-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimperceptible_asr.py
842 lines (722 loc) · 39.3 KB
/
imperceptible_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
This module implements the adversarial and imperceptible attack on automatic speech recognition systems of Qin et al.
(2019). It generates an adversarial audio example.
| Paper link: http://proceedings.mlr.press/v97/qin19a.html
"""
from __future__ import absolute_import, division, print_function, unicode_literals
from tqdm import tqdm
import logging
from typing import TYPE_CHECKING, Optional, Tuple, Union
import numpy as np
import scipy.signal as ss
from art.attacks.attack import EvasionAttack
from art.estimators.estimator import BaseEstimator, LossGradientsMixin, NeuralNetworkMixin
from art.estimators.pytorch import PyTorchEstimator
from art.estimators.speech_recognition.wav2vec2ModelWrapper import wav2vec2Model
from art.estimators.speech_recognition.speech_recognizer import SpeechRecognizerMixin
from art.estimators.tensorflow import TensorFlowV2Estimator
from art.utils import pad_sequence_input
if TYPE_CHECKING:
# pylint: disable=C0412
from tensorflow.compat.v1 import Tensor
from torch import Tensor as PTensor
from art.utils import SPEECH_RECOGNIZER_TYPE
logger = logging.getLogger(__name__)
class ImperceptibleASR(EvasionAttack):
"""
Implementation of the imperceptible attack against a speech recognition model.
| Paper link: http://proceedings.mlr.press/v97/qin19a.html
"""
attack_params = EvasionAttack.attack_params + [
"masker",
"eps",
"learning_rate_1",
"max_iter_1",
"alpha",
"learning_rate_2",
"max_iter_2",
"batch_size",
"loss_theta_min",
"decrease_factor_eps",
"num_iter_decrease_eps",
"increase_factor_alpha",
"num_iter_increase_alpha",
"decrease_factor_alpha",
"num_iter_decrease_alpha",
]
_estimator_requirements = (NeuralNetworkMixin, LossGradientsMixin, BaseEstimator, SpeechRecognizerMixin)
def __init__(
self,
estimator: "SPEECH_RECOGNIZER_TYPE",
masker: "PsychoacousticMasker",
eps: float = 2000.0,
learning_rate_1: float = 100.0,
max_iter_1: int = 1000,
alpha: float = 0.05,
learning_rate_2: float = 1.0,
max_iter_2: int = 4000,
loss_theta_min: float = 0.05,
decrease_factor_eps: float = 0.8,
num_iter_decrease_eps: int = 10,
increase_factor_alpha: float = 1.2,
num_iter_increase_alpha: int = 20,
decrease_factor_alpha: float = 0.8,
num_iter_decrease_alpha: int = 50,
batch_size: int = 1,
) -> None:
"""
Create an instance of the :class:`.ImperceptibleASR`.
The default parameters assume that audio input is in `int16` range. If using normalized audio input, parameters
`eps` and `learning_rate_{1,2}` need to be scaled with a factor `2^-15`
:param estimator: A trained speech recognition estimator.
:param masker: A Psychoacoustic masker.
:param eps: Initial max norm bound for adversarial perturbation.
:param learning_rate_1: Learning rate for stage 1 of attack.
:param max_iter_1: Number of iterations for stage 1 of attack.
:param alpha: Initial alpha value for balancing stage 2 loss.
:param learning_rate_2: Learning rate for stage 2 of attack.
:param max_iter_2: Number of iterations for stage 2 of attack.
:param loss_theta_min: If imperceptible loss reaches minimum, stop early. Works best with `batch_size=1`.
:param decrease_factor_eps: Decrease factor for epsilon (Paper default: 0.8).
:param num_iter_decrease_eps: Iterations after which to decrease epsilon if attack succeeds (Paper default: 10).
:param increase_factor_alpha: Increase factor for alpha (Paper default: 1.2).
:param num_iter_increase_alpha: Iterations after which to increase alpha if attack succeeds (Paper default: 20).
:param decrease_factor_alpha: Decrease factor for alpha (Paper default: 0.8).
:param num_iter_decrease_alpha: Iterations after which to decrease alpha if attack fails (Paper default: 50).
:param batch_size: Batch size.
