-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadaptive_semiV2.py
261 lines (220 loc) · 9.65 KB
/
adaptive_semiV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import xgboost as xgb
import random
from skmultiflow.core.base import BaseSKMObject, ClassifierMixin
from skmultiflow.utils import get_dimensions
from sklearn.neighbors import KNeighborsClassifier
import os
class AdaptiveSemi(BaseSKMObject, ClassifierMixin):
def __init__(self,
learning_rate=0.3,
max_depth=6,
max_window_size=1000,
min_window_size=None,
ratio_unsampled=0,
small_window_size=0,
max_buffer=5,
pre_train=2):
super().__init__()
self.learning_rate = learning_rate
self.max_depth = max_depth
self.max_window_size = max_window_size
self.min_window_size = min_window_size
self._first_run = True
self._booster = None
self._temp_booster = None
self._drift_detector = None
self._X_buffer = np.array([])
self._y_buffer = np.array([])
self._max_buffer = max_buffer
self._pre_train = pre_train
self._ratio_unsampled = ratio_unsampled
self._X_small_buffer = np.array([])
self._y_small_buffer = np.array([])
self._samples_seen = 0
self._model_idx = 0
self._small_window_size = small_window_size
self._count_buffer = 0
self._main_model = "model"
self._temp_model = "temp"
self._configure()
def _configure(self):
self._reset_window_size()
self._init_margin = 0.0
self._boosting_params = {
"objective": "binary:logistic",
"eta": self.learning_rate,
"eval_metric": "logloss",
"max_depth": self.max_depth}
def reset(self):
self._first_run = True
self._configure()
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""
Partially (incrementally) fit the model.
Parameters
----------
X: numpy.ndarray
An array of shape (n_samples, n_features) with the data upon which
the algorithm will create its model.
y: Array-like
An array of shape (, n_samples) containing the classification
targets for all samples in X. Only binary data is supported.
classes: Not used.
sample_weight: Not used.
Returns
-------
AdaptiveXGBoostClassifier
self
"""
# print(len(X[0]))
for i in range(X.shape[0]):
self._partial_fit(np.array([X[i, :]]), np.array([y[i]]))
return self
def _change_small_window(self, npArrX, npArrY):
if npArrX.shape[0] < self._small_window_size:
sizeToRemove = 0
nextSize = self._X_small_buffer.shape[0] + npArrX.shape[0]
if nextSize > self._small_window_size:
sizeToRemove = nextSize - self._small_window_size
#deleta os dados velhos
delete_idx = [i for i in range(sizeToRemove)]
if len(delete_idx) > 0:
self._X_small_buffer = np.delete(self._X_small_buffer, delete_idx, axis=0)
self._y_small_buffer = np.delete(self._y_small_buffer, delete_idx, axis=0)
self._X_small_buffer = np.concatenate((self._X_small_buffer, npArrX))
self._y_small_buffer = np.concatenate((self._y_small_buffer, npArrY))
else:
self._X_small_buffer = npArrX[0:self._small_window_size]
self._y_small_buffer = npArrY[0:self._small_window_size]
def _unlabeled_fit(self):
# unlabeled = map(lambda x: x != 0 and x != 1, self._y_buffer)
npArrX = []
npArrY = []
unlabeled = []
labeledX = []
labeledY = []
for i in range(len(self._X_buffer)):
currentY = self._y_buffer[i]
max_size = int(self._ratio_unsampled * len(self._X_buffer))
# print(max_size)
if max_size > i:
unlabeled.append(self._X_buffer[i])
else:
labeledX.append(self._X_buffer[i])
labeledY.append(currentY)
# if currentY != 1 and currentY != 0:
# unlabeled.append(self._X_buffer[i])
# else:
# labeledX.append(self._X_buffer[i])
# labeledY.append(currentY)
npArrX = np.array(labeledX)
npArrY = np.array(labeledY)
if npArrX.shape[0] > 0:
self._change_small_window(npArrX, npArrY)
npUnlabeled = np.array(unlabeled)
if npArrX.shape[0] > 6:
