-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmax_min_value_index_pair.c
72 lines (65 loc) · 1.44 KB
/
max_min_value_index_pair.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
* Date: 2018-10-14
*
* Description:
* Maximize value of (a[i] - i) - (a[j] - j) in an unsorted array
*
* Approach:
* Consider a[i] - i and a[j] - j as independent, idea is to find maximum and
* minimum value of a[x] - x and subtract them to max required value.
*
* Complexity:
* O(N)
*/
#include "stdio.h"
#include "stdlib.h"
int main() {
int i = 0;
int n = 0;
int *a = NULL;
int max = 0, min = 65536;
printf("Enter number of elements: ");
scanf("%d", &n);
a = (int *)malloc(sizeof(int) * n);
for (i = 0; i < n; i++) {
printf("Enter element[%d]: ", i);
scanf("%d", &a[i]);
}
for (i = 0; i < n; i++) {
if (max < a[i] - i)
max = a[i] - i;
if (min > a[i] - i)
min = a[i] - i;
}
printf ("Max((a[i] - i) - (a[j] - j)) is: %d\n", max - min);
return 0;
}
/*
* Output:
* -------------------
* Enter number of elements: 5
* Enter element[0]: 1
* Enter element[1]: 2
* Enter element[2]: 3
* Enter element[3]: 4
* Enter element[4]: 5
* Max((a[i] - i) - (a[j] - j)) is: 0
*
* Enter number of elements: 5
* Enter element[0]: 5
* Enter element[1]: 4
* Enter element[2]: 3
* Enter element[3]: 2
* Enter element[4]: 1
* Max((a[i] - i) - (a[j] - j)) is: 8
*
* Enter number of elements: 7
* Enter element[0]: 2
* Enter element[1]: 5
* Enter element[2]: 9
* Enter element[3]: 10
* Enter element[4]: 0
* Enter element[5]: 3
* Enter element[6]: 4
* Max((a[i] - i) - (a[j] - j)) is: 11
*/