data'], acts_1), log = log)
t_resid = t_out
# Fuse Layer Normalization Layer
if args['fusion']['fuse_norm'] and args['model']['type'] != 'hf_bert_masked' and args['model']['type'] != 'hf_bert_class':
log.info(' Fusing encoder {0}: norm 1'.format(enc_key))
w_norm_1_fused, t_out = ln_fusion(args = args, keys = keys, t_in = t_out, w_0 = dict_get(ln1_keys, w_0), w_1 = dict_get(ln1_keys, w_1), device = device)
elif args['fusion']['fuse_norm'] and (args['model']['type'] == 'hf_bert_masked' or args['model']['type'] == 'hf_bert_class'):
log.info(' Fusing encoder {0}: norm 0'.format(enc_key))
w_norm_0_fused, t_out = ln_fusion(args = args, keys = keys, t_in = t_out, w_0 = dict_get(ln0_keys, w_0), w_1 = dict_get(ln0_keys, w_1), device = device)
elif args['model']['type'] != 'hf_bert_masked' and args['model']['type'] != 'hf_bert_class':
w_norm_1_fused = copy.deepcopy(dict_get(ln1_keys, w_0))
else:
w_norm_0_fused = copy.deepcopy(dict_get(ln0_keys, w_0))
# Fuse Fully Connected Layers
if (args['fusion']['fuse_fc']):
log.info(' Fusing encoder {0}: fully-connected; layer 0'.format(enc_key))
w_ff0_fused, t_out = fc_fusion(args = args, keys = keys, t_in = t_out, w_0 = dict_get(ff0_keys, w_0),
w_1 = dict_get(ff0_keys, w_1),
act_0 = dict_get(ff0_keys, acts_0),
act_1 = dict_get(ff0_keys, acts_1),
device = device, log = log)
log.info(' Fusing encoder {0}: fully-connected; layer 1'.format(enc_key))
w_ff1_fused, t_out = fc_fusion(args = args, keys = keys, t_in = t_out, w_0 = dict_get(ff1_keys, w_0),
w_1 = dict_get(ff1_keys, w_1),
act_0 = dict_get(ff1_keys, acts_0),
act_1 = dict_get(ff1_keys, acts_1),
device = device, log = log, last_layer=last_layer)
else:
w_ff0_fused = copy.deepcopy(dict_get(ff0_keys, w_0))
w_ff1_fused = copy.deepcopy(dict_get(ff1_keys, w_0))
# Fuse second BERT layernorm
if args['model']['type'] == 'hf_bert_masked' or args['model']['type'] == 'hf_bert_class':
if (args['fusion']['fuse_norm']):
log.info(' Fusing encoder {0}: norm 1'.format(enc_key))
w_norm_1_fused, t_out = ln_fusion(args = args, keys = keys, t_in = t_out, w_0 = dict_get(ln1_keys, w_0), w_1 = dict_get(ln1_keys, w_1), device = device)
else:
w_norm_1_fused = copy.deepcopy(dict_get(ln1_keys, w_0))
# Apply resid connection policy (first activations to weight t_resid have to be calculated)
if not last_layer:
resid_acts = torch.add(dict_get(sa_keys + ['data'], acts_1), prev_out_acts)
t_out = resid_policy(policy = args.get('fusion').get('resid_policy'), t_resid = t_resid, t_in = t_out, resid_acts = resid_acts, in_acts = dict_get(ff1_keys, acts_1), log = log)
# write weights to w_fused dict
dict_write(w_fused, sa_keys, w_self_attention_fused)
dict_write(w_fused, ln0_keys, w_norm_0_fused)
dict_write(w_fused, ln1_keys, w_norm_1_fused)
dict_write(w_fused, ff0_keys, w_ff0_fused)
dict_write(w_fused, ff1_keys, w_ff1_fused)
return w_fused, t_out
#------------------#
# Attention Fusion #
#------------------#
def act_attention_fusion(args: dict, keys: dict, w_sa_0: dict, w_sa_1: dict, acts_sa_0: dict, acts_sa_1: dict, t_q_in: torch.Tensor,
t_k_in: torch.Tensor, t_v_in: torch.Tensor, device: torch.device, log: logging.Logger, alpha = 0.5, last_layer = False):
'''
## Description
Performs OTFusion of two attention layers.