"""
# Super initialization
super().__init__(estimator=estimator)
self.masker = masker
self.eps = eps
self.learning_rate_1 = learning_rate_1
self.max_iter_1 = max_iter_1
self.alpha = alpha
self.learning_rate_2 = learning_rate_2
self.max_iter_2 = max_iter_2
self._targeted = True
self.batch_size = batch_size
self.loss_theta_min = loss_theta_min
self.decrease_factor_eps = decrease_factor_eps
self.num_iter_decrease_eps = num_iter_decrease_eps
self.increase_factor_alpha = increase_factor_alpha
self.num_iter_increase_alpha = num_iter_increase_alpha
self.decrease_factor_alpha = decrease_factor_alpha
self.num_iter_decrease_alpha = num_iter_decrease_alpha
self._check_params()
# init some aliases
self._window_size = masker.window_size
self._hop_size = masker.hop_size
self._sample_rate = masker.sample_rate
self._framework: Optional[str] = None
if isinstance(self.estimator, TensorFlowV2Estimator):
import tensorflow.compat.v1 as tf1
# set framework attribute
self._framework = "tensorflow"
# disable eager execution and use tensorflow.compat.v1 API, e.g. Lingvo uses TF2v1 AP
tf1.disable_eager_execution()
# TensorFlow placeholders
self._delta = tf1.placeholder(tf1.float32, shape=[None, None], name="art_delta")
self._power_spectral_density_maximum_tf = tf1.placeholder(tf1.float32, shape=[None], name="art_psd_max")
self._masking_threshold_tf = tf1.placeholder(
tf1.float32, shape=[None, None, None], name="art_masking_threshold"
)
# TensorFlow loss gradient ops
self._loss_gradient_masking_threshold_op_tf = self._loss_gradient_masking_threshold_tf(
self._delta, self._power_spectral_density_maximum_tf, self._masking_threshold_tf
)
elif isinstance(self.estimator, PyTorchEstimator):
# set framework attribute
self._framework = "pytorch"
def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray:
"""
Generate imperceptible, adversarial examples.
:param x: An array with the original inputs to be attacked.
:param y: Target values of shape (batch_size,). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`.
:return: An array holding the adversarial examples.
"""
if y is None:
raise ValueError("The target values `y` cannot be None. Please provide a `np.ndarray` of target labels.")
nb_samples = x.shape[0]
x_imperceptible = [None] * nb_samples
nb_batches = int(np.ceil(nb_samples / float(self.batch_size)))
for m in tqdm(range(nb_batches)):
# batch indices
begin, end = m * self.batch_size, min((m + 1) * self.batch_size, nb_samples)
# create batch of adversarial examples
x_imperceptible[begin:end] = self._generate_batch(x[begin:end], y[begin:end])
# for ragged input, use object dtype
dtype = np.float32 if x.ndim != 1 else object
return np.array(x_imperceptible, dtype=dtype)
def _generate_batch(self, x: np.ndarray, y: np.ndarray) -> np.ndarray:
"""
Create imperceptible, adversarial sample.
This is a helper method that calls the methods to create an adversarial (`ImperceptibleASR._create_adversarial`)
and imperceptible (`ImperceptibleASR._create_imperceptible`) example subsequently.
"""
# create adversarial example
x_adversarial = self._create_adversarial(x, y)
if self.max_iter_2 == 0:
return x_adversarial
# make adversarial example imperceptible
x_imperceptible = self._create_imperceptible(x, x_adversarial, y)
return x_imperceptible
def _create_adversarial(self, x, y) -> np.ndarray:
"""
Create adversarial example with small perturbation that successfully deceives the estimator.
The method implements the part of the paper by Qin et al. (2019) that is referred to as the first stage of the
attack. The authors basically follow Carlini and Wagner (2018).
| Paper link: https://arxiv.org/abs/1801.01944.
:param x: An array with the original inputs to be attacked.
:param y: Target values of shape (batch_size,). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`.
:return: An array with the adversarial outputs.
