-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame.py
1341 lines (1144 loc) · 51.4 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import collections
import itertools
import json
import logging
import math
import random
from typing import Any, Callable, Dict, List, Optional, Text, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import cluster, metrics
from torch import optim
import utils
class Game(nn.Module):
def __init__(
self,
context_size: int,
object_size: int,
message_size: int,
num_functions: int,
target_function: Callable,
use_context: bool = True,
shared_context: bool = True,
shuffle_decoder_context: bool = False,
nature_includes_function: bool = True,
context_generator: Optional[Callable] = None,
loss_every: int = 1,
num_exemplars: int = 100,
encoder_hidden_sizes: Tuple[int, ...] = (64, 64),
decoder_hidden_sizes: Tuple[int, ...] = (64, 64),
seed: int = 100,
loss_type: str = "mse"
):
super().__init__()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
self.context_size = context_size
self.object_size = object_size
self.message_size = message_size
self.num_functions = num_functions
self.encoder_hidden_sizes = encoder_hidden_sizes
self.decoder_hidden_sizes = decoder_hidden_sizes
self.use_context = use_context
self.shared_context = shared_context
self.shuffle_decoder_context = shuffle_decoder_context
self.nature_includes_function = nature_includes_function
self.context_generator = context_generator
self.target_function = target_function
self.loss_every = loss_every
self.num_exemplars = num_exemplars
self.seed = seed
self.loss_type = loss_type # informal loss type for flag
if loss_type == "mse":
self.criterion = nn.MSELoss()
elif loss_type == "cross_entropy":
self.criterion = nn.CrossEntropyLoss()
else:
print("invalid loss type: ", loss_type)
exit()
self.epoch_nums: List[int] = []
self.loss_per_epoch: List[float] = []
self.clustering_model = None
self.cluster_label_to_func_idx: Dict[int, int] = {}
if isinstance(self.context_size, tuple):
self.flat_context_size = utils.reduce_prod(self.context_size)
elif isinstance(self.context_size, int):
self.flat_context_size = self.context_size
else:
raise ValueError(f"context_size must be either a tuple or int")
encoder_input_size = self._get_encoder_input_size()
if self.use_context:
decoder_input_size = self.message_size + self.flat_context_size
else:
decoder_input_size = self.message_size
encoder_layer_dimensions = [(encoder_input_size, self.encoder_hidden_sizes[0])]
for i, hidden_size in enumerate(self.encoder_hidden_sizes[1:]):
hidden_shape = (self.encoder_hidden_sizes[i], hidden_size)
encoder_layer_dimensions.append(hidden_shape)
encoder_layer_dimensions.append(
(self.encoder_hidden_sizes[-1], self.message_size)
)
decoder_layer_dimensions = [(decoder_input_size, self.decoder_hidden_sizes[0])]
for i, hidden_size in enumerate(self.decoder_hidden_sizes[1:]):
hidden_shape = (self.decoder_hidden_sizes[i], hidden_size)
decoder_layer_dimensions.append(hidden_shape)
# print("decoder_layer_dimension1 ", decoder_layer_dimensions)
# last layer output
if loss_type == "mse":
decoder_layer_dimensions.append(
(self.decoder_hidden_sizes[-1], self.object_size)
)
elif loss_type == "cross_entropy":
num_objects = self.context_size[0] # context_size = num_object x num_properties
decoder_layer_dimensions.append(
(self.decoder_hidden_sizes[-1], num_objects)
)
else:
print("please define a valid loss type")
exit()
# print("decoder_layer_dimension2 ", decoder_layer_dimensions)
# exit()
# decoder_layer_dimensions.append(
# (self.decoder_hidden_sizes[-1], self.context_size)
# )
self.encoder_hidden_layers = nn.ModuleList(
[nn.Linear(*dimensions) for dimensions in encoder_layer_dimensions]
)
self.decoder_hidden_layers = nn.ModuleList(
[nn.Linear(*dimensions) for dimensions in decoder_layer_dimensions]
)
logging.info("Game details:")
logging.info(f"Seed: {seed}")
logging.info(
f"\nContext size: {context_size}\nObject size: {object_size}\nMessage size: {message_size}\nNumber of functions: {num_functions}"
)
logging.info(f"Use context: {use_context}")
logging.info(f"Encoder layers:\n{self.encoder_hidden_layers}")
logging.info(f"Decoder layers:\n{self.decoder_hidden_layers}")
def play(self, num_batches, mini_batch_size):
optimizer = optim.Adam(self.parameters(), lr=0.001)
for batch_num in range(num_batches):
function_selectors = self._generate_function_selectors(
mini_batch_size, random=True
)
contexts = self._generate_contexts(mini_batch_size)
decoder_contexts = self._get_decoder_context(mini_batch_size, contexts)
optimizer.zero_grad()
loss = self._loss(contexts, function_selectors, decoder_contexts)
loss.backward()
optimizer.step()
if batch_num % self.loss_every == 0 or batch_num == (num_batches - 1):
self._log_epoch_loss(batch_num, loss.item())
if batch_num % 100 == 0:
logging.info(
f"Batch {batch_num + (1 if batch_num == 0 else 0)} loss:\t{self.loss_per_epoch[-1]:.2e}"
)
def _encoder_forward_pass(self, context, function_selector):
encoder_input = self._get_input(context, function_selector)
message = encoder_input
for hidden_layer in self.encoder_hidden_layers[:-1]:
message = F.relu(hidden_layer(message))
message = self.encoder_hidden_layers[-1](message)
return message