------
## Parameters
`args` Dictionary from YAML-based configuration file\\
`keys`: Dictionary containing key lists to access data from the nested weight and acts dicts. The key list must be ordered in the order of the access of the nested dictionary.\\
`w_sa_0` Dictionary containing all weights of a attention layer of model 0\\
`w_sa_1` Dictionary containing all weights of a attention layer of model 1\\
`acts_sa_0` Dictionary containing all activations of a attention layer of model 0\\
`acts_sa_1` Dictionary containing all activations of a attention layer of model 1\\
`t_q_in` Input transportation map for w_q (set to 'None' if previous layer had no permutations)\\
`t_k_in` Input transportation map for w_k (set to 'None' if previous layer had no permutations)\\
`t_v_in` Input transportation map for w_v (set to 'None' if previous layer had no permutations)\\
`alpha` Weighting parameter for anker model\\
`device` torch.device()\\
`log` logging instance
------
## Outputs
`t_out` Transportation map of current layer\\
`w_fused` Fused Weights
'''
# Retrieve key lists
w_q_keys = keys['w_q']
w_k_keys = keys['w_k']
w_v_keys = keys['w_v']
w_o_keys = keys['w_o']
# init
w_sa_fused = {}
# fuse
if args.get('fusion', {}).get('qk_fusion', 'separate') == 'separate':
log.info(' Calculating separate t_map for W_Q and W_K')
log.info(' Fusing W_Q')
w_q_fused, t_q_out = fc_fusion(args = args, keys = keys, t_in = t_q_in, w_0 = dict_get(w_q_keys, w_sa_0), w_1 = dict_get(w_q_keys, w_sa_1), act_0 = dict_get(w_q_keys, acts_sa_0), act_1 = dict_get(w_q_keys, acts_sa_1), device = device, log = log)
log.info(' Fusing W_K')
w_k_fused, t_k_out = fc_fusion(args = args, keys = keys, t_in = t_k_in, w_0 = dict_get(w_k_keys, w_sa_0), w_1 = dict_get(w_k_keys, w_sa_1), act_0 = dict_get(w_k_keys, acts_sa_0), act_1 = dict_get(w_k_keys, acts_sa_1), device = device, log = log)
elif args.get('fusion', {}).get('qk_fusion', 'separate') == 'eq_t_map':
log.info(' Calculating one single t_map for both W_Q and W_K')
log.info(' Fusing W_Q')
if args['fusion']['type'] == 'acts':
w_q_fused, t_q_out = fc_fusion(args = args, keys = keys, t_in = t_q_in, w_0 = dict_get(w_q_keys, w_sa_0), w_1 = dict_get(w_q_keys, w_sa_1), act_0 = torch.cat((dict_get(w_k_keys, acts_sa_0), dict_get(w_q_keys, acts_sa_0)), dim = 0), act_1 = torch.cat((dict_get(w_k_keys, acts_sa_1), dict_get(w_q_keys, acts_sa_1)), dim = 0), device = device, log = log)
else:
# weights are also passed as activations for the 'wts' + 'eq_t_map' configuration, additionally the wts_eq_t_map is flag is set in the fc_fusion function
w_q_fused, t_q_out = fc_fusion(args = args, keys = keys, t_in = t_q_in, w_0 = dict_get(w_q_keys, w_sa_0), w_1 = dict_get(w_q_keys, w_sa_1), act_0 = torch.cat((dict_get(w_k_keys, w_sa_0)['weight'], dict_get(w_q_keys, w_sa_0)['weight']), dim = 0), act_1 = torch.cat((dict_get(w_k_keys, w_sa_1)['weight'], dict_get(w_q_keys, w_sa_1)['weight']), dim = 0), device = device, log = log, wts_eq_t_map = True)
log.info(' Fusing W_K')
if args['fusion']['type'] == 'acts':