"""
batch_size = x.shape[0]
# for ragged input, use object dtype
dtype = np.float32 if x.ndim != 1 else object
epsilon = [self.eps] * batch_size
x_adversarial = [None] * batch_size
x_perturbed = x.copy()
for i in range(1, self.max_iter_1 + 1):
# perform FGSM step for x
gradients = self.estimator.loss_gradient(x_perturbed, y)
x_perturbed = x_perturbed - self.learning_rate_1 * np.array([np.sign(g) for g in gradients], dtype=dtype)
# clip perturbation
perturbation = x_perturbed - x
perturbation = np.array([np.clip(p, -e, e) for p, e in zip(perturbation, epsilon)], dtype=dtype)
# re-apply clipped perturbation to x
x_perturbed = x + perturbation
if i % self.num_iter_decrease_eps == 0:
prediction = self.estimator.predict(x_perturbed, batch_size=batch_size)
for j in range(batch_size):
# validate adversarial target, i.e. f(x_perturbed)=y
if prediction[j] == y[j].upper():
# decrease max norm bound epsilon
perturbation_norm = np.max(np.abs(perturbation[j]))
if epsilon[j] > perturbation_norm:
epsilon[j] = perturbation_norm
epsilon[j] *= self.decrease_factor_eps
# save current best adversarial example
x_adversarial[j] = x_perturbed[j]
logger.info("Current iteration %s, epsilon %s", i, epsilon)
# return perturbed x if no adversarial example found
for j in range(batch_size):
if x_adversarial[j] is None:
logger.critical("Adversarial attack stage 1 for x_%s was not successful", j)
x_adversarial[j] = x_perturbed[j]
return np.array(x_adversarial, dtype=dtype)
def _create_imperceptible(self, x: np.ndarray, x_adversarial: np.ndarray, y: np.ndarray) -> np.ndarray:
"""
Create imperceptible, adversarial example with small perturbation.
This method implements the part of the paper by Qin et al. (2019) that is described as the second stage of the
attack. The resulting adversarial audio samples are able to successfully deceive the ASR estimator and are
imperceptible to the human ear.
:param x: An array with the original inputs to be attacked.
:param x_adversarial: An array with the adversarial examples.
:param y: Target values of shape (batch_size,). Each sample in `y` is a string and it may possess different
lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`.
:return: An array with the imperceptible, adversarial outputs.
"""
batch_size = x.shape[0]
alpha_min = 0.0005
# for ragged input, use object dtype
dtype = np.float32 if x.ndim != 1 else object
early_stop = [False] * batch_size
alpha = np.array([self.alpha] * batch_size, dtype=np.float32)
loss_theta_previous = [np.inf] * batch_size
x_imperceptible = [None] * batch_size
# if inputs are *not* ragged, we can't multiply alpha * gradients_theta
if x.ndim != 1:
alpha = np.expand_dims(alpha, axis=-1)
masking_threshold, psd_maximum = self._stabilized_threshold_and_psd_maximum(x)
x_perturbed = x_adversarial.copy()
for i in range(1, self.max_iter_2 + 1):
# get perturbation
perturbation = x_perturbed - x
# get loss gradients of both losses
gradients_net = self.estimator.loss_gradient(x_perturbed, y)
gradients_theta, loss_theta = self._loss_gradient_masking_threshold(
perturbation, x, masking_threshold, psd_maximum
)
# check shapes match, otherwise unexpected errors can occur
assert gradients_net.shape == gradients_theta.shape
# perform gradient descent steps
x_perturbed = x_perturbed - self.learning_rate_2 * (gradients_net + alpha * gradients_theta)
if i % self.num_iter_increase_alpha == 0 or i % self.num_iter_decrease_alpha == 0:
prediction = self.estimator.predict(x_perturbed, batch_size=batch_size)
for j in range(batch_size):
# validate if adversarial target succeeds, i.e. f(x_perturbed)=y
if i % self.num_iter_increase_alpha == 0 and prediction[j] == y[j].upper():
# increase alpha
alpha[j] *= self.increase_factor_alpha
# save current best imperceptible, adversarial example
if loss_theta[j] < loss_theta_previous[j]:
x_imperceptible[j] = x_perturbed[j]
loss_theta_previous[j] = loss_theta[j]
# validate if adversarial target fails, i.e. f(x_perturbed)!=y
if i % self.num_iter_decrease_alpha == 0 and prediction[j] != y[j].upper():
# decrease alpha
alpha[j] = max(alpha[j] * self.decrease_factor_alpha, alpha_min)
logger.info("Current iteration %s, alpha %s, loss theta %s", i, alpha, loss_theta)
