-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximumSubarray.py
58 lines (47 loc) · 1.31 KB
/
MaximumSubarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Source : https://leetcode.com/problems/maximum-subarray
# Author : Hamza Mogni
# Date : 2022-01-20
#####################################################################################################
#
# Given an integer array nums, find the contiguous subarray (containing at least one number) which
# has the largest sum and return its sum.
#
# A subarray is a contiguous part of an array.
#
# Example 1:
#
# Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
# Output: 6
# Explanation: [4,-1,2,1] has the largest sum = 6.
#
# Example 2:
#
# Input: nums = [1]
# Output: 1
#
# Example 3:
#
# Input: nums = [5,4,-1,7,8]
# Output: 23
#
# Constraints:
#
# 1 <= nums.length <= 10^5
# -10^4 <= nums[i] <= 10^4
#
# Follow up: If you have figured out the O(n) solution, try coding another solution using the divide
# and conquer approach, which is more subtle.
#####################################################################################################
from typing import List
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
maximum = nums[0]
current = 0
for nbr in nums:
if current < 0:
current = 0
current += nbr
maximum = max(maximum, current)
return maximum
s = Solution()
print(s.maxSubArray([-2, 1, -3, 4, -1, 2, 1, -5, 4]))