w_k_fused, t_k_out = fc_fusion(args = args, keys = keys, t_in = t_k_in, w_0 = dict_get(w_k_keys, w_sa_0), w_1 = dict_get(w_k_keys, w_sa_1), act_0 = torch.cat((dict_get(w_k_keys, acts_sa_0), dict_get(w_q_keys, acts_sa_0)), dim = 0), act_1 = torch.cat((dict_get(w_k_keys, acts_sa_1), dict_get(w_q_keys, acts_sa_1)), dim = 0), device = device, log = log)
else:
# weights are also passed as activations for the 'wts' + 'eq_t_map' configuration, additionally the wts_eq_t_map is flag is set in the fc_fusion function
w_k_fused, t_k_out = fc_fusion(args = args, keys = keys, t_in = t_k_in, w_0 = dict_get(w_k_keys, w_sa_0), w_1 = dict_get(w_k_keys, w_sa_1), act_0 = torch.cat((dict_get(w_k_keys, w_sa_0)['weight'], dict_get(w_q_keys, w_sa_0)['weight']), dim = 0), act_1 = torch.cat((dict_get(w_k_keys, w_sa_1)['weight'], dict_get(w_q_keys, w_sa_1)['weight']), dim = 0), device = device, log = log, wts_eq_t_map = True)
elif args.get('fusion', {}).get('qk_fusion', 'separate') == 'joint':
log.info(' Joint W_K and W_Q fusion')
w_k0 = dict_get(w_k_keys, w_sa_0)
w_k1 = dict_get(w_k_keys, w_sa_1)
w_q0 = dict_get(w_q_keys, w_sa_0)
w_q1 = dict_get(w_q_keys, w_sa_1)
a_k0 = dict_get(w_k_keys, acts_sa_0)
a_k1 = dict_get(w_k_keys, acts_sa_1)
a_q0 = dict_get(w_q_keys, acts_sa_0)
a_q1 = dict_get(w_q_keys, acts_sa_1)
w_qk0_join = {}
a_qk0_join = {}
w_qk1_join = {}
a_qk1_join = {}
w_qk0_join['weight'] = torch.cat((w_q0['weight'], w_k0['weight']), dim = 0)
w_qk0_join['bias'] = torch.cat((w_q0['bias'], w_k0['bias']), dim = 0)
a_qk0_join = torch.cat((a_k0, a_q0), dim = 1)
w_qk1_join['weight'] = torch.cat((w_q1['weight'], w_k1['weight']), dim = 0)
w_qk1_join['bias'] = torch.cat((w_q1['bias'], w_k1['bias']), dim = 0)
a_qk1_join = torch.cat((a_k1, a_q1), dim = 1)
t_qk_in = t_q_in # The assumption is that the transportation map is the same for both Q and K
w_q_fused = {}
w_k_fused = {}
w_qk_fused, t_qk_out = fc_fusion(args = args, keys = keys, t_in = t_qk_in, w_0 = w_qk0_join, w_1 = w_qk1_join, act_0 = a_qk0_join, act_1 = a_qk1_join, device = device, log = log)
w_q_fused['weight'], w_k_fused['weight'] = torch.chunk(w_qk_fused['weight'], chunks=2, dim=0)
w_q_fused['bias'], w_k_fused['bias'] = torch.chunk(w_qk_fused['bias'], chunks=2, dim=0)
else:
raise NotImplementedError
log.info(' Fusing W_V')
w_v_fused, t_v_out = fc_fusion(args = args, keys = keys, t_in = t_v_in, w_0 = dict_get(w_v_keys, w_sa_0), w_1 = dict_get(w_v_keys, w_sa_1), act_0 = dict_get(w_v_keys, acts_sa_0), act_1 = dict_get(w_v_keys, acts_sa_1), device = device, log = log)
if (args['fusion'].get('fusion_t_w_in') == None) or (not args['fusion']['fusion_t_w_in']):
t_w_o_in = t_v_out
else:
_, t_w_o_in = fc_fusion(args = args, keys = keys, t_in = None, w_0 = w_sa_0['3'], w_1 = w_sa_1['3'], act_0 = acts_sa_0['intermediate_attn'].squeeze(dim = 1), act_1 = acts_sa_1['intermediate_attn'].squeeze(dim = 1), device = device, log = log, last_layer = last_layer, fusion_t_w_in=True)
log.info(' Fusing W_O')
w_o_fused, t_w_o_out = fc_fusion(args = args, keys = keys, t_in = t_w_o_in, w_0 = dict_get(w_o_keys, w_sa_0), w_1 = dict_get(w_o_keys, w_sa_1), act_0 = dict_get(w_o_keys, acts_sa_0), act_1 = dict_get(w_o_keys, acts_sa_1), device = device, log = log, last_layer = last_layer)
dict_write(w_sa_fused, w_q_keys, w_q_fused)
dict_write(w_sa_fused, w_k_keys, w_k_fused)