# note: avoids nan values in loss theta, which can occur when loss converges to zero.
for j in range(batch_size):
if loss_theta[j] < self.loss_theta_min and not early_stop[j]:
logger.warning(
"Batch sample %s reached minimum threshold of %s for theta loss.", j, self.loss_theta_min
)
early_stop[j] = True
if all(early_stop):
logger.warning(
"All batch samples reached minimum threshold for theta loss. Stopping early at iteration %s.", i
)
break
# return perturbed x if no adversarial example found
for j in range(batch_size):
if x_imperceptible[j] is None:
logger.critical("Adversarial attack stage 2 for x_%s was not successful", j)
x_imperceptible[j] = x_perturbed[j]
return np.array(x_imperceptible, dtype=dtype)
def _stabilized_threshold_and_psd_maximum(self, x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Return batch of stabilized masking thresholds and PSD maxima.
:param x: An array with the original inputs to be attacked.
:return: Tuple consisting of stabilized masking thresholds and PSD maxima.
"""
masking_threshold = []
psd_maximum = []
x_padded, _ = pad_sequence_input(x)
for x_i in x_padded:
print(x_i)
m_t, p_m = self.masker.calculate_threshold_and_psd_maximum(audio = x_i)
masking_threshold.append(m_t)
psd_maximum.append(p_m)
# stabilize imperceptible loss by canceling out the "10*log" term in power spectral density maximum and
# masking threshold
masking_threshold_stabilized = 10 ** (np.array(masking_threshold) * 0.1)
psd_maximum_stabilized = 10 ** (np.array(psd_maximum) * 0.1)
return masking_threshold_stabilized, psd_maximum_stabilized
def _loss_gradient_masking_threshold(
self,
perturbation: np.ndarray,
x: np.ndarray,
masking_threshold_stabilized: np.ndarray,
psd_maximum_stabilized: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute loss gradient of the global masking threshold w.r.t. the PSD approximate of the perturbation.
The loss is defined as the hinge loss w.r.t. to the frequency masking threshold of the original audio input `x`
and the normalized power spectral density estimate of the perturbation. In order to stabilize the optimization
problem during back-propagation, the `10*log`-terms are canceled out.
:param perturbation: Adversarial perturbation.
:param x: An array with the original inputs to be attacked.
:param masking_threshold_stabilized: Stabilized masking threshold for the original input `x`.
:param psd_maximum_stabilized: Stabilized maximum across frames, i.e. shape is `(batch_size, frame_length)`, of
the original unnormalized PSD of `x`.
:return: Tuple consisting of the loss gradient, which has same shape as `perturbation`, and loss value.
"""
# pad input
perturbation_padded, delta_mask = pad_sequence_input(perturbation)
if self._framework == "tensorflow":
# get loss gradients (TensorFlow)
feed_dict = {
self._delta: perturbation_padded,
self._power_spectral_density_maximum_tf: psd_maximum_stabilized,
self._masking_threshold_tf: masking_threshold_stabilized,
}
# pylint: disable=W0212
gradients_padded, loss = self.estimator._sess.run(self._loss_gradient_masking_threshold_op_tf, feed_dict)
elif self._framework == "pytorch":
# get loss gradients (TensorFlow)
gradients_padded, loss = self._loss_gradient_masking_threshold_torch(
perturbation_padded, psd_maximum_stabilized, masking_threshold_stabilized
)
else:
raise NotImplementedError
# undo padding, i.e. change gradients shape from (nb_samples, max_length) to (nb_samples)
lengths = delta_mask.sum(axis=1)
gradients = []
for gradient_padded, length in zip(gradients_padded, lengths):
gradient = gradient_padded[:length]
gradients.append(gradient)
# for ragged input, use object dtype
dtype = np.float32 if x.ndim != 1 else object
return np.array(gradients, dtype=dtype), loss
def _loss_gradient_masking_threshold_tf(
self, perturbation: "Tensor", psd_maximum_stabilized: "Tensor", masking_threshold_stabilized: "Tensor"
) -> Union["Tensor", "Tensor"]:
"""
Compute loss gradient of the masking threshold loss in TensorFlow.
Note that the PSD maximum and masking threshold are required to be stabilized, i.e. have the `10*log10`-term
canceled out. Following Qin et al (2019) this mitigates optimization instabilities.
:param perturbation: Adversarial perturbation.
:param psd_maximum_stabilized: Stabilized maximum across frames, i.e. shape is `(batch_size, frame_length)`, of
the original unnormalized PSD of `x`.
