-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathkaggle_m5.py
83 lines (67 loc) · 2.95 KB
/
kaggle_m5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""Prepare data for m5 Kaggle Time-Series Forecast competition"""
import os
import uuid
from collections import OrderedDict
from zipfile import ZipFile
from h2oaicore.data import CustomData
import pandas as pd
import datatable as dt
from h2oaicore.systemutils import user_dir
from h2oaicore.systemutils_more import download
tmp_dir = os.path.join(user_dir(), str(uuid.uuid4())[:6])
path_to_zip = "https://files.slack.com/files-pri/T0329MHH6-F0150BK8L01/download/m5-forecasting-accuracy.zip?pub_secret=acfcbf3386"
holdout_splits = {
'm5_private': range(1942, 1942 + 28) # private LB
}
class PrepareM5Data(CustomData):
""" Prepare data for m5 Kaggle Time-Series Forecast competition"""
@staticmethod
def create_data(X: dt.Frame = None):
file = download(url=path_to_zip, dest_path=tmp_dir)
with ZipFile(file, 'r') as zip_ref:
zip_ref.extractall(tmp_dir)
num_id_cols = 6
main_data = dt.fread(os.path.join(tmp_dir, "sales_train_evaluation.csv"))
all_cols = list(main_data.names)
id_cols = all_cols[:num_id_cols]
date_cols = all_cols[num_id_cols + 1125:]
# training data
target = "target"
data = pd.melt(main_data.to_pandas(), id_vars=id_cols, value_vars=date_cols, var_name="d", value_name=target)
data[target] = data[target].astype(float)
data = dt.Frame(data)
data_splits = [data]
names = ["m5_train"]
# test data for submission
submission = dt.fread(os.path.join(tmp_dir, "sample_submission.csv"))
for name, ranges in holdout_splits.items():
test_cls = ["d_" + str(k) for k in ranges]
test_data = []
ids = submission["id"].to_list()[0]
new_test_cols = ["d"] + id_cols
for i in range(len(ids)):
id = ids[i]
splits = ids[i].split("_")
item_id = splits[0] + "_" + splits[1] + "_" + splits[2]
dept_id = splits[0] + "_" + splits[1]
cat_id = splits[0]
store_id = splits[3] + "_" + splits[4]
state_id = splits[3]
id_values = [id, item_id, dept_id, cat_id, store_id, state_id]
for j in range(len(test_cls)):
row_values = [test_cls[j]] + id_values
test_data.append(row_values)
test_data = pd.DataFrame(test_data, columns=new_test_cols)
test_data = dt.Frame(test_data)
data_splits.append(test_data)
names.append(name)
weather_data = dt.fread(os.path.join(tmp_dir, "calendar.csv"))
weather_data.key = "d"
price_data = dt.fread(os.path.join(tmp_dir, "sell_prices.csv"))
price_data.key = ["store_id", "item_id", "wm_yr_wk"]
ret = OrderedDict()
for n, f in zip(names, data_splits):
f = f[:, :, dt.join(weather_data)]
f = f[:, :, dt.join(price_data)]
ret[n] = f
return ret