dict_write(w_sa_fused, w_v_keys, w_v_fused)
dict_write(w_sa_fused, w_o_keys, w_o_fused)
t_out = t_w_o_out
return w_sa_fused, t_out
#------------------------------#
# Fully Connected Layer Fusion #
#------------------------------#
def fc_fusion(args: dict, keys: dict, t_in: torch.Tensor , w_0: torch.Tensor, w_1: torch.Tensor, act_0: torch.Tensor, act_1: torch.Tensor, device: torch.device, log: logging.Logger, alpha = 0.5, last_layer = False, is_embed = False, is_vit_fc = False, is_vit_embed = False, fusion_t_w_in=False, wts_eq_t_map = False):
'''
## Description
Performs OTFusion of two fully connected layers.
1. align weights w.r.t. transportation map of previous layer
2. compute mu and nu
3. compute ground metric
4. compute transprotation map (`t_out`)
5. normalize `t_out` with marginals
6. align weights w.r.t. current layer (`t_out`)
7. fusion
------
## Parameters
`args` Dictionary from YAML-based configuration file\\
`keys` Dictionary containing key lists to access data from the nested weight and acts dicts. The key list must be ordered in the order of the access of the nested dictionary.\\
`t_in` Transportation map of the previous layer (set to 'None' if previous layer had no permutations)\\
`w_0` Weights of current layer model 0\\
`w_1` Weights of current layer model 1\\
`act_0` Activations of current layer model 0\\
`act_1` Activations of current layer model 1\\
`alpha` Weighting parameter for anker model\\
`device` torch.device()\\
`last_layer` Flag that indicates if this is the last layer that will be fused in the current experiment\\
`is_embed` Flag to indicate that embeddings are fused (need to transpose weight matrix)\\
`is_vit_fc` Flag to indicate that ViT fully-connected layer is fused (don't need to flatten activations)
`is_vit_embed` -
`fusion_t_w_in` -
------
## Outputs
`t_out` Transportation map of current layer\\
`w_fused` Fused Weights
'''
# Retrieve key lists
w_keys = keys['weights']
b_keys = keys['bias']
# Init
t_out = None
w_fused = {}
gm = GroundMetric(args)
if args['fusion']['fuse_bias'] and not is_embed:
bias_0 = dict_get(b_keys, w_0)
bias_1 = dict_get(b_keys, w_1)
if not is_vit_embed:
w_0 = dict_get(w_keys, w_0)
w_1 = dict_get(w_keys, w_1)
else:
w_0 = w_0.data.squeeze(dim = 1)
w_1 = w_1.data.squeeze(dim = 1)
# align weights with t_in (if t_in != None)
if (not is_embed) or (args['fusion']['type']=='acts'):
w_0_aligned = w_0 if t_in == None else torch.matmul(w_0, t_in)
else:
w_0_aligned = w_0 if t_in == None else torch.matmul(w_0, t_in.t())
if not last_layer:
# mu and nu calculation
if not is_embed:
mu_cardinality = w_0.shape[0]
nu_cardinality = w_1.shape[0]
elif fusion_t_w_in:
mu_cardinality = act_0.shape[-1]
nu_cardinality = act_1.shape[-1]
else:
mu_cardinality = w_0.shape[-1]
nu_cardinality = w_1.shape[-1]
mu = np.divide(np.ones(mu_cardinality), mu_cardinality)
nu = np.divide(np.ones(nu_cardinality), nu_cardinality)
if args['fusion']['type'] == 'acts':
# process activations with PCA if set in config
if args.get('fusion', {}).get('pca', False) == True:
def get_projection_PCA(matrix, k):
mean = torch.mean(matrix, dim=0)
# Subtract the mean from the matrix
centered = matrix - mean
# svd decomposition
U,S,V = torch.linalg.svd(centered)