:param masking_threshold_stabilized: Stabilized masking threshold for the original input `x`.
:return: Approximate PSD tensor of shape `(batch_size, window_size // 2 + 1, frame_length)`.
"""
import tensorflow.compat.v1 as tf1
# calculate approximate power spectral density
psd_perturbation = self._approximate_power_spectral_density_tf(perturbation, psd_maximum_stabilized)
# calculate hinge loss
loss = tf1.reduce_mean(
tf1.nn.relu(psd_perturbation - masking_threshold_stabilized), axis=[1, 2], keepdims=False
)
# compute loss gradient
loss_gradient = tf1.gradients(loss, [perturbation])[0]
return loss_gradient, loss
def _loss_gradient_masking_threshold_torch(
self, perturbation: np.ndarray, psd_maximum_stabilized: np.ndarray, masking_threshold_stabilized: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute loss gradient of the masking threshold loss in PyTorch.
See also `ImperceptibleASR._loss_gradient_masking_threshold_tf`.
"""
import torch
# define tensors
# pylint: disable=W0212
perturbation_torch = torch.from_numpy(perturbation).to(self.estimator._device)
masking_threshold_stabilized_torch = torch.from_numpy(masking_threshold_stabilized).to(self.estimator._device)
psd_maximum_stabilized_torch = torch.from_numpy(psd_maximum_stabilized).to(self.estimator._device)
# track gradient of perturbation
perturbation_torch.requires_grad = True
# calculate approximate power spectral density
psd_perturbation = self._approximate_power_spectral_density_torch(
perturbation_torch, psd_maximum_stabilized_torch
)
# calculate hinge loss
loss = torch.mean( # type: ignore
torch.nn.functional.relu(psd_perturbation - masking_threshold_stabilized_torch), dim=(1, 2), keepdims=False
)
# compute loss gradient
loss.sum().backward()
if perturbation_torch.grad is not None:
loss_gradient = perturbation_torch.grad.cpu().numpy()
else:
raise ValueError("Gradient tensor in PyTorch model is `None`.")
loss_value = loss.detach().cpu().numpy()
return loss_gradient, loss_value
def _approximate_power_spectral_density_tf(
self, perturbation: "Tensor", psd_maximum_stabilized: "Tensor"
) -> "Tensor":
"""
Approximate the power spectral density for a perturbation `perturbation` in TensorFlow.
Note that a stabilized PSD approximate is returned, where the `10*log10`-term has been canceled out.
Following Qin et al (2019) this mitigates optimization instabilities.
:param perturbation: Adversarial perturbation.
:param psd_maximum_stabilized: Stabilized maximum across frames, i.e. shape is `(batch_size, frame_length)`, of
the original unnormalized PSD of `x`.
:return: Approximate PSD tensor of shape `(batch_size, window_size // 2 + 1, frame_length)`.
"""
import tensorflow.compat.v1 as tf1
# compute short-time Fourier transform (STFT)
stft_matrix = tf1.signal.stft(perturbation, self._window_size, self._hop_size, fft_length=self._window_size)
# compute power spectral density (PSD)
# note: fixes implementation of Qin et al. by also considering the square root of gain_factor
gain_factor = np.sqrt(8.0 / 3.0)
psd_matrix = tf1.square(tf1.abs(gain_factor * stft_matrix / self._window_size))
# approximate normalized psd: psd_matrix_approximated = 10^((96.0 - psd_matrix_max + psd_matrix)/10)
psd_matrix_approximated = tf1.pow(10.0, 9.6) / tf1.reshape(psd_maximum_stabilized, [-1, 1, 1]) * psd_matrix
# return PSD matrix such that shape is (batch_size, window_size // 2 + 1, frame_length)
return tf1.transpose(psd_matrix_approximated, [0, 2, 1])
def _approximate_power_spectral_density_torch(
self, perturbation: "PTensor", psd_maximum_stabilized: "PTensor"
) -> "PTensor":
"""
Approximate the power spectral density for a perturbation `perturbation` in PyTorch.
See also `ImperceptibleASR._approximate_power_spectral_density_tf`.
