-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
elementary_graph_algo.py
178 lines (152 loc) · 6.08 KB
/
elementary_graph_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from collections import defaultdict, deque
from Queue import Queue
import unittest
class Graph:
def __init__(self, adj_list):
"""
Process the graph with the given adjacent list.
:param adj_list:
The given adjacent list. A dictionary with parent node as keys and
values as set of the adjacent nodes.
"""
self.adj_list = adj_list
def bfs(self, start):
node_q = Queue()
node_q.put(start)
visited = set()
while not node_q.empty():
node = node_q.get() # FIFO
if node not in visited:
yield node
visited.add(node)
node_q.queue.extend(self.adj_list[node] - visited)
def bfs_path(self, start, end):
node_q = Queue()
node_q.put((start, [start]))
visited = {start}
while not node_q.empty():
parent, path = node_q.get()
for child in self.adj_list[parent]:
if child not in visited:
if child == end:
yield path + [child]
else:
visited.add(child)
node_q.put((child, path + [child]))
def connected_component(self):
count = 0
visited = set()
connected_components = []
for node in self.adj_list.keys():
if node not in visited:
count += 1
bfs_nodes = list(self.bfs(node))
for node in bfs_nodes:
visited.add(node)
connected_components.append(bfs_nodes)
return count, connected_components
def dfs(self, start, adj_list, visited=None):
node_s = deque()
node_s.append(start)
if visited is None:
visited = set()
while node_s:
node = node_s.pop()
if node not in visited:
yield node
visited.add(node)
node_s.extend(adj_list[node] - visited)
def strongly_connected_component(self):
"""
Kosaraju's Algorithm.
"""
finish_time_stack = []
strongly_connected_components = []
visited = set()
def dfs_util(start):
"""
Subroutine to compute the finishing time stack. Iterative approach
is preferred to avoid exceeding recursion depth.
"""
node_s = deque()
node_s.append(start)
pop_set = set() # for memoization of the processed elements.
while node_s:
node = node_s[-1]
visit_next = None # for boundary condition.
if node not in visited:
visited.add(node)
visit_next = self.adj_list[node] - visited
node_s.extend(visit_next)
if not visit_next:
node = node_s.pop()
if node not in pop_set:
finish_time_stack.append(node)
pop_set.add(node)
# d.keys() creates a static list of the dictionary keys.
# Otherwise, we get a pretty neat exception while processing
# large graphs.
# "RuntimeError: dictionary changed size during iteration".
for node in self.adj_list.keys():
if node not in visited:
dfs_util(node)
# Graph transpose can also be done while reading the file for optimisation.
adj_list_invert = defaultdict(set)
for head, tail in self.adj_list.items():
for node in tail:
adj_list_invert[node].add(head)
visited = set()
while finish_time_stack:
start = finish_time_stack.pop()
if start not in visited:
newly_visited = set(self.dfs(start, adj_list_invert, visited))
visited.update(newly_visited)
strongly_connected_components.append(newly_visited)
return strongly_connected_components
class GraphTest(unittest.TestCase):
def setUp(self):
self.graph = Graph({'A': set(['B', 'C']),
'B': set(['A', 'D', 'E']),
'C': set(['A', 'F']),
'D': set(['B']),
'E': set(['B', 'F', 'G']),
'F': set(['C', 'E']),
'G': set()})
def test_bfs(self):
self.assertEqual(list(self.graph.bfs('A')),
['A', 'C', 'B', 'F', 'E', 'D', 'G'])
def test_bfs_path(self):
self.assertEqual(list(self.graph.bfs_path('A', 'E')),
[['A', 'B', 'E'], ['A', 'C', 'F', 'E']])
def test_connected_component(self):
self.graph = Graph({'A': set(['B', 'C']),
'B': set(['C', 'A']),
'C': set(['A', 'B']),
'D': set(),
'E': set(['F']),
'F': set(['E'])})
self.assertEqual(self.graph.connected_component(),
(3, [['A', 'C', 'B'],
['E', 'F'],
['D']]))
def test_dfs(self):
self.graph = Graph({'A': set(['B']),
'B': set(['C', 'D']),
'C': set(['A']),
'D': set('E'),
'E': set()})
self.assertEqual(list(self.graph.dfs('A', self.graph.adj_list)),
['A', 'B', 'D', 'E', 'C'])
def test_strongly_connected_components(self):
self.graph = Graph({1: set([2]),
2: set([3,4,6]),
3: set([1,4]),
4: set([5]),
5: set([4]),
6: set([5,7]),
7: set([6,8]),
8: set([5,7])})
self.assertEqual(self.graph.strongly_connected_component(),
[{1,3,2}, {6,7,8}, {5,4}])
if __name__ == "__main__":
unittest.main()