if npUnlabeled.shape[0] > 0:
nbrs = KNeighborsClassifier(n_neighbors=3, algorithm='ball_tree').fit(self._X_small_buffer, self._y_small_buffer)
proba = nbrs.predict_proba(npUnlabeled)
for j in range(len(proba)):
biggerIndex = np.argmax(proba[j])
otherIndex = biggerIndex == 0 and 1 or 0
margim = proba[j][biggerIndex] - proba[j][otherIndex]
if (margim > 0.5):
npArrXNew = np.array([npUnlabeled[j]])
npArrYNew = np.array([biggerIndex])
npArrX = np.concatenate((npArrX, npArrXNew))
npArrY = np.concatenate((npArrY, npArrYNew))
# print("semi")
# print(len(npArrX))
# print(len(self._X_small_buffer))
return (npArrX, npArrY)
def _partial_fit(self, X, y):
if self._first_run:
self._X_buffer = np.array([]).reshape(0, get_dimensions(X)[1])
self._y_buffer = np.array([])
self._X_small_buffer = np.array([]).reshape(0, get_dimensions(X)[1])
self._y_small_buffer = np.array([])
self._first_run = False
self._X_buffer = np.concatenate((self._X_buffer, X))
self._y_buffer = np.concatenate((self._y_buffer, y))
while self._X_buffer.shape[0] >= self.window_size:
self._count_buffer = self._count_buffer + 1
npArrX, npArrY = self._unlabeled_fit()
if npArrX.shape[0] > 0:
self._train_on_mini_batch(X=npArrX,
y=npArrY)
delete_idx = [i for i in range(self.window_size)]
self._X_buffer = np.delete(self._X_buffer, delete_idx, axis=0)
self._y_buffer = np.delete(self._y_buffer, delete_idx, axis=0)
# Check window size and adjust it if necessary
self._adjust_window_size()
def _adjust_window_size(self):
if self._dynamic_window_size < self.max_window_size:
self._dynamic_window_size *= 2
if self._dynamic_window_size > self.max_window_size:
self.window_size = self.max_window_size
else:
self.window_size = self._dynamic_window_size
def _reset_window_size(self):
if self.min_window_size:
self._dynamic_window_size = self.min_window_size
else:
self._dynamic_window_size = self.max_window_size
self.window_size = self._dynamic_window_size
def _train_on_mini_batch(self, X, y):
booster = self._train_booster(X, y, self._main_model, self._booster)
inside_pre_train = self._max_buffer - self._count_buffer
if inside_pre_train >= self._pre_train:
temp_booster = self._train_booster(X, y, self._temp_model, self._temp_booster)
self._temp_booster = temp_booster
if self._count_buffer >= self._max_buffer:
booster = self._temp_booster
self._temp_booster = None
self._count_buffer = 0
self._temp_model,self._main_model = self._main_model,self._temp_model
# Update ensemble
self._booster = booster
def _train_booster(self, X: np.ndarray, y: np.ndarray, fileName, currentBooster):
d_mini_batch_train = xgb.DMatrix(X, y.astype(int))
if currentBooster:
booster = xgb.train(params=self._boosting_params,
dtrain=d_mini_batch_train,
num_boost_round=1,
xgb_model=fileName)
booster.save_model(fileName)
else:
booster = xgb.train(params=self._boosting_params,
dtrain=d_mini_batch_train,
num_boost_round=1,
verbose_eval=False)
booster.save_model(fileName)
return booster
def predict(self, X):
"""
Predict the class label for sample X
Parameters
----------
X: numpy.ndarray
An array of shape (n_samples, n_features) with the samples to
predict the class label for.
Returns
-------
numpy.ndarray
A 1D array of shape (, n_samples), containing the
predicted class labels for all instances in X.
"""
# start_time = time.time()
if self._booster:
d_test = xgb.DMatrix(X)
predicted = self._booster.predict(d_test)
return np.array(predicted > 0.5).astype(int)
# Ensemble is empty, return default values (0)
return np.zeros(get_dimensions(X)[0])
def predict_proba(self, X):
"""
Not implemented for this method.
"""
raise NotImplementedError(
"predict_proba is not implemented for this method.")