-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathepoch.py
178 lines (153 loc) · 5.36 KB
/
epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import time
import numpy as np
import torch
from utils import Bar
from utils.evaluation.averagemeter import AverageMeter
from utils.evaluation.classification import performance
from utils.misc import (
is_show,
save_pred,
)
from utils.vizutils import viz_gt_pred
# ----------------------------------------------------------------
# monkey patch for progress bar on SLURM
if True:
# disabling in interactive mode
def writeln(self, line):
on_slurm = os.environ.get("SLURM_JOB_ID", False)
if self.file and (self.is_tty() or on_slurm):
self.clearln()
end = "\n" if on_slurm else ""
print(line, end=end, file=self.file)
self.file.flush()
Bar.writeln = writeln
# ----------------------------------------------------------------
# Combined train/val epoch
def do_epoch(
setname,
loader,
model,
criterion,
epochno=-1,
optimizer=None,
num_classes=None,
debug=False,
checkpoint=None,
mean=torch.Tensor([0.5, 0.5, 0.5]),
std=torch.Tensor([1.0, 1.0, 1.0]),
feature_dim=1024,
save_logits=False,
save_features=False,
num_figs=100,
topk=[1],
save_feature_dir="",
save_fig_dir="",
):
assert setname == "train" or setname == "val"
batch_time = AverageMeter()
data_time = AverageMeter()
losses = [AverageMeter()]
perfs = []
for k in topk:
perfs.append(AverageMeter())
if save_logits:
all_logits = torch.Tensor(loader.dataset.__len__(), num_classes)
if save_features:
all_features = torch.Tensor(loader.dataset.__len__(), feature_dim)
if setname == "train":
model.train()
elif setname == "val":
model.eval()
end = time.time()
gt_win, pred_win, fig_gt_pred = None, None, None
bar = Bar("E%d" % (epochno + 1), max=len(loader))
for i, data in enumerate(loader):
if data.get("gpu_collater", False):
# We handle collation on the GPU to enable faster data augmentation
with torch.no_grad():
data["rgb"] = data["rgb"].cuda()
collater_kwargs = {}
if isinstance(loader.dataset, torch.utils.data.ConcatDataset):
cat_datasets = loader.dataset.datasets
collater = cat_datasets[0].gpu_collater
cat_datasets = {
type(x).__name__.lower(): x for x in cat_datasets
}
collater_kwargs["concat_datasets"] = cat_datasets
else:
collater = loader.dataset.gpu_collater
data = collater(minibatch=data, **collater_kwargs)
# measure data loading time
data_time.update(time.time() - end)
inputs = data["rgb"]
targets = data["class"]
inputs_cuda = inputs.cuda()
targets_cuda = targets.cuda()
# forward pass
outputs_cuda = model(inputs_cuda)
# compute the loss
logits = outputs_cuda["logits"].data.cpu()
loss = criterion(outputs_cuda["logits"], targets_cuda)
topk_acc = performance(logits, targets, topk=topk)
for ki, acc in enumerate(topk_acc):
perfs[ki].update(acc, inputs.size(0))
losses[0].update(loss.item(), inputs.size(0))
# generate predictions
if save_logits:
all_logits[data["index"]] = logits
if save_features:
all_features[data["index"]] = outputs_cuda["embds"].squeeze().data.cpu() # TODO
if (debug or is_show(num_figs, i, len(loader))):
fname = "pred_%s_epoch%02d_iter%05d" % (setname, epochno, i)
save_path = save_fig_dir / fname
gt_win, pred_win, fig_gt_pred = viz_gt_pred(
inputs,
logits,
targets,
mean,
std,
data,
gt_win,
pred_win,
fig_gt_pred,
save_path=save_path,
show=debug,
)
# compute gradient and do optim step
if setname == "train":
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = "({batch}/{size}) Data: {data:.1f}s | Batch: {bt:.1f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:} | Perf: {perf:}".format(
batch=i + 1,
size=len(loader),
data=data_time.val,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=", ".join([f"{losses[i].avg:.3f}" for i in range(len(losses))]),
perf=", ".join([f"{perfs[i].avg:.3f}" for i in range(len(perfs))]),
)
bar.next()
bar.finish()
# save outputs
if save_logits or save_features:
meta = {
"clip_gt": np.asarray(loader.dataset.get_set_classes()),
"clip_ix": loader.dataset.valid,
"video_names": loader.dataset.get_all_videonames(),
}
if save_logits:
save_pred(
all_logits, checkpoint=save_feature_dir, filename="preds.mat", meta=meta,
)
if save_features:
save_pred(
all_features, checkpoint=save_feature_dir, filename="features.mat", meta=meta,
)
return losses, perfs