selected_U = U[:,:k]
return selected_U
PCA_k = int(args.get('fusion', {}).get('pca_k', '1000'))
projection_1 = get_projection_PCA(act_1, PCA_k)
mean_act_1 = torch.mean(act_1, dim=0)
act_0 = torch.matmul(projection_1.t(), act_0 - mean_act_1)
act_1 = torch.matmul(projection_1.t(), act_1 - mean_act_1)
M0 = gm.process(act_0.t(), act_1.t())
else:
if not is_embed:
if wts_eq_t_map:
# Special handling for eq_t_map qk_fusion in wts based type fusion (function assumes that wts of both models are passed as act_0 and act_1)
# 1. align w.r.t. incoimg t_map
wts_0_q, wts_0_k = torch.split(act_0, act_0.shape[1], dim = 0)
wts_1_q, wts_1_k = torch.split(act_1, act_1.shape[1], dim = 0)
wts_0_q_aligned = torch.matmul(wts_0_q, t_in)
wts_0_k_aligend = torch.matmul(wts_0_k, t_in)
wts_0_qk_aligend = torch.cat((wts_0_q_aligned, wts_0_k_aligend), dim = 1)
wts_1_qk_reshaped = torch.cat((wts_1_q, wts_1_k), dim = 1)
# 2. generate ground metric from aligned weights
M0 = gm.process(wts_0_qk_aligend, wts_1_qk_reshaped)
else:
M0 = gm.process(w_0_aligned, w_1)
else:
M0 = gm.process(w_0_aligned.t(), w_1.t())
if args.get('fusion', {}).get('ot_solver', 'emd') == 'emd':
log.info(' Using emd solver to calculate t_map for this layer')
t_numpy = ot.emd(mu, nu, M0)
elif args.get('fusion', {}).get('ot_solver', 'emd') == 'sinkhorn':
log.info(' Using sinkhorn solver to calculate t_map for this layer')
t_numpy = ot.bregman.sinkhorn(mu, nu, M0, reg = float(args.get('fusion', {}).get('sinkhorn_reg', 1e-2)))
elif args.get('fusion', {}).get('ot_solver', 'emd') == 'sinkhorn_for_widening':
if t_in != None:
if M0.shape[0] > t_in.shape[0] or M0.shape[1] > t_in.shape[1]:
log.info(' Using sinkhorn solver to calculate t_map for this layer')
t_numpy = ot.bregman.sinkhorn(mu, nu, M0, reg = float(args.get('fusion', {}).get('sinkhorn_reg', 1e-2)))
else:
log.info(' Using emd solver to calculate t_map for this layer')
t_numpy = ot.emd(mu, nu, M0)
else:
log.info(' Using emd solver to calculate t_map for this layer')
t_numpy = ot.emd(mu, nu, M0)
else:
raise NotImplementedError
t_out = torch.from_numpy(t_numpy).float().to(w_0_aligned.device)
# normalize t_out with beta (marginals)
beta = 1 / t_out.shape[0]
t_out = torch.mul(t_out, 1 / beta)
if fusion_t_w_in:
return None, t_out
# align weights with t_out
if not is_embed and not is_vit_embed:
w_0_aligned = torch.matmul(t_out.t(), w_0_aligned)
else:
w_0_aligned = torch.matmul(t_out.t(), w_0_aligned.t()).t()
# fuse aligned weights
w_fused['weight'] = torch.add(w_0_aligned * (1-alpha), w_1 * alpha)
# align and fuse bias
if args['fusion']['fuse_bias'] and not is_embed:
if not last_layer:
bias_0_aligned = torch.matmul(t_out.t(), bias_0)
else:
bias_0_aligned = bias_0
w_fused['bias'] = torch.add(bias_0_aligned * (1-alpha), bias_1 * alpha)
# debug statements
if t_out != None:
log.debug(matrix_stats(M0, 'ground metric'))
log.debug(matrix_stats(t_out, 't_out'))
# Free memory
gm = None
return w_fused, t_out
#-------------------#
# Layer Norm Fusion #
#-------------------#
def ln_fusion(args: dict, keys: dict, t_in: torch.Tensor , w_0: dict, w_1: dict, device: torch.device, alpha = 0.5):
'''
## Description
Performs OTFusion of a layer norm layer.
