-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathohe.py
37 lines (27 loc) · 1.58 KB
/
ohe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""One-Hot Encoding for categorical columns"""
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
from h2oaicore.transformers_more import OneHotEncodingTransformer
class OHETransformer(OneHotEncodingTransformer, CustomTransformer):
_unsupervised = True
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_included_model_classes = None # to stop GLMModel from being only model allowed
def __init__(self, cat_cols=[], max_cat_bins=20, sort_order="lexical", multi_class=False,
output_features_to_drop=list(), copy=True, random_state=42, **kwargs):
super().__init__(cat_cols=cat_cols, max_cat_bins=max_cat_bins, sort_order=sort_order, multi_class=multi_class,
output_features_to_drop=output_features_to_drop, copy=copy, random_state=random_state,
**kwargs)
@staticmethod
def get_default_properties():
return dict(col_type="ohe_categorical", min_cols=1, max_cols=1, relative_importance=1)
def fit_transform(self, X, y=None, **fit_params):
if isinstance(X, dt.Frame):
X = X.to_pandas()
return super().fit_transform(X, y, **fit_params)
def transform(self, X, y=None, **fit_params):
if isinstance(X, dt.Frame):
X = X.to_pandas()
return super().transform(X, y, **fit_params)
from h2oaicore.mojo import MojoWriter, MojoFrame
def to_mojo(self, mojo: MojoWriter, iframe: MojoFrame, group_uuid=None, group_name=None):
return super().to_mojo(mojo, iframe, group_uuid, group_name)