-
Notifications
You must be signed in to change notification settings - Fork 0
/
NeuralNet.py
506 lines (405 loc) · 17.6 KB
/
NeuralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
Multilayer perceptron using Theano.
A multilayer perceptron is a logistic regressor where
instead of feeding the input to the logistic regression you insert a
intermediate layer, called the hidden layer, that has a nonlinear
activation function (usually tanh or sigmoid) . One can use many such
hidden layers making the architecture deep (This is now implemented).
.. math::
f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))),
References:
- textbooks: "Pattern Recognition and Machine Learning" -
Christopher M. Bishop, section 5
"""
__docformat__ = 'restructedtext en'
import os
import sys
import timeit
import numpy
import theano
import theano.tensor as T
from LogisticRegression import LogisticRegression, load_data
import math
import ast
import DataLoader
import copy
import pickle
import MLutil
# Hidden layer of a neural network
class HiddenLayer(object):
def __init__(self, rng, input, n_in, n_out, W=None, b=None,
activation=T.tanh):
"""
Typical hidden layer of a MLP: units are fully-connected and have
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh
Hidden unit activation is given by: tanh(dot(input,W) + b)
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden
layer
"""
self.input = input
# `W` is initialized with `W_values` which is uniformely sampled
# from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden))
# for tanh activation function
# the output of uniform if converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
# Note : optimal initialization of weights is dependent on the
# activation function used (among other things).
# For example, results presented in [Xavier10] suggest that you
# should use 4 times larger initial weights for sigmoid
# compared to tanh
# We have no info for other function, so we use the same as
# tanh.
# Note in future, can also use existing W/b values, i.e. in the case of recursive pretraining
if W is None:
W_values = numpy.asarray(
rng.uniform(
low=-numpy.sqrt(6. / (n_in + n_out)),
high=numpy.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)
),
dtype=theano.config.floatX
)
# Recommended Sigmoid Initialization
if activation == theano.tensor.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.b = b
# Perform activation on input * W
lin_output = T.dot(input, self.W) + self.b
self.output = (
lin_output if activation is None
else activation(lin_output)
)
# parameters of the model
self.params = [self.W, self.b]
class MLP(object):
"""Multi-Layer Perceptron Class (Neural network)
A multilayer perceptron is a feedforward artificial neural network model
that has one layer or more of hidden units and nonlinear activations.
Intermediate layers usually have as activation function tanh or the
sigmoid function (defined here by a ``HiddenLayer`` class) while the
top layer is a softmax layer (defined here by a ``LogisticRegression``
class).
"""
def __init__(self, rng, input, n_in, n_hidden, n_out, num_layers):
"""Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
:type num_layers: int
:param num_layers: number of hidden layers, the number of layers we
stack ... stacking > 1 makes the architecture deep
"""
# Since we are dealing with a one hidden layer MLP, this will translate
# into a HiddenLayer with a tanh activation function connected to the
# LogisticRegression layer; the activation function can be replaced by
# sigmoid or any other nonlinear function
temp_str = "self.hiddenLayer"
prev_str = temp_str[:]
# Sanity check, should not have a 0 layer neural net
assert(num_layers >= 1)
self.params = []
self.L1 = 0.
self.L2_sqr = 0.
# First layer
self.hiddenLayer = HiddenLayer(
rng=rng,
input=input,
n_in=n_in,
n_out=n_hidden,
activation=T.tanh
)
self.params += self.hiddenLayer.params
self.L1 += abs(self.hiddenLayer.W).sum()
self.L2_sqr += (self.hiddenLayer.W ** 2).sum()
# Add additional hidden_layers
for i in range(num_layers-1):
new_str = temp_str + str(i)
exec (new_str + '= HiddenLayer(rng=rng, input={0}.output, n_in=n_hidden, n_out=n_hidden,activation=T.tanh)'.format(prev_str))
param_str = new_str + '.params'
self.params += eval(param_str)
self.L1 += abs(eval(new_str + '.W')).sum()
self.L2_sqr += (eval(new_str + '.W') ** 2).sum()
prev_str = new_str[:]
# The logistic regression layer gets as input the hidden units
# of the hidden
self.logRegressionLayer = LogisticRegression(
input=eval("{0}.output".format(prev_str)),
n_in=n_hidden,
n_out=n_out
)
# Update these class variables
self.params += self.logRegressionLayer.params
self.L1 += abs(self.logRegressionLayer.W).sum()
self.L2_sqr += (self.logRegressionLayer.W ** 2).sum()
# negative log likelihood of the MLP is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.negative_log_likelihood = (
self.logRegressionLayer.negative_log_likelihood
)
# same holds for the function computing the number of errors
self.errors = self.logRegressionLayer.errors
# Digit predictions
self.y_pred = self.logRegressionLayer.y_pred
# the parameters of the model are the parameters of the two layer it is
# made out of
# self.params = self.hiddenLayer.params + self.hiddenLayer2.params
# + self.hiddenLayer3.params + self.logRegressionLayer.params
# keep track of model input
self.input = input
# Initially just do L2 regularization
# L1 penalty is none
def validation_analysis(learning_rate=.001, L1_reg=0.00, L2_reg=0.0001, n_epochs=100,
dataset='mnist_train.csv', batch_size=20, n_hidden=300, num_layers = 2, mlp_in = 784, mlp_out = 10):
"""
Main loop for the mlp
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient
:type L1_reg: float
:param L1_reg: L1-norm's weight when added to the cost (see
regularization)
:type L2_reg: float
:param L2_reg: L2-norm's weight when added to the cost (see
regularization)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: path to appropriate dataset
:type batch_size: int
:param batch_size: number of entries per mini-batch
