-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGeneration_gedi.py
402 lines (340 loc) · 16.8 KB
/
Generation_gedi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import json
from os import listdir
import glob
from tqdm import tqdm
import transformers
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import torch
import pandas as pd
import numpy as np
import GPUtil
import time
from Generation.eval import *
from Generation.utils import *
from Generation.models import *
import argparse
debug=False
# from transformers import (
# MODEL_WITH_LM_HEAD_MAPPING,
# WEIGHTS_NAME,
# AdamW,
# AutoConfig,
# AutoModelWithLMHead,
# AutoModelForCausalLM,
# AutoTokenizer,
# PreTrainedModel,
# PreTrainedTokenizer,
# get_linear_schedule_with_warmup,
# )
from transformers import AutoTokenizer,AutoModelForCausalLM
HULK_path='../HULK/'
print(HULK_path)
#task_name is a list having element in the format (task_name,class_name)
def get_gpu(gpu_id):
print('There are %d GPU(s) available.' % torch.cuda.device_count())
while(1):
tempID = []
tempID = GPUtil.getAvailable(order = 'memory', limit = 2, maxLoad = 1.0, maxMemory = 0.7, includeNan=False, excludeID=[], excludeUUID=[])
for i in range(len(tempID)):
if len(tempID) > 0 and (tempID[i]==gpu_id):
print("Found a gpu")
print('We will use the GPU:',tempID[i],torch.cuda.get_device_name(tempID[i]))
deviceID=[tempID[i]]
return deviceID
else:
time.sleep(5)
def get_dataloader(sentences, tokenizer, params):
sents=[]
attns=[]
inputs = tokenizer(sentences,truncation=True,max_length=params['max_input_length'], padding=True)
for element in inputs['input_ids']:
sents.append(element+[50256])
for element in inputs['attention_mask']:
attns.append(element+[1])
sents=torch.tensor(sents)
attns=torch.tensor(attns)
data = TensorDataset(sents, attns)
sampler = SequentialSampler(data)
return DataLoader(data, sampler=sampler, batch_size=params['batch_size'])
def generate(params,hate_sentences,model,controller_list,tokenizer,device,use_control=True):
cntr = []
test_dataloader=get_dataloader(hate_sentences, tokenizer,params)
for step, batch in tqdm(enumerate(test_dataloader), total=len(test_dataloader), desc="Evaluating"):
input_ids = batch[0].to(device)
attention_mask = batch[1].to(device)
batch_size, input_seq_len = input_ids.shape
position_ids = attention_mask.cumsum(dim=1) - 1
position_ids = (attention_mask.long().cumsum(-1) - 1)
position_ids.masked_fill_(attention_mask==0, 0) # can be filled with anything >= 0
unfinished_sents = torch.ones(batch_size, dtype=torch.long, device=device)
with torch.no_grad():
for step in range(params['max_generation_length']):
outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids)
ensemble_logits=outputs.logits
if params['filter_p'] < 1.0:
ensemble_logits = top_k_top_p_filtering(ensemble_logits, top_p=params['filter_p'])
if(debug==True):
print("before controller")
print(ensemble_logits[:,-1,:])
print(torch.max(ensemble_logits[:,-1,:], dim=-1))
if(len(controller_list)>0 and use_control):
controller_logits=[]
for model_temp in controller_list:
temp_outputs = model(input_ids, attention_mask=attention_mask, position_ids=position_ids)
logits_temp=temp_outputs.logits
#print(logits_temp)
controller_logits.append(logits_temp)
for i in range(len(controller_list)):
alpha = torch.tensor(params['coefficient'][i]).to(device)
ensemble_logits += alpha * (controller_logits[i])
if(debug==True):
print("after controller")
print(ensemble_logits[:,-1,:])
print(torch.max(ensemble_logits[:,-1,:], dim=-1))
if step == 0:
last_non_masked_idx = torch.sum(attention_mask, dim=1) - 1
next_token_logits = ensemble_logits[range(batch_size), last_non_masked_idx, :]
else:
next_token_logits = ensemble_logits[:, -1, :]
if params['sample']==True:
# Temperature (higher temperature => more likely to sample low probability tokens)
if params['temperature'] != 1.0:
next_token_logits = next_token_logits / params['temperature']
# Top-p/top-k filtering
next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=params['k'], top_p=params['p'])
# Sample
probs = F.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_tokens = torch.argmax(next_token_logits, dim=-1)
# either append a padding token here if <EOS> has been seen or append next token
tokens_to_add = next_tokens * unfinished_sents + tokenizer.pad_token_id * (1 - unfinished_sents)
