-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathfind_peak_element.c
73 lines (67 loc) · 1.45 KB
/
find_peak_element.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
* Date: 2017-11-25
*
* Description:
* Find a peak element from an array. Peak is any element in array which is not
* smaller than it's neighbours. For last element only one adjacent is compared.
* Eg:
* [1, 2, 3, 4, 5], 5 is peak
* [4, 6, 2, 1], 6 is peak
*
*
* Approach:
* Binary search approach is followed, compared mid element with its neigbhours
* if smaller check same with other half of array.
*
* Complexity: O(logn)
*/
#include "stdio.h"
#include "stdlib.h"
void print_array(int arr[], int n, char *msg)
{
int i = 0;
printf("*********** %s *****************\n", msg);
for (i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n\n");
}
int find_peak(int a[], int n)
{
int low = 0, high = n - 1;
int mid = n/2;
int peak = a[mid];
while (low <= high)
{
mid = low + (high - low)/2;
if ((mid == 0 || a[mid] >= a[mid - 1]) &&
(mid == n - 1 || a[mid] >= a[mid + 1]))
{
peak = a[mid];
break;
}
else if (mid != n - 1 && a[mid] < a[mid + 1])
low = mid + 1;
else
high = mid - 1;
}
return peak;
}
int main()
{
int i = 0;
int n = 0;
int *a = NULL;
int peak = 0;
printf("Enter number of elements : ");
scanf("%d",&n);
a = (int *)malloc(sizeof(int)*n);
for (i = 0; i < n; i++)
{
printf("Enter element [%d] : ", i);
scanf("%d",&a[i]);
}
print_array(a, n, "Inserted Array");
peak = find_peak(a, n);
printf("Peak element is: %d\n", peak);
return 0;
}