"""
import torch
# compute short-time Fourier transform (STFT)
# pylint: disable=W0212
stft_matrix = torch.stft(
perturbation,
n_fft=self._window_size,
hop_length=self._hop_size,
win_length=self._window_size,
center=False,
window=torch.hann_window(self._window_size).to(self.estimator._device),
).to(self.estimator._device)
# compute power spectral density (PSD)
# note: fixes implementation of Qin et al. by also considering the square root of gain_factor
gain_factor = np.sqrt(8.0 / 3.0)
stft_matrix_abs = torch.sqrt(torch.sum(torch.square(gain_factor * stft_matrix / self._window_size), -1))
psd_matrix = torch.square(stft_matrix_abs)
# approximate normalized psd: psd_matrix_approximated = 10^((96.0 - psd_matrix_max + psd_matrix)/10)
psd_matrix_approximated = pow(10.0, 9.6) / psd_maximum_stabilized.reshape(-1, 1, 1) * psd_matrix
# return PSD matrix such that shape is (batch_size, window_size // 2 + 1, frame_length)
return psd_matrix_approximated
def _check_params(self) -> None:
"""
Apply attack-specific checks.
"""
if self.eps <= 0:
raise ValueError("The perturbation max norm bound `eps` has to be positive.")
if not isinstance(self.alpha, float):
raise ValueError("The value of alpha must be of type float.")
if self.alpha <= 0.0:
raise ValueError("The value of alpha must be positive")
if not isinstance(self.max_iter_1, int):
raise ValueError("The maximum number of iterations for stage 1 must be of type int.")
if self.max_iter_1 <= 0:
raise ValueError("The maximum number of iterations for stage 1 must be greater than 0.")
if not isinstance(self.max_iter_2, int):
raise ValueError("The maximum number of iterations for stage 2 must be of type int.")
if self.max_iter_2 < 0:
raise ValueError("The maximum number of iterations for stage 2 must be non-negative.")
if not isinstance(self.learning_rate_1, float):
raise ValueError("The learning rate for stage 1 must be of type float.")
if self.learning_rate_1 <= 0.0:
raise ValueError("The learning rate for stage 1 must be greater than 0.0.")
if not isinstance(self.learning_rate_2, float):
raise ValueError("The learning rate for stage 2 must be of type float.")
if self.learning_rate_2 <= 0.0:
raise ValueError("The learning rate for stage 2 must be greater than 0.0.")
if not isinstance(self.loss_theta_min, float):
raise ValueError("The loss_theta_min threshold must be of type float.")
if not isinstance(self.decrease_factor_eps, float):
raise ValueError("The factor to decrease eps must be of type float.")
if self.decrease_factor_eps <= 0.0:
raise ValueError("The factor to decrease eps must be greater than 0.0.")
if not isinstance(self.num_iter_decrease_eps, int):
raise ValueError("The number of iterations must be of type int.")
if self.num_iter_decrease_eps <= 0:
raise ValueError("The number of iterations must be greater than 0.")
if not isinstance(self.num_iter_decrease_alpha, int):
raise ValueError("The number of iterations must be of type int.")
if self.num_iter_decrease_alpha <= 0:
raise ValueError("The number of iterations must be greater than 0.")
if not isinstance(self.increase_factor_alpha, float):
raise ValueError("The factor to increase alpha must be of type float.")
if self.increase_factor_alpha <= 0.0:
raise ValueError("The factor to increase alpha must be greater than 0.0.")
if not isinstance(self.num_iter_increase_alpha, int):
raise ValueError("The number of iterations must be of type int.")
if self.num_iter_increase_alpha <= 0:
raise ValueError("The number of iterations must be greater than 0.")
if not isinstance(self.decrease_factor_alpha, float):
raise ValueError("The factor to decrease alpha must be of type float.")
if self.decrease_factor_alpha <= 0.0:
raise ValueError("The factor to decrease alpha must be greater than 0.0.")
if self.batch_size <= 0:
raise ValueError("The batch size `batch_size` has to be positive.")
class PsychoacousticMasker(object):
"""
Implements psychoacoustic model of Lin and Abdulla (2015) following Qin et al. (2019) simplifications.
| Paper link: Lin and Abdulla (2015), https://www.springer.com/gp/book/9783319079738
| Paper link: Qin et al. (2019), http://proceedings.mlr.press/v97/qin19a.html
"""
def __init__(self, window_size: int = 2048, hop_size: int = 512, sample_rate: int = 16000) -> None:
"""
Initialization.