# this updates which sentences have not seen an EOS token so far
# if one EOS token was seen the sentence is finished
eos_in_sents = tokens_to_add == tokenizer.eos_token_id
unfinished_sents.mul_((~eos_in_sents).long())
# stop when there is an EOS in each sentence
if unfinished_sents.max() == 0:
break
# Update input_ids, attention_mask and position_ids
input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((batch_size, 1))], dim=1)
position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=1)
decoded_outputs = [tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for output in input_ids[:, input_seq_len:]]
print(decoded_outputs)
cntr += decoded_outputs
print(len(cntr))
return cntr
def generate_huggingface_method(params,hate_sentences,model,controller_list,tokenizer,device,control_type='gedi',num_samples=10):
"""
Generates senetenecs using Huggingface Generation Method
"""
cntr = []
model.eval()
alpha_controller=[]
for i in range(len(params['coefficient'])):
alpha = torch.tensor(params['coefficient'][i]).to(device)
alpha_controller.append(alpha)
print(alpha_controller)
for step in tqdm(range(len(hate_sentences))):
cntr_temp=[]
for i in range(num_samples):
# encode the new user input, add the eos_token and return a tensor in Pytorch
input_ids = tokenizer.encode(hate_sentences[step],truncation=True,max_length=params['max_input_length'],return_tensors='pt')
eos = tokenizer.encode(params['sep_token'],return_tensors='pt')
input_ids = torch.cat((input_ids,eos),1)
input_ids=input_ids.to(device)
# input_ids = [Hatespeech]<|endoftext|>
####### greedy_Decoding ######
beam_outputs = model.generate(
controller_alphas=alpha_controller,
controller_list=controller_list,
control_type=control_type,
positive_class=['false','false','true'], # Positive class for each Counter-Gedi Model provided in params['task_name'] list
# towards which the model will move the Generated Logits to (and away from negative class)
negative_class=['true','true','false'],
unpertubed_count=params['unpertubed_count'],
tokenizer=tokenizer,
class_bias=params['class_bias'],
filter_p=params['filter_p'],
target_p=params['target_p'],
disc_weight=params['disc_weight'],
input_ids=input_ids,
pad_token_id = tokenizer.eos_token_id,
max_length = params['max_generation_length']+len(input_ids[0]),
min_length = params['min_generation_length']+len(input_ids[0]),
top_k = params["k"],
top_p = params["p"],
repetition_penalty = params["repitition_penalty"],
temperature = params["temperature"],
num_beams = params['num_beams'],
do_sample = params['sample'],
no_repeat_ngram_size = params['no_repeat_ngram_size'],
early_stopping = params['early_stopping']
)
# beam_output = [Hatespeech]<|endoftext|>[Generated Counterspeech]
reply = (tokenizer.decode(beam_outputs[0])).split(params['sep_token'])[1]
cntr_temp.append(reply)
print("hate",hate_sentences[step])
print("counter",cntr_temp[0])
cntr.append(cntr_temp)
if step>0 and step%100==0:
print("doing")
return cntr
def hate_refrences(data,test_set):
"""
Extract all counterspeech references for each hatespeech in the given dataset
"""
hate = []
reply = []
refrences = []
for sample in data:
ht , rep = sample[0] , sample[1]
hate.append(ht)
reply.append(rep)
hate = list(set(hate))
mp={}
for ht_i in hate:
refs = []
for sample in data:
ht_j , rep = sample[0] , sample[1]
if ht_j == ht_i:
refs.append(rep)
mp[ht_i] = refs
refrences.append(refs)
hate = list(set([x[0] for x in test_set]))
hate.sort(key=lambda s: len(s))
refs = [mp[ht_i] for ht_i in hate]
return hate,refs # a given hate instance and refrences(replies) for metrics evaluation
def main(params,model_path,dataset,gpu_id,num_samples):
# print(HULK_path)
path_models = HULK_path+'Counterspeech/Saved_Models/Generator' # Path to Generator Models
path_models_disc = HULK_path+'Counterspeech/Saved_Models/Discriminator' # Path to Disciminator Gedi Models
path_datasets = HULK_path+'/Counterspeech/Datasets'
if torch.cuda.is_available() and params['device']=='cuda':
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
##### You can set the device manually if you have only one gpu
##### comment this line if you don't want to manually set the gpu
deviceID =get_gpu(gpu_id)
# torch.cuda.set_device(1)
##### comment this line if you want to manually set the gpu
#### required parameter is the gpu id
torch.cuda.set_device(deviceID[0])
else:
print('Since you dont want to use GPU, using the CPU instead.')
