-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathgermany_landers_holidays.py
175 lines (156 loc) · 8.36 KB
/
germany_landers_holidays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Returns a flag for whether a date falls on a holiday for each of Germany's Bundeslaender. """
from h2oaicore.separators import orig_feat_prefix, extra_prefix
from h2oaicore.transformer_utils import CustomTimeSeriesTransformer
from h2oaicore.mojo_transformers import MjT_FillNa, MjT_Replace, MjT_BinaryOp, MjT_ConstBinaryOp, \
MjT_IntervalMap, MjT_Agg, MjT_ImputeNa, MjT_Datepart
from h2oaicore.mojo_transformers_utils import MergeTransformer, AsType, _mojo_min, _mojo_max, \
_mojo_mean, _mojo_std, _mojo_skew, _mojo_kurtosis, _mojo_median, _mojo_sum
from h2oaicore.mojo import MojoWriter, MojoFrame, MojoColumn, MojoType
import datatable as dt
import numpy as np
import pandas as pd
import holidays
import datetime
from sklearn.preprocessing import LabelEncoder
# Inherit from CustomTimeSeriesTransformer
# That means we only get the time_column, not any date/datetime column
class GermanyLandersHolidayTransformer2(CustomTimeSeriesTransformer):
_modules_needed_by_name = ['holidays']
_display_name = 'DE_Holidays'
_allow_transform_to_modify_output_feature_names = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
def fit(self, X: dt.Frame, y: np.array = None):
"""Fit is used to keep the memory of Holidays"""
# For holidays we only need the date
X = X[:, self.time_column].to_pandas()
# Transform to pandas date time
X[self.time_column] = pd.to_datetime(X[self.time_column])
# Compute min and max year to decide the number of years in adavnce we keep
mn_year = X[self.time_column].dt.year.min()
mx_year = X[self.time_column].dt.year.max()
if np.isnan(mn_year) or np.isnan(mx_year):
years = []
else:
# Start at min year and end at 2*max_year - min_year + 1
# If min year is 2016, max year 2018
# then we keep dates until 2021
# As a reminder np.arange(1, 3) returns [1, 2]
years = np.arange(int(mn_year), int(mx_year + mx_year - mn_year + 2))
# Germany general and province holidays
self.memos = {}
# General first
ge_holidays = holidays.DE()
for year in list(years):
ge_holidays._populate(year)
ge_holidays.observed = False
hdays = [date for date, name in sorted(ge_holidays.items())]
holidays_df = pd.DataFrame(hdays, columns=[self.time_column], dtype='datetime64[ns]')
holidays_df['year'] = holidays_df[self.time_column].dt.year
holidays_df['doy'] = holidays_df[self.time_column].dt.dayofyear
holidays_df.drop(self.time_column, axis=1, inplace=True)
self.memos['country'] = holidays_df
# Now do province in the same manner
for prov in ['BW', 'BY', 'BE', 'BB', 'HB', 'HH', 'HE', 'MV', 'NI', 'NW', 'RP', 'SL', 'SN', 'ST', 'SH', 'TH']:
ge_holidays = holidays.DE(prov=prov)
for year in list(years):
ge_holidays._populate(year)
ge_holidays.observed = False
hdays = [date for date, name in sorted(ge_holidays.items())]
holidays_df = pd.DataFrame(hdays, columns=[self.time_column], dtype='datetime64[ns]')
holidays_df['year'] = holidays_df[self.time_column].dt.year
holidays_df['doy'] = holidays_df[self.time_column].dt.dayofyear
holidays_df.drop(self.time_column, axis=1, inplace=True)
self.memos[prov] = holidays_df
def fit_transform(self, X: dt.Frame, y: np.array = None):
# create the list of holidays for Germany and Landers
self.fit(X, y)
# Transform the date
return self.transform(X)
def transform(self, X: dt.Frame, **kwargs):