1. align normalization weight vectors w.r.t. transportation map of previous layer
2. fusion
------
## Parameters
`args` Dictionary from YAML-based configuration file\\
`keys` Dictionary containing key lists to access data from the nested weight and acts dicts. The key list must be ordered in the order of the access of the nested dictionary.\\
`t_in` Transportation map of the previous layer (set to 'None' if previous layer had no permutations)\\
`w_0` Layer normalization weight dictionary of model 0 (containing key a_2 and b_2)\\
`w_1` Layer normalization weight dictionary of model 1 (containing key a_2 and b_2)\\
`alpha` Weighting parameter for anker model
------
## Outputs
`t_out` Transportation map of current layer\\
`w_fused` Fused Weights (dictionary containing both a_2 and b_2 normalization weight vecotrs)
'''
# Retrieve key lists
w_a_keys = keys['a']
w_b_keys = keys['b']
# Init
w_fused = {}
# Alignment
w_a_0_aligned = dict_get(w_a_keys, w_0) if t_in == None else torch.matmul(dict_get(w_a_keys, w_0), t_in)
w_b_0_aligned = dict_get(w_b_keys, w_0) if t_in == None else torch.matmul(dict_get(w_b_keys, w_0), t_in)
# Fusion
w_a_fused = torch.add(w_a_0_aligned * (1-alpha), dict_get(w_a_keys, w_1) * alpha)
w_b_fused = torch.add(w_b_0_aligned * (1-alpha), dict_get(w_b_keys, w_1) * alpha)
dict_write(w_fused, w_a_keys, w_a_fused)
dict_write(w_fused, w_b_keys, w_b_fused)
t_out = t_in
return w_fused, t_out
def resid_policy(policy, t_resid, t_in, resid_acts, in_acts, log):
if policy == None:
log.info(' No residual connection policy defined; defaulting to "no_resid" policy')
t_out = t_in
elif policy == 'no_resid':
log.info(' "no_resid" residual connection policy used; propagating t_out from MHA')
t_out = t_in
elif policy == 'only_resid':
log.info(' "only_resid" residual connection policy used; propagating t_resid from residual connection')
t_out = t_resid
elif policy == 'resid_as_identity':
log.info(' "resid_as_identity" residual connection policy used; propagating identity connection')
t_out = torch.zeros_like(t_resid)
t_out.fill_diagonal_(1)
elif policy == 'mean':
log.info(' "mean" residual connection policy used; propagating the average of t_resid and t_out from MHA')
t_out = torch.add(t_resid, t_in)
t_out = torch.div(t_out, 2)
elif policy == 'weighted_scalar':
resid_abs_mean = torch.mean(torch.abs(resid_acts))
in_abs_mean = torch.mean(torch.abs(in_acts))
total = resid_abs_mean + in_abs_mean
resid_weight = resid_abs_mean / total
in_weight = in_abs_mean / total
log.info(' "weighted_scalar" residual connection policy used; propagating {0:.4} * t_resid and {1:.4} * t_out from MHA'.format(resid_weight, in_weight))
t_out = torch.add(torch.mul(resid_weight, t_resid), torch.mul(in_weight, t_in))
elif policy == 'weighted_matrix':
resid_abs_mean_vect = torch.mean(torch.abs(resid_acts), dim = 0)
in_abs_mean_vect = torch.mean(torch.abs(in_acts), dim = 0)
total_vec = torch.add(resid_abs_mean_vect, in_abs_mean_vect)
resid_weight_vec = torch.div(resid_abs_mean_vect, total_vec)
in_weight_vec = torch.div(in_abs_mean_vect, total_vec)
resid_weight_mat = torch.diag(resid_weight_vec)
in_weight_mat = torch.diag(in_weight_vec)
log.info(' "weighted_matrix" residual connection policy used')
t_out = torch.add(torch.matmul(t_resid, resid_weight_mat), torch.matmul(t_in, in_weight_mat))
else:
raise NotImplementedError
return t_out