forked from kndiaye/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWilcoxonSRPVs.m
104 lines (93 loc) · 2.42 KB
/
WilcoxonSRPVs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
function [T,pvl,pvr,pvz,R,supp,cdf] = WilcoxonSRPVs(Z,Y);
% [T,pvl,pvr,pvzR,supp,cdf] = WilcoxonSRPVs(Z)
% computes for a data vector Z Wilcoxon's signed-rank
% test statistic
% T = sum_{i=1}^n sign(Z(i)) R(i) ,
% where R(i) denotes the rank of |Z(i)| among the non-zero
% components of (|Z(1)|, |Z(2)|, |Z(3)|, ..., |Z(n)|).
%
% In case of Z(i) = 0 we set R(i) = 0, i.e. components equal
% to zero are ignored.
%
% In case of ties among the absolute values of Z's components,
% we use the usual convention of mean ranks.
%
% In case of two input arguments, say X and Y, the program
% WilcoxonSRPVs(X,Y) works with Z := X - Y.
%
% In addition we compute left-, right- and two-sided P-values
% pvl = Pr(T_o <= T) ,
% pvr = Pr(T_o >= T) ,
% pvz = 2 * min(pvl, pvr) .
% Here T_o = sum_{i=1}^n S(i)*R(i) with independent random signs
% S(1), S(2), ..., S(n), while R is viewed temporarily as a fixed
% vector.
%
% Additional output arguments are
% - supp : a vector containing all support points of the
% distribution function F(.) := Pr(T_o <= .),
% - cdf : a vector containing the numbers cdf(i) = F(supp(i)).
%
% Lutz Duembgen, March 26, 2003
if nargin == 2
Z = Z - Y;
end
R = abs(Z);
S = sign(Z);
JJ = find(R > 0);
R(JJ) = LocalRanks(R(JJ));
T = sum(sign(Z).*R);
N = length(JJ);
R2 = ceil(2*sort(R(JJ)));
h2 = N*(N+1);
h1 = ceil(h2/2);
% Now we work temporarily with the test statistic
% T2 = T + N(N+1)/2
% = sum_{i=1}^N 1{Z(i) > 0} 2R(i)
% taking values in {0,1,...,N(N+1)}:
cdf = ones(1,h2+1);
m = 1;
for i=1:N
m_new = m+R2(i);
cdf(R2(i)+1:m_new) = (cdf(1:m) + cdf(R2(i)+1:m_new))/2;
cdf(1:R2(i)) = cdf(1:R2(i))/2;
m = m_new;
end
if nargout >= 6
supp = [0:h2] - h1;
end
ind = h1 + T + 1;
pvl = cdf(ind);
if ind >= 2
pvr = 1 - cdf(ind-1);
else
pvr = 1;
end
pvz = 2*min(pvl,pvr);
if nargout==0
fprintf(1,'Test statistic : %5.1f\n', T)
fprintf(1,'(standardized : %6.3f)\n', T/norm(R))
fprintf(1,'Left-sided P-value : %6.4f\n', pvl)
fprintf(1,'Right-sided P-Value : %6.4f\n', pvr)
fprintf(1,'Two-sided P-Value : %6.4f\n', pvz)
end
return
function rv = LocalRanks(x);
% rv = LocalRanks(x)
% computes the vector rv of ranks of x with the usual
% convention of averaging ranks in case of ties.
%
% Lutz Duembgen, 23.02.1999
n = length(x);
rv = zeros(size(x));
[hv,ar] = sort(x);
a = 1;
for b=2:n
if hv(b) > hv(a)
hv(a:b-1) = (a+b-1)/2;
a = b;
end;
end;
hv(a:n) = (a+n)/2;
rv(ar) = hv;
return