:param window_size: Length of the window. The number of STFT rows is `(window_size // 2 + 1)`.
:param hop_size: Number of audio samples between adjacent STFT columns.
:param sample_rate: Sampling frequency of audio inputs.
"""
self._window_size = window_size
self._hop_size = hop_size
self._sample_rate = sample_rate
# init some private properties for lazy loading
self._fft_frequencies: Optional[np.ndarray] = None
self._bark: Optional[np.ndarray] = None
self._absolute_threshold_hearing: Optional[np.ndarray] = None
def calculate_threshold_and_psd_maximum(self, audio: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute the global masking threshold for an audio input and also return its maximum power spectral density.
This method is the main method to call in order to obtain global masking thresholds for an audio input. It also
returns the maximum power spectral density (PSD) for each frame. Given an audio input, the following steps are
performed:
1. STFT analysis and sound pressure level normalization
2. Identification and filtering of maskers
3. Calculation of individual masking thresholds
4. Calculation of global masking thresholds
:param audio: Audio samples of shape `(length,)`.
:return: Global masking thresholds of shape `(window_size // 2 + 1, frame_length)` and the PSD maximum for each
frame of shape `(frame_length)`.
"""
psd_matrix, psd_max = self.power_spectral_density(audio)
threshold = np.zeros_like(psd_matrix)
for frame in range(psd_matrix.shape[1]):
# apply methods for finding and filtering maskers
maskers, masker_idx = self.filter_maskers(*self.find_maskers(psd_matrix[:, frame]))
# apply methods for calculating global threshold
threshold[:, frame] = self.calculate_global_threshold(
self.calculate_individual_threshold(maskers, masker_idx)
)
return threshold, psd_max
@property
def window_size(self) -> int:
"""
:return: Window size of the masker.
"""
return self._window_size
@property
def hop_size(self) -> int:
"""
:return: Hop size of the masker.
"""
return self._hop_size
@property
def sample_rate(self) -> int:
"""
:return: Sample rate of the masker.
"""
return self._sample_rate
@property
def fft_frequencies(self) -> np.ndarray:
"""
:return: Discrete fourier transform sample frequencies.
"""
if self._fft_frequencies is None:
self._fft_frequencies = np.linspace(0, self.sample_rate / 2, self.window_size // 2 + 1)
return self._fft_frequencies
@property
def bark(self) -> np.ndarray:
"""
:return: Bark scale for discrete fourier transform sample frequencies.
"""
if self._bark is None:
self._bark = 13 * np.arctan(0.00076 * self.fft_frequencies) + 3.5 * np.arctan(
np.square(self.fft_frequencies / 7500.0)
)
return self._bark
@property
def absolute_threshold_hearing(self) -> np.ndarray:
"""
:return: Absolute threshold of hearing (ATH) for discrete fourier transform sample frequencies.
"""
if self._absolute_threshold_hearing is None:
# ATH applies only to frequency range 20Hz<=f<=20kHz
# note: deviates from Qin et al. implementation by using the Hz range as valid domain
valid_domain = np.logical_and(20 <= self.fft_frequencies, self.fft_frequencies <= 2e4)
freq = self.fft_frequencies[valid_domain] * 0.001
# outside valid ATH domain, set values to -np.inf
# note: This ensures that every possible masker in the bins <=20Hz is valid. As a consequence, the global
# masking threshold formula will always return a value different to np.inf
self._absolute_threshold_hearing = np.ones(valid_domain.shape) * -np.inf
self._absolute_threshold_hearing[valid_domain] = (
3.64 * pow(freq, -0.8) - 6.5 * np.exp(-0.6 * np.square(freq - 3.3)) + 0.001 * pow(freq, 4) - 12
)
return self._absolute_threshold_hearing
def power_spectral_density(self, audio: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute the power spectral density matrix for an audio input.
:param audio: Audio sample of shape `(length,)`.
:return: PSD matrix of shape `(window_size // 2 + 1, frame_length)` and maximum vector of shape
`(frame_length)`.