# Keep date only
X = X[:, self.time_column].to_pandas()
# Transform to pandas date time
X[self.time_column] = pd.to_datetime(X[self.time_column])
# Create Year and day of year so that we can merge with stored holidays
X['year'] = X[self.time_column].dt.year
X['doy'] = X[self.time_column].dt.dayofyear
# General first
holi_df = self.memos['country']
holi_df['is_DE_holiday_country'] = 1
X["is_DE_holiday_country"] = X.merge(
self.memos['country'], on=['year', 'doy'], how='left'
).fillna(0)['is_DE_holiday_country']
# Then Landers
for prov in ['BW', 'BY', 'BE', 'BB', 'HB', 'HH', 'HE', 'MV', 'NI', 'NW', 'RP', 'SL', 'SN', 'ST', 'SH', 'TH']:
holi_df = self.memos[prov]
holi_df[f'is_DE_holiday_{prov}'] = 1
X[f'is_DE_holiday_{prov}'] = X.merge(
holi_df, on=['year', 'doy'], how='left'
).fillna(0)[f'is_DE_holiday_{prov}']
X.drop([self.time_column, 'year', 'doy'], axis=1, inplace=True)
features = [
f'is_DE_holiday%s{prov}' % (orig_feat_prefix + orig_feat_prefix.join([self.time_column]) + extra_prefix)
for prov in ['country', 'BW', 'BY', 'BE', 'BB', 'HB', 'HH', 'HE',
'MV', 'NI', 'NW', 'RP', 'SL', 'SN', 'ST', 'SH', 'TH']
]
self._output_feature_names = list(features)
self._feature_desc = list(features)
return X
def write_to_mojo(self, mojo: MojoWriter, iframe: MojoFrame, group_uuid=None, group_name=None):
import uuid
group_uuid = str(uuid.uuid4())
group_name = self.__class__.__name__
iframe = iframe[self.time_column]
icol = iframe.get_column(0)
if icol.type != MojoType.STR:
iframe = AsType("int").write_to_mojo(mojo, iframe, group_uuid=group_uuid, group_name=group_name)
iframe = AsType("str").write_to_mojo(mojo, iframe, group_uuid=group_uuid, group_name=group_name)
icol = iframe.get_column(0)
# We have to add each holiday to the MOJO
oframe = MojoFrame()
for prov in ['country', 'BW', 'BY', 'BE', 'BB', 'HB', 'HH', 'HE', 'MV',
'NI', 'NW', 'RP', 'SL', 'SN', 'ST', 'SH', 'TH']:
tmpframe = iframe.duplicate()
mojo += MjT_Replace(iframe=iframe, oframe=tmpframe,
group_uuid=group_uuid, group_name=group_name,
map=[('None', None), ('', None)])
tcol = tmpframe.get_column(0)
datetime_format = self.datetime_formats[self.time_column]
if datetime_format is not None:
mojo.set_datetime_format_str(tcol, datetime_format)
iframe = tmpframe
tframe = AsType("datetime64").write_to_mojo(mojo, iframe,
group_uuid=group_uuid,
group_name=group_name)
year_col = MojoColumn(name="year", dtype="int")
doy_col = MojoColumn(name="doy", dtype="int")
mojo += MjT_Datepart(iframe=tframe, oframe=MojoFrame(columns=[year_col]),
group_uuid=group_uuid, group_name=group_name,
fn="year")
mojo += MjT_Datepart(iframe=tframe, oframe=MojoFrame(columns=[doy_col]),
group_uuid=group_uuid, group_name=group_name,
fn="dayofyear")
dates_frame = MojoFrame(columns=[year_col, doy_col])
feat = f'is_DE_holiday%s{prov}' % (
orig_feat_prefix + orig_feat_prefix.join([self.time_column]) + extra_prefix)
holi_df = self.memos[prov]
holi_df[feat] = 1
mout = MergeTransformer.from_frame(
holi_df, ['year', 'doy']).write_to_mojo(mojo, dates_frame,
group_uuid=group_uuid,
group_name=group_name)
holi_df.drop(feat, axis=1, inplace=True)
mlag = mout[feat]
mlag.names = [feat]
olag = mlag.get_column(0).duplicate()
mojo += MjT_FillNa(iframe=mlag, oframe=MojoFrame(columns=[olag]),
group_uuid=group_uuid, group_name=group_name,
repl=olag.pytype(0))
oframe += olag
# print(oframe.names)
oframe = AsType("int").write_to_mojo(mojo, oframe,
group_uuid=group_uuid,
group_name=group_name)
# print(oframe.names)
return oframe