Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to compute metrics for model output/lego #481

Open
yangqinhui0423 opened this issue Nov 18, 2023 · 17 comments
Open

Unable to compute metrics for model output/lego #481

yangqinhui0423 opened this issue Nov 18, 2023 · 17 comments

Comments

@yangqinhui0423
Copy link

yangqinhui0423 commented Nov 18, 2023

Hello,everyone!
I trained it on the NeRF-synthetic dataset, and it worked, and it rendered. But when I run python metrics.py -m output/lego, I get an error saying Unable to compute metrics for model output/lego.
1
2

Has anyone encountered a similar problem and knew how to solve it?
PS:I was able to compute metrics on the Mip-NeRF360 dataset after colmap.

@RetroFuturism7
Copy link

same issue.

@curious-energy
Copy link

I made a simple change, please see #632.

@curious-energy
Copy link

I made a simple change, please see #632.

and another reason is VRAM OOM when the progress bar is interrupted.

@LakeofRain
Copy link

I made a simple change, please see #632.

I have solved the problem of 'Unable to compute metrics for model ' by 'pip install torchmetrics', although don't know why, but it does work well. Now I can obtain the metrics.

@leblond14u
Copy link

leblond14u commented Mar 25, 2024

Same problem here metrics.py does not work. Tried to install torchmetrics but:

  • No improvements with pip install
  • And the conda install of torchmetrics is messing with my conda environment

This is what I have after a full metrics evaluation :
image
All of the metrics are NaN ...

Sometimes it also crashes :

Traceback (most recent call last):
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 150, in <module>
    evaluate(args.model_paths)
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 116, in evaluate
    lpipss.append(lpips(renders[idx], gts[idx], net_type='vgg'))
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/__init__.py", line 20, in lpips
    criterion = LPIPS(net_type, version).to(device)
                ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/lpips.py", line 28, in __init__
    self.lin.load_state_dict(get_state_dict(net_type, version))
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/utils.py", line 17, in get_state_dict
    old_state_dict = torch.hub.load_state_dict_from_url(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/hub.py", line 770, in load_state_dict_from_url
    return torch.load(cached_file, map_location=map_location, weights_only=weights_only)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1028, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1264, in _legacy_load
    typed_storage._untyped_storage._set_from_file(
RuntimeError: CUDA error: an illegal memory access was encountered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

@shenqianxiang
Copy link

我做了一个简单的更改,请参阅#632

你好请问你是怎么解决的

@shenqianxiang
Copy link

同样的问题。

你解决了吗

@LakeofRain
Copy link

LakeofRain commented Jun 26, 2024 via email

@biter0088
Copy link

biter0088 commented Sep 5, 2024

I re-found a new environment on my computer with the torch package, ran pip install torchmetrics and re-executed python metrics.py -m “/home/xiu/Learning/gaussian-splatting/output/train” and was able to output the following results:

# Metric evaluation progress: 100%|█████████████████████████████████████████████████████████████████████████| 38/38 [00:39<00:00, 1.05 s/it]
# here
# SSIM : 0.8076466
# PSNR : 21.7869835
# LPIPS: 0.2143032

@kellofcn
Copy link

Same problem here metrics.py does not work. Tried to install torchmetrics but:

  • No improvements with pip install
  • And the conda install of torchmetrics is messing with my conda environment

This is what I have after a full metrics evaluation : image All of the metrics are NaN ...

Sometimes it also crashes :

Traceback (most recent call last):
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 150, in <module>
    evaluate(args.model_paths)
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 116, in evaluate
    lpipss.append(lpips(renders[idx], gts[idx], net_type='vgg'))
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/__init__.py", line 20, in lpips
    criterion = LPIPS(net_type, version).to(device)
                ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/lpips.py", line 28, in __init__
    self.lin.load_state_dict(get_state_dict(net_type, version))
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/utils.py", line 17, in get_state_dict
    old_state_dict = torch.hub.load_state_dict_from_url(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/hub.py", line 770, in load_state_dict_from_url
    return torch.load(cached_file, map_location=map_location, weights_only=weights_only)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1028, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1264, in _legacy_load
    typed_storage._untyped_storage._set_from_file(
RuntimeError: CUDA error: an illegal memory access was encountered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