"""
import librosa
# compute short-time Fourier transform (STFT)
audio_float = audio.astype(np.float32)
stft_params = {
"n_fft": self.window_size,
"hop_length": self.hop_size,
"win_length": self.window_size,
"window": ss.get_window("hann", self.window_size, fftbins=True),
"center": False,
}
stft_matrix = librosa.core.stft(audio_float, **stft_params)
# compute power spectral density (PSD)
with np.errstate(divide="ignore"):
gain_factor = np.sqrt(8.0 / 3.0)
psd_matrix = 20 * np.log10(np.abs(gain_factor * stft_matrix / self.window_size))
psd_matrix = psd_matrix.clip(min=-200)
# normalize PSD at 96dB
psd_matrix_max = np.max(psd_matrix)
psd_matrix_normalized = 96.0 - psd_matrix_max + psd_matrix
return psd_matrix_normalized, psd_matrix_max
@staticmethod
def find_maskers(psd_vector: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Identify maskers.
Possible maskers are local PSD maxima. Following Qin et al., all maskers are treated as tonal. Thus neglecting
the nontonal type.
:param psd_vector: PSD vector of shape `(window_size // 2 + 1)`.
:return: Possible PSD maskers and indices.
"""
# identify maskers. For simplification it is assumed that all maskers are tonal (vs. nontonal).
masker_idx = ss.argrelmax(psd_vector)[0]
# smooth maskers with their direct neighbors
psd_maskers = 10 * np.log10(np.sum([10 ** (psd_vector[masker_idx + i] / 10) for i in range(-1, 2)], axis=0))
return psd_maskers, masker_idx
def filter_maskers(self, maskers: np.ndarray, masker_idx: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Filter maskers.
First, discard all maskers that are below the absolute threshold of hearing. Second, reduce pairs of maskers
that are within 0.5 bark distance of each other by keeping the larger masker.
:param maskers: Masker PSD values.
:param masker_idx: Masker indices.
:return: Filtered PSD maskers and indices.
"""
# filter on the absolute threshold of hearing
# note: deviates from Qin et al. implementation by filtering first on ATH and only then on bark distance
ath_condition = maskers > self.absolute_threshold_hearing[masker_idx]
masker_idx = masker_idx[ath_condition]
maskers = maskers[ath_condition]
# filter on the bark distance
bark_condition = np.ones(masker_idx.shape, dtype=bool)
i_prev = 0
for i in range(1, len(masker_idx)):
# find pairs of maskers that are within 0.5 bark distance of each other
if self.bark[i] - self.bark[i_prev] < 0.5:
# discard the smaller masker
i_todelete, i_prev = (i_prev, i_prev + 1) if maskers[i_prev] < maskers[i] else (i, i_prev)
bark_condition[i_todelete] = False
else:
i_prev = i
masker_idx = masker_idx[bark_condition]
maskers = maskers[bark_condition]
return maskers, masker_idx
def calculate_individual_threshold(self, maskers: np.ndarray, masker_idx: np.ndarray) -> np.ndarray:
"""
Calculate individual masking threshold with frequency denoted at bark scale.
:param maskers: Masker PSD values.
:param masker_idx: Masker indices.
:return: Individual threshold vector of shape `(window_size // 2 + 1)`.
"""
delta_shift = -6.025 - 0.275 * self.bark
threshold = np.zeros(masker_idx.shape + self.bark.shape)
# TODO reduce for loop
for k, (masker_j, masker) in enumerate(zip(masker_idx, maskers)):
# critical band rate of the masker
z_j = self.bark[masker_j]
# distance maskees to masker in bark
delta_z = self.bark - z_j
# define two-slope spread function:
# if delta_z <= 0, spread_function = 27*delta_z
# if delta_z > 0, spread_function = [-27+0.37*max(PSD_masker-40,0]*delta_z
spread_function = 27 * delta_z
spread_function[delta_z > 0] = (-27 + 0.37 * max(masker - 40, 0)) * delta_z[delta_z > 0]
# calculate threshold
threshold[k, :] = masker + delta_shift[masker_j] + spread_function
return threshold
def calculate_global_threshold(self, individual_threshold):
"""
Calculate global masking threshold.
:param individual_threshold: Individual masking threshold vector.
:return: Global threshold vector of shape `(window_size // 2 + 1)`.
"""
# note: deviates from Qin et al. implementation by taking the log of the summation, which they do for numerical
# stability of the stage 2 optimization. We stabilize the optimization in the loss itself.
with np.errstate(divide="ignore"):
return 10 * np.log10(
np.sum(10 ** (individual_threshold / 10), axis=0) + 10 ** (self.absolute_threshold_hearing / 10)
)