device = torch.device("cpu")
test_path = path_datasets+'/'+dataset+'/Test.csv'
train_path = path_datasets+'/'+dataset+'/Train.csv'
cache_path = params['cache_path']
#Politeness_dexpert_gpt2_polite
controller_list=[]
if(params['control_type']=='gedi'): # Load controller Gedi models for Generation as per the list provided
#if(len(params['task_name'])>1):
# print("gedi model controls attribute one at a time")
#else:
print("loaded_gedi")
for task in params['task_name']:
path_model_task=path_models_disc+'/'+task[0]+'_gedi_gpt2_'+task[1]+'/'
print(path_model_task)
model_temp=Model_Generation.from_pretrained(path_model_task,cache_dir=cache_path)
model_temp.to(device)
model_temp.eval()
controller_list.append(model_temp)
print("Length of Controller List: ", len(controller_list))
# Load saved model and Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,cache_dir=cache_path)
model = Model_Generation.from_pretrained(model_path,cache_dir=cache_path)
model.to(device)
model.eval()
train = pd.read_csv(train_path)
test = pd.read_csv(test_path)[:100] # Generate counterspeech for 100 test samples, can be modified to entire files
train_set = list(zip(train['initiator_message'].tolist(),train['reply_message'].tolist()))
test_set = list(zip(test['initiator_message'].tolist(),test['reply_message'].tolist()))
data = []
for x in test_set:
data.append(x)
for x in train_set:
data.append(x)
print(len(data),len(test_set),len(train_set))
hate, cntr_refs = hate_refrences(data,test_set) # Load all Hate Sentences and a list of Counterspeech References corresponding to that Sentence
if(params['generation_method']=='huggingface'):
cntr_replies = generate_huggingface_method(params,hate,model,controller_list,tokenizer,device,control_type=params['control_type'],num_samples=num_samples)
if(params['control_type']!='none'):
for controller in controller_list:
del controller
del model
torch.cuda.empty_cache()
dict_results={}
dict_results['params']=params
hate_counter_replies={}
count=0
for hate,counter in zip(hate,cntr_replies):
temp={
'hatespeech':hate,
'counterspeech_model':counter,
}
# print(temp)
hate_counter_replies[count]=temp
count+=1
dict_results['samples']=hate_counter_replies
model_path_modified = "-".join(model_path.split('/')[-2:])
print(model_path_modified)
# using datetime module
import datetime;
# ct stores current time
ct = datetime.datetime.now()
# ts store timestamp of current time
ts = ct.timestamp()
ts = str(int(ts))
if(params['control_type']=='gedi'):
write_in=params["save_path"] + model_path_modified +"_on_"+dataset+"_gedi_huggingface_"+ts+"_multi.json"
else:
write_in=params["save_path"] + model_path_modified +"_on_"+dataset+"_huggingface_"+ts+"_base.json"
# Dump results into the "write_in" file
with open(write_in, 'w') as outfile:
json.dump(dict_results, outfile,indent=4)
params = {
'sep_token':'<|endoftext|>',
'max_generation_length': 100, # Maximum length of Generated Sentence
'min_generation_length':40, # Minimum length of Generated Sentence
'max_input_length':128, # Maximum length of Input Sentence, after which input is truncated
'num_beams':1,
'unpertubed_count':10, # Number of tokens to be generated without any perturbation by CounterGedi Model (Only base Model used)
'no_repeat_ngram_size':5,
'repitition_penalty': 3.5,
'control_type':'gedi', # Takes Values: 'gedi'-> for counterGedi or 'none' (for base model sampling)
'k':100,
'p':0.92,
'filter_p':0.8,
'target_p':0.8,
'disc_weight':[0.4,0.3,0.3], # Weights of different conditionals (controlling parameters) we want to focus on, during generation
'class_bias':0,
'sample':True,
'temperature':1.2,
'early_stopping':True,
'model_path':'gpt2-medium',
'dataset_hate':'CONAN',
'task_name':[('Emotion', 'joy'),('Politeness', 'polite'),('Toxicity', 'toxic')], # Controlling parameters, which we want to control while generation
# Used to load the respective Gedi Models for steering of results
'coefficient':[4.5],
'save_path': HULK_path+'Counterspeech/Results_new/', # Path where results are to be stored in json file
'device': 'cuda',
'batch_size':4,
'cache_path':HULK_path+'Saved_models/',
'generation_method':'huggingface',
'gpu_id':0
}
if __name__ == "__main__":
saved_path=HULK_path+'Counterspeech/Saved_Models/Generator/' # Path to the folder where the Counter Gedi model is saved
# model_paths consist of list of trained model folders which contain the respective .pt files of saved models
model_paths=[saved_path+'CONAN_DialoGPT-medium',saved_path+'Reddit_DialoGPT-medium', saved_path+'Gab_DialoGPT-medium']
datasets = ["CONAN","Reddit","Gab"] # List of Hatespeech-Counterspeech datasets for which we want to Generate counterspeech samples
num_samples=5 # Number of samples to be generated per Hatespeech
for element in zip(model_paths[2:3],datasets[2:3]):
model=element[0]
dataset=element[1]
print(model,dataset)
main(params,model,dataset,params['gpu_id'],num_samples)