-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathprint_matrix_in_spiral.py
115 lines (97 loc) · 2.85 KB
/
print_matrix_in_spiral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/python
# Date: 2018-09-22
#
# Description:
# Given a matrix, print that in clockwise spiral form.
#
# Approach-1: Follow Approach-2 (simple)
# Function name: print_matrix_in_spiral
# Use 4 loops to print matrix elements in all 4 directions. Keep incrementing
# start index and decrement end index when one cycle completes.
# When only one row and column needs to be traversed, check that case - should
# be traversed only once.
#
# Approach-2:
# Function name: print_matrix_in_spiral_simple
# Check on the number of elements processed keeping track of 4 boundaries - top,
# right, bottom, left
# This approach is simpler than above
#
# Complexity:
# O(M*N) M = Rows, N = Columns
def print_matrix_in_spiral(mat):
res = []
row_end = len(mat) - 1
col_end = len(mat[0]) - 1
row_start = 0
col_start = 0
while row_start <= row_end and col_start <= col_end:
# Left to right
for c in range(col_start, col_end + 1):
res.append(mat[row_start][c])
# Top to down
for r in range(row_start + 1, row_end + 1):
res.append(mat[r][col_end])
# Right to left
# If there is only row left, that is already covered by left to right
# traversal
if row_start < row_end:
for c in range(col_end - 1, col_start - 1, -1):
res.append(mat[row_end][c])
# Down to top
# If there is only one column left, that is already covered by top to down
# traversal
if col_start < col_end:
for r in range(row_end - 1, row_start, -1):
res.append(mat[r][col_start])
row_start += 1
row_end -= 1
col_start += 1
col_end -= 1
return res
# This approach is simpler than above, this checks of number of elements
# processed keeping track of 4 boundaries - top, right, bottom, left
def print_matrix_in_spiral_simple(M):
res = []
rows = len(M)
cols = len(M[0])
size = rows * cols
top = 0
left = 0
right = cols - 1
bottom = rows - 1
while len(res) < size:
# Left to right
for i in range(left, right + 1):
if len(res) < size:
res.append(M[top][i])
top += 1
# Top to bottom
for i in range(top, bottom + 1):
if len(res) < size:
res.append(M[i][right])
right -= 1
# Right to left
for i in range(right, left - 1, -1):
if len(res) < size:
res.append(M[bottom][i])
bottom -= 1
# Bottom to top
for i in range(bottom, top - 1, -1):
if len(res) < size:
res.append(M[i][left])
left += 1
return res
def main():
matrix = [
[1, 2, 3, 13, 23],
[4, 5, 6, 16, 26],
[7, 8, 9, 19, 29],
]
print(print_matrix_in_spiral(matrix))
print(print_matrix_in_spiral_simple(matrix))
if __name__ == '__main__':
main()
# Output:
# ------
# [1, 2, 3, 13, 23, 26, 29, 19, 9, 8, 7, 4, 5, 6, 16]