-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathAngularOpening.py
executable file
·166 lines (145 loc) · 6.71 KB
/
AngularOpening.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
"""
Calculate the angular opening of the lens, including the shades that we have
to build in between.
"""
from __future__ import division
import optparse
import sys
import os
import numpy
import matplotlib.pyplot as plt
from matplotlib.patches import Wedge
from matplotlib.patches import Rectangle
os.system('clear')
# Use Pythons Optionparser to define and read the options, and also
# give some help to the user
parser = optparse.OptionParser()
usage = "usage: %prog [options] arg"
parser.add_option('-d', dest='Distance', type='float', default=134,
metavar='123', help='Scintillator-CMOS distance [mm]. '
'Default = %default mm')
parser.add_option('-f', dest='FOV', type='float', default=450 / 3,
metavar='430', help='Desired field of view [mm]. Default = '
'%default mm')
parser.add_option('-o', dest='Overlap', type='float', default=2,
metavar='16', help='Overlap between the images [%]. Default '
'= %default %')
parser.add_option('-p', dest='ParaventLength', type='float', default=100,
metavar='123', help='Length of the paravents. Default = '
'%default mm')
parser.add_option('-l', dest='LensLength', type='float', default=16.8,
metavar='11.3', help='Length of the lens. Default = '
'%default mm')
parser.add_option('-b', dest='BackFocalLength', type='float', default=6.5,
metavar='9.0', help='Back focal length of the lens. Default '
'= %default mm')
parser.add_option('-s', dest='SaveImage', default=True, action='store_true',
help='Write output, (Default: %default)')
(options, args) = parser.parse_args()
# TBL 6 C 3MP specifications, as from TIS and copied here: http://cl.ly/YQ4Z
# FOV = 145 mm without overlap
# LensLengtht = 10 mm
# BackFocalLength = 6.5 mm
# Measured FOV at a distance of 13 cm is 135 x 105 mm
# show the help if the needed parameters (distance and FOV) are not given
if options.Distance is None or options.FOV is None:
parser.print_help()
print ''
print 'Example:'
print 'The command below shows the configuration of a detector with '
print 'an optics with an opening angle of 78° used to get a field'
print 'of view of 50 cm:'
print ''
print sys.argv[0], '-a 78 -f 50'
print ''
sys.exit(1)
print ''
# tan(\alpha/2) = (FOV/2) / Distance
# Distance = (FOV/2)/tan(\alpha/2)
print 'We calculate with a CMOS-Scintillator distance of', options.Distance, \
'mm.'
print 'With a back focal length of', options.BackFocalLength, \
'mm and a lens length of', options.LensLength, 'mm we have a distance of',\
options.Distance - options.BackFocalLength - options.LensLength, \
'mm from the front of the lens to the scintillator.'
print 'The FOV is corrected with an overlap of', options.Overlap, '% from', \
options.FOV, 'mm to',
options.FOV = options.FOV * (1 + (options.Overlap / 100))
print options.FOV, 'mm.'
print 'For a visible FOV of', options.FOV, 'mm at a distance of', \
options.Distance, 'mm we get a calculated opening angle of the lens of',
OpeningAngle = numpy.rad2deg(numpy.arctan((options.FOV / 2) /
options.Distance)) * 2
print round(OpeningAngle, 1), 'degrees'
plt.figure(figsize=(5, 15))
for Displacement in (0, - options.FOV / (1 + options.Overlap / 100),
options.FOV / (1 + options.Overlap / 100)):
# Central axis
plt.axhline(Displacement, color='k', linestyle='--')
# CMOS
cmoscolor = 'b'
plt.plot((0, 0), (Displacement + 3, Displacement - 3), linewidth='5',
color=cmoscolor)
# Lens
rect = Rectangle((options.BackFocalLength, Displacement - 14 / 2),
options.LensLength, 14, facecolor="#aaaaaa")
plt.gca().add_patch(rect)
# Opening angle, based on CMOS
wedge = Wedge((0, Displacement), options.Distance * 0.309,
-OpeningAngle / 2, OpeningAngle / 2, fill=True, color='r',
alpha=0.125)
plt.gca().add_patch(wedge)
plt.plot((0, options.Distance),
(Displacement, Displacement + options.FOV / 2), color='k',
linestyle='--', alpha=0.25)
plt.plot((0, options.Distance),
(Displacement, Displacement - options.FOV / 2), color='k',
linestyle='--', alpha=0.25)
# Scintillator FOV
screencolor = 'k'
plt.plot([options.Distance, options.Distance],
[Displacement + (options.FOV / 2),
Displacement - (options.FOV / 2)], linewidth='6',
color=screencolor)
screencolor = 'g'
plt.plot([options.Distance, options.Distance],
[Displacement + (options.FOV / 2),
Displacement - (options.FOV / 2)], linewidth='4',
color=screencolor)
# FOV drawn from center of lens
beamcolor = 'r'
plt.plot([options.BackFocalLength + options.LensLength,
options.Distance], [Displacement, Displacement + options.FOV /
2], beamcolor)
plt.plot([options.BackFocalLength + options.LensLength,
options.Distance], [Displacement, Displacement - options.FOV /
2], beamcolor)
# Paravents. Position calculated back from overlap
paraventcolor = 'k'
plt.plot([0, options.ParaventLength],
[Displacement - (options.FOV / (1 + options.Overlap / 100) / 2),
Displacement - (options.FOV / (1 + options.Overlap / 100) / 2)],
linewidth='5', color=paraventcolor)
# Paravent blocking,
beamcolor = 'g'
plt.plot([options.BackFocalLength + options.LensLength, options.Distance],
[Displacement, Displacement + options.FOV / 2], beamcolor)
plt.plot([options.BackFocalLength + options.LensLength, options.Distance],
[Displacement, Displacement - options.FOV / 2], beamcolor)
# Nice plotting
plt.title('Angular opening: ' + str(round(OpeningAngle, 2)) + '\nFOV size: ' +
str(options.FOV) + ' mm (including overlap of ' +
str(options.Overlap) + ' %)\nWorking Distance: ' +
str('%.2f' % options.Distance) + ' mm\nParavent length: ' +
str('%.2f' % options.ParaventLength) + ' mm')
plt.xlabel('Distance [mm]')
plt.axis('equal')
if options.SaveImage:
SaveName = 'Paravents_' + str(str('%.2f' % OpeningAngle)) + '_wd_' + \
str('%.2f' % options.Distance) + 'mm_FOV_' + \
str('%.2f' % options.FOV) + 'mm'
FigureName = ''.join([SaveName, '.png'])
plt.savefig(FigureName)
print 'Figure saved to ' + FigureName
plt.show()