This is what I have executed python metrics.py -m /home/lwk/gaussian-splatting/output/980df71c-a , metric evaluation progress is 0it , do u know why?
Scene: /home/lwk/gaussian-splatting/output/980df71c-a Method: ours_18000 Metric evaluation progress: 0it [00:00, ?it/s] SSIM : nan PSNR : nan LPIPS: nan

@HanYan012
Copy link

Same problem here metrics.py does not work. Tried to install torchmetrics but:

  • No improvements with pip install
  • And the conda install of torchmetrics is messing with my conda environment

This is what I have after a full metrics evaluation : image All of the metrics are NaN ...
Sometimes it also crashes :

Traceback (most recent call last):
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 150, in <module>
    evaluate(args.model_paths)
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/metrics.py", line 116, in evaluate
    lpipss.append(lpips(renders[idx], gts[idx], net_type='vgg'))
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/__init__.py", line 20, in lpips
    criterion = LPIPS(net_type, version).to(device)
                ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/lpips.py", line 28, in __init__
    self.lin.load_state_dict(get_state_dict(net_type, version))
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/Bureau/PhD/Depth_3DGS/lpipsPyTorch/modules/utils.py", line 17, in get_state_dict
    old_state_dict = torch.hub.load_state_dict_from_url(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/hub.py", line 770, in load_state_dict_from_url
    return torch.load(cached_file, map_location=map_location, weights_only=weights_only)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1028, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/hleblond/anaconda3/envs/GS/lib/python3.11/site-packages/torch/serialization.py", line 1264, in _legacy_load
    typed_storage._untyped_storage._set_from_file(
RuntimeError: CUDA error: an illegal memory access was encountered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

This is what I have executed python metrics.py -m /home/lwk/gaussian-splatting/output/980df71c-a , metric evaluation progress is 0it , do u know why? Scene: /home/lwk/gaussian-splatting/output/980df71c-a Method: ours_18000 Metric evaluation progress: 0it [00:00, ?it/s] SSIM : nan PSNR : nan LPIPS: nan

Same. Did you solve this?

@tapowanliwuyun
Copy link

Same. Did you solve this?

@tapowanliwuyun
Copy link

solved!please chekck /home/dkcs/.cache/torch/hub/checkpoints/vgg.pth ....

@micki-37
Copy link

我是因为torchvision版本不对,算lpips时vgg网络没下载下来。发自我的荣耀手机-------- 原始邮件 --------发件人: shenqianxiang @.>日期: 2024年6月26日周三 23:07收件人: graphdeco-inria/gaussian-splatting @.>抄送: LakeofRain @.>, Comment @.>主 题: Re: [graphdeco-inria/gaussian-splatting] Unable to compute metrics for model output/lego (Issue #481) 同样的问题。 你解决了吗 —Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you commented.Message ID: @.***>

我也是vgg网络没下完 重新跑metrics就显示算不了了 但并不会重新下vgg的权重 是得重新训练完重新下vgg吗

@LakeofRain
Copy link

LakeofRain commented Jan 10, 2025 via email

@king1111sadjfoisja
Copy link

I re-found a new environment on my computer with the torch package, ran pip install torchmetrics and re-executed python metrics.py -m “/home/xiu/Learning/gaussian-splatting/output/train” and was able to output the following results:

Metric evaluation progress: 100%|█████████████████████████████████████████████████████████████████████████| 38/38 [00:39<00:00, 1.05 s/it]

here

SSIM : 0.8076466

PSNR : 21.7869835

LPIPS: 0.2143032

Hello, how did you create this environment? Did you follow the environment.yml file? Were there any modifications?

@king1111sadjfoisja
Copy link

我换了个torchvision的版本就解决了,没重新训

你好,换成什么版本了方便问一下吗?谢谢

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests