forked from facebookresearch/unbiased-teacher
-
Notifications
You must be signed in to change notification settings - Fork 1
/
fast_rcnn.py
357 lines (298 loc) · 12.8 KB
/
fast_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import torch
from torch import nn
from torch.nn import functional as F
from typing import Tuple, List
from detectron2.structures import Boxes, Instances
from detectron2.layers import nonzero_tuple
from detectron2.modeling.roi_heads.fast_rcnn import (
FastRCNNOutputLayers,
fast_rcnn_inference
)
try:
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputs
except ImportError:
from .backports import FastRCNNOutputs
# focal loss
class FastRCNNFocaltLossOutputLayers(FastRCNNOutputLayers):
def __init__(self, cfg, input_shape):
super(FastRCNNFocaltLossOutputLayers, self).__init__(cfg, input_shape)
self.num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES
# config bbox iou branch
self.with_iou_pred = cfg.SEMISUPNET.WITH_IOU_PRED
self.iou_threshold = cfg.SEMISUPNET.IOU_PRED_THRESHOLD
self.iou_inference_threshold = cfg.SEMISUPNET.IOU_PRED_INFERENCE_THRESHOLD
self.filter_with_bbox_iou = cfg.SEMISUPNET.FILTER_WITH_BBOX_IOU
self.with_score_values = cfg.SEMISUPNET.WITH_SCORE_VALUES
self.with_iou_pred_elu = cfg.SEMISUPNET.WITH_IOU_PRED_ELU
self.with_regr_values = cfg.SEMISUPNET.WITH_REGR_VALUES
self.with_bbox_iou_regres = cfg.SEMISUPNET.WITH_BBOX_IOU_REGRES
self.use_smoothl1 = cfg.SEMISUPNET.USE_SMOOTHL1
if self.with_iou_pred:
inter_channels = input_shape.channels
in_channels = inter_channels
if self.with_score_values:
in_channels += (self.num_classes + 1)
if self.with_regr_values:
in_channels += (self.num_classes * 4)
if not self.with_iou_pred_elu:
self.iou_pred = torch.nn.Sequential(
torch.nn.Linear(in_channels, inter_channels),
torch.nn.Linear(inter_channels, self.num_classes + 1)
)
else:
self.iou_pred = torch.nn.Sequential(
torch.nn.Linear(in_channels, inter_channels),
nn.ELU(),
torch.nn.Linear(inter_channels, self.num_classes + 1)
)
def init_bbox_iou_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
nn.init.constant_(m.bias, 0)
self.iou_pred.apply(init_bbox_iou_weights)
def forward(self, x):
scores, proposal_deltas = super(FastRCNNFocaltLossOutputLayers, self).forward(x)
iou_scores = None
if self.with_iou_pred:
deltas = proposal_deltas
iou_input = x
if self.with_score_values:
iou_input = torch.cat([iou_input, scores], dim=1)
if self.with_regr_values:
iou_input = torch.cat([iou_input, deltas], dim=1)
iou_scores = self.iou_pred(iou_input)
return scores, proposal_deltas, iou_scores
def losses(self, predictions, proposals):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features
that were used to compute predictions.
"""
scores, proposal_deltas, iou_scores = predictions
losses = FastRCNNFocalLoss(
self.box2box_transform,
scores,
proposal_deltas,
proposals,
self.smooth_l1_beta,
self.box_reg_loss_type,
num_classes=self.num_classes,
iou_threshold=self.iou_threshold,
iou_scores=iou_scores,
with_bbox_iou_regres=self.with_bbox_iou_regres,
use_smoothl1=self.use_smoothl1,
).losses()
return losses
def inference(self, predictions: Tuple[torch.Tensor, torch.Tensor], proposals: List[Instances], branch: str = ""):
"""
Args:
predictions: return values of :meth:`forward()`.
proposals (list[Instances]): proposals that match the features that were
used to compute predictions. The ``proposal_boxes`` field is expected.
Returns:
list[Instances]: same as `fast_rcnn_inference`.
list[Tensor]: same as `fast_rcnn_inference`.
"""
logger = logging.getLogger('fvcore.common.checkpoint')
boxes = self.predict_boxes(predictions[:2], proposals)
scores = self.predict_probs(predictions[:2], proposals)
# filter by iou score
if len(predictions) > 2 and predictions[2] is not None:
iou_scores = self.predict_iou(predictions[-1], proposals)
if self.filter_with_bbox_iou:
clss = []
for s in scores:
clss.append(s.max(1)[1] if len(s) > 0 else torch.tensor([], dtype=torch.long, device=s.device))
counts = [b.shape[0] for b in boxes]
logger.info("bbox_iou bg {}".format(sum([len(s[s==self.num_classes]) for s in clss])))
boxes = self.filter(boxes, iou_scores, clss)
logger.info("bbox_iou filtering {}".format(sum([c-b.shape[0] for (c, b) in zip(counts, boxes)])))
scores = self.filter(scores, iou_scores, clss)
iou_scores = self.filter(iou_scores, iou_scores, clss)
image_shapes = [x.image_size for x in proposals]
# only on teacher pseudo-labeling!
if branch == 'unsup_data_weak' and self.with_teacher_filter_preds:
th = self.teacher_filter_preds_min_delta
boxes, scores = self._filter_preds(boxes, scores, th)
instances, idxs = fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
if len(predictions) > 2 and predictions[2] is not None:
instances = self.add_iou_scores(iou_scores, instances, idxs)
return instances, idxs
def _filter_preds(self, boxes, scores, min_delta):
boxes = list(boxes)
scores = list(scores)
for idx in range(len(boxes)):
top2 = scores[idx].topk(2)[0]
filter_ = (top2[:, 0] - top2[:, 1]) > min_delta
boxes[idx] = boxes[idx][filter_]
scores[idx] = scores[idx][filter_]
return boxes, scores
def predict_iou(self, preds, proposals):
num_inst_per_image = [len(p) for p in proposals]
preds = preds.sigmoid()
return preds.split(num_inst_per_image, dim=0)
def add_iou_scores(self, iou_scores, instances, idxs):
for i, instance in enumerate(instances):
ious = iou_scores[i][idxs[i]]
counter = torch.arange(0, len(instance))
ious = ious[counter, instance.pred_classes]
instance.pred_iou_scores = ious
return instances
def filter(self, x, iou_scores, scores):
res = []
for idx, val in enumerate(x):
ious = iou_scores[idx][torch.arange(0, scores[idx].shape[0]), scores[idx]]
fit = (
(scores[idx] < self.num_classes) & (ious > self.iou_inference_threshold)
) | (scores[idx] == self.num_classes)
res.append(val[fit])
return tuple(res)
class FastRCNNFocalLoss(FastRCNNOutputs):
"""
A class that stores information about outputs of a Fast R-CNN head.
It provides methods that are used to decode the outputs of a Fast R-CNN head.
"""
def __init__(
self,
box2box_transform,
pred_class_logits,
pred_proposal_deltas,
proposals,
smooth_l1_beta=0.0,
box_reg_loss_type="smooth_l1",
num_classes=80,
iou_threshold=0.7,
iou_scores=None,
with_bbox_iou_regres=False,
use_smoothl1=False,
):
super(FastRCNNFocalLoss, self).__init__(
box2box_transform,
pred_class_logits,
pred_proposal_deltas,
proposals,
smooth_l1_beta,
box_reg_loss_type,
)
self.num_classes = num_classes
# bbox iou branch
self.iou_threshold = iou_threshold
self.iou_scores = iou_scores
self.with_bbox_iou_regres = with_bbox_iou_regres
self.use_smoothl1 = use_smoothl1
def losses(self):
losses = {
"loss_cls": self.comput_focal_loss(),
"loss_box_reg": self.box_reg_loss(),
}
# bbox iou branch
if self.iou_scores is not None:
loss_box_iou = self.box_iou_loss(self.gt_classes)
losses["loss_box_iou"] = loss_box_iou
return losses
def comput_focal_loss(self):
if self._no_instances:
return 0.0 * self.pred_class_logits.sum()
else:
FC_loss = FocalLoss(
gamma=1.5,
num_classes=self.num_classes,
)
total_loss = FC_loss(input=self.pred_class_logits, target=self.gt_classes)
total_loss = total_loss / self.gt_classes.shape[0]
return total_loss
def build_bboxes_iou(self, gt_classes):
box_dim = self.proposals.tensor.size(1) # 4 or 5
device = self.pred_proposal_deltas.device
bg_class_ind = self.pred_class_logits.shape[1] - 1
# Box delta loss is only computed between the prediction for the gt class k
# (if 0 <= k < bg_class_ind) and the target; there is no loss defined on predictions
# for non-gt classes and background.
# Empty fg_inds should produce a valid loss of zero because reduction=sum.
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < bg_class_ind))[0]
if len(fg_inds) == 0:
return None, None
# pred_proposal_deltas for class k are located in columns [b * k : b * k + b],
# where b is the dimension of box representation (4 or 5)
# Note that compared to Detectron1,
# we do not perform bounding box regression for background classes.
gt_class_cols = box_dim * gt_classes[fg_inds, None] + torch.arange(
box_dim, device=device
)
fg_pred_boxes = self.box2box_transform.apply_deltas(
self.pred_proposal_deltas[fg_inds[:, None], gt_class_cols],
self.proposals.tensor[fg_inds],
)
return get_iou(fg_pred_boxes, self.gt_boxes.tensor[fg_inds]), fg_inds
def box_iou_loss(self, gt_classes):
if self._no_instances or self.iou_scores is None:
return 0.0 * self.pred_proposal_deltas.sum()
iou_level, fg_inds = self.build_bboxes_iou(gt_classes)
if iou_level is None:
return 0.0 * self.pred_proposal_deltas.sum()
if not self.use_smoothl1:
loss = FocalLoss(gamma=1.5, num_classes=1)
else:
loss = nn.SmoothL1Loss(reduction='sum')
logger = logging.getLogger('fvcore.common.checkpoint')
logger.info('bbox_iou loss tot_pos {} {}'.format(len(iou_level), len(iou_level[(iou_level > self.iou_threshold)])))
if self.with_bbox_iou_regres:
m = nn.Sigmoid()
loss_value = loss(m(self.iou_scores[fg_inds, gt_classes[fg_inds]]), iou_level.detach())
if self.use_smoothl1:
return loss_value / max(iou_level.numel(), 1.)
else:
# sigmoid
m = nn.Sigmoid()
loss_value = loss(m(self.iou_scores[fg_inds, gt_classes[fg_inds]]), (iou_level > self.iou_threshold).float())
return loss_value / max(gt_classes.numel(), 1.0)
def get_iou(boxes1, boxes2):
x1, y1, x2, y2 = boxes1.unbind(dim=-1)
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)
assert (x2 >= x1).all(), "bad box: x1 larger than x2"
assert (y2 >= y1).all(), "bad box: y1 larger than y2"
# Intersection keypoints
xkis1 = torch.max(x1, x1g)
ykis1 = torch.max(y1, y1g)
xkis2 = torch.min(x2, x2g)
ykis2 = torch.min(y2, y2g)
intsctk = torch.zeros_like(x1)
mask = (ykis2 > ykis1) & (xkis2 > xkis1)
intsctk[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk
return intsctk / (unionk + 1e-7)
class FocalLoss(nn.Module):
def __init__(
self,
weight=None,
gamma=1.0,
num_classes=80,
reduction='sum'
):
super(FocalLoss, self).__init__()
assert gamma >= 0
self.gamma = gamma
self.weight = weight
self.num_classes = num_classes
self.reduction = reduction
def forward(self, input, target):
# focal loss
if self.num_classes > 1:
CE = F.cross_entropy(input, target, reduction="none")
else:
CE = F.binary_cross_entropy(input, target, reduction="none")
p = torch.exp(-CE)
loss = (1 - p) ** self.gamma * CE
if self.reduction == 'none':
return loss
return loss.sum()