:type n_hidden: int
:param n_hidden: number of entries per hidden layer
:type num_layers: int
:param num_layers: number of hidden layers
:type mlp_in: int
:param mlp_in: dimension of data loaded from dataset
:type mlp_out: int
:param mlp_out: number of classes in dataset
"""
# Load in the data
datasets = DataLoader.load_kaggle_mnist(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = math.floor(train_set_x.get_value(borrow=True).shape[0] / batch_size)
n_valid_batches = math.floor(valid_set_x.get_value(borrow=True).shape[0] / batch_size)
n_test_batches = math.floor(test_set_x.get_value(borrow=True).shape[0] / batch_size)
######################
# BUILD ACTUAL MODEL #
######################
print('... building the model')
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # n data entries, m features per entry ==> n by m matrix of data
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
# Seed the random number generator
rng = numpy.random.RandomState(1234)
# construct the MLP class (the neural net)
classifier = MLP(
rng=rng,
input=x,
n_in = mlp_in,
n_hidden=n_hidden,
n_out=mlp_out,
num_layers=num_layers
)
# the cost we minimize during training is the negative log likelihood of
# the model plus the regularization terms (L1 and L2); cost is expressed
# here symbolically
cost = (
classifier.negative_log_likelihood(y)
+ L1_reg * classifier.L1
+ L2_reg * classifier.L2_sqr
)
# compiling a Theano function that computes the mistakes that are made
# by the model on a minibatch
test_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: test_set_x[index * batch_size:(index + 1) * batch_size],
y: test_set_y[index * batch_size:(index + 1) * batch_size]
}
)
validate_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: valid_set_x[index * batch_size:(index + 1) * batch_size],
y: valid_set_y[index * batch_size:(index + 1) * batch_size]
}
)
# compute the gradient of cost with respect to theta (stored in params)
# the resulting gradients will be stored in a list gparams
gparams = [T.grad(cost, param) for param in classifier.params]
# specify how to update the parameters of the model as a list of
# (variable, update expression) pairs
# given two lists of the same length, A = [a1, a2, a3, a4] and
# B = [b1, b2, b3, b4], zip generates a list C of same size, where each
# element is a pair formed from the two lists :
# C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(classifier.params, gparams)
]
# compiling a Theano function `train_model` that returns the cost, but
# in the same time updates the parameter of the model based on the rules
# defined in `updates`
train_model = theano.function(
inputs=[index],
outputs=cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]
}
)
###############
# TRAIN MODEL #
###############
print('... training')
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = timeit.default_timer()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
#old_classifier = copy.deepcopy(classifier)
for minibatch_index in range(n_train_batches):
minibatch_avg_cost = train_model(minibatch_index)
# iteration number
iter = (epoch - 1) * n_train_batches + minibatch_index
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in range(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print(
'epoch %i, minibatch %i/%i, validation error %f %%' %
(
epoch,
minibatch_index + 1,
n_train_batches,
this_validation_loss * 100.
)
)
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if (
this_validation_loss < best_validation_loss *
improvement_threshold
):
patience = max(patience, iter * patience_increase)
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i
in range(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of '
'best model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
pickle.dump(classifier, open("best_model.p", "wb"))
# Otherwise, reduce the learning rate (need to fix this/do this in a better way)
'''
else:
classifier = old_classifier
learning_rate = learning_rate / 2
print("Learning rate halved ... the new learning rate is {0}".format(learning_rate))
'''
if patience <= iter:
done_looping = True
break
end_time = timeit.default_timer()
print(('Optimization complete. Best validation score of %f %% '
'obtained at iteration %i, with test performance %f %%') %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print('The code for file ' + os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
#pickle.dump(classifier, open("best_model.p", "wb"))
# Neural network predictions, use MLutil functions
def predict():
"""
An example of how to load a trained model and use it
to predict labels.
"""
# load the saved model
classifier = pickle.load(open("best_model.p", "rb"))
# compile a predictor function
predict_model = theano.function(
inputs=[classifier.input],
outputs=classifier.y_pred)
# We can test it on some examples from test test
dataset = 'mnist_train.csv'
datasets = DataLoader.load_kaggle_mnist(dataset)
test_set_x, test_set_y = datasets[2]
print(type(test_set_x))
print(type(test_set_y))
test_set_x = test_set_x.get_value()
test_set_y = test_set_y.eval()
predicted_values = predict_model(test_set_x[20:30])
print("Sample Neural Prediction")
print ("Predicted values for the first 20 examples in test set:")
print(predicted_values)
print ("The actual values are")
print(test_set_y[20:30])
def predict_main(classifier_pickle):
print("This functions is being called")
datasets = DataLoader.load_kaggle_mnist("mnist_train.csv")
test_set_x, test_set_y = datasets[2]
test_set_x = test_set_x.get_value()
test_set_y = test_set_y.eval()
predictor = MLutil.Predictor(classifier_pickle, 'DNN')
predicted_values = predictor.make_prediction(test_set_x)
predAnalysis = MLutil.PredictionAccuracies(predicted_values, test_set_y)
print(predAnalysis.get_misclass_rate())
print(predAnalysis.get_indicies_misclassifications())
pickle.dump(predAnalysis.get_indicies_misclassifications(), open("neural_indicies.p", "wb"))
return predAnalysis.get_indicies_misclassifications()
if __name__ == '__main__':
#validation_analysis()
predict_main("best_model.p")