def _decoder_forward_pass(self, message, context):
if self.use_context:
context_flattened = utils.batch_flatten(context)
decoder_input = torch.cat((message, context_flattened), dim=1)
else:
decoder_input = message
prediction = decoder_input
for hidden_layer in self.decoder_hidden_layers[:-1]:
prediction = F.relu(hidden_layer(prediction))
prediction = self.decoder_hidden_layers[-1](prediction)
return prediction
def _forward(self, context, function_selector, decoder_context):
message = self._encoder_forward_pass(context, function_selector)
prediction = self._decoder_forward_pass(message, decoder_context)
return prediction
def _predict(self, context, function_selector, decoder_context):
with torch.no_grad():
return self._forward(context, function_selector, decoder_context)
def _predict_by_message(self, message, decoder_context):
with torch.no_grad():
return self._decoder_forward_pass(message, decoder_context)
def _target(self, context, function_selector):
if self.loss_type == "mse":
return self.target_function(context, function_selector, target_type = "target_properties")
elif self.loss_type == "cross_entropy":
return self.target_function(context, function_selector, target_type = "target_id")
else:
print("invalid loss type")
exit()
def _message(self, context, function_selector):
with torch.no_grad():
return self._encoder_forward_pass(context, function_selector)
def _loss(self, context, function_selectors, decoder_context):
target = self._target(decoder_context, function_selectors)
prediction = self._forward(context, function_selectors, decoder_context)
# print("target function in loss ", self._target)
# print("target in loss ", target)
# print("prediction in loss", prediction)
# print(self.target_function)
loss = self.criterion(prediction, target)
# try:
#
# print("prediction: ", prediction)
# print("target: ", target)
# print("loss: ", loss)
# # exit()
# except:
# print("target function in loss ", self._target)
# print("target in loss ", target)
# print("prediction in loss", prediction)
# exit()
# if loss == 0:
# print("loss is not defined")
# exit()
return loss
def _get_encoder_input_size(self):
parts = []
if self.use_context:
parts.append(self.flat_context_size)
if self.nature_includes_function:
parts.append(self.num_functions)
else:
parts.append(self.object_size)
return sum(parts)
def _get_input(self, contexts: torch.Tensor, function_selectors: torch.Tensor):
parts = []
if self.use_context:
contexts_flat = utils.batch_flatten(contexts)
parts.append(contexts_flat)
if self.nature_includes_function:
parts.append(function_selectors)
else:
objects = self._target(contexts, function_selectors)
parts.append(objects)
return torch.cat(parts, dim=1)
def _generate_contexts(self, batch_size):
if isinstance(self.context_size, int):
context_shape = (self.context_size,)
else:
context_shape = self.context_size
if self.context_generator is None:
context = torch.randn(batch_size, *context_shape)
else:
context = self.context_generator(batch_size, context_shape)
# print("context: ", context)
return context
def _get_decoder_context(self, batch_size, encoder_context):
if self.shared_context:
decoder_context = encoder_context
else:
decoder_context = self._generate_contexts(batch_size)
if self.shuffle_decoder_context:
decoder_context = decoder_context[
:, torch.randperm(decoder_context.shape[1]), :
]
return decoder_context
def _generate_function_selectors(self, batch_size, random=False):
"""Generate `batch_size` one-hot vectors of dimension `num_functions`."""
if random:
function_idxs = torch.randint(self.num_functions, size=(batch_size,))
else:
function_idxs = torch.arange(batch_size) % self.num_functions
return torch.nn.functional.one_hot(
function_idxs, num_classes=self.num_functions
).float()
def _generate_funcs_contexts_messages(self, num_exemplars, random=False):
batch_size = num_exemplars * self.num_functions
encoder_contexts = self._generate_contexts(batch_size)
decoder_contexts = self._get_decoder_context(batch_size, encoder_contexts)
function_selectors = self._generate_function_selectors(
batch_size, random=random
)
messages = self._message(encoder_contexts, function_selectors)
return function_selectors, encoder_contexts, decoder_contexts, messages
def _log_epoch_loss(self, epoch, loss):
self.loss_per_epoch.append(loss)
self.epoch_nums.append(epoch)
def visualize(self):
self._plot_messages_information()
self._run_unsupervised_clustering(visualize=True)
# Evaluations
def get_evaluations(self) -> Dict[Text, Any]:
self._run_unsupervised_clustering()
evaluation_funcs = {
"training_losses": lambda: self.loss_per_epoch,
"object_prediction_accuracy": self._evaluate_encoder_decoder_prediction_accuracy,
# # Unsupervised clustering
"detected_num_clusters": self._detect_num_clusters,
"object_prediction_by_cluster_loss": self._evaluate_object_prediction_by_cluster,
"clusterization_f_score": self._evaluate_clusterization_f_score,
"average_cluster_message_perception": self._evaluate_average_cluster_message_perception,
# Compositionality
"addition_compositionality_loss": self._evaluate_addition_compositionality,
"analogy_compositionality_loss": self._evaluate_analogy_compositionality_network,
"compositionality_loss": self._evaluate_compositionality_network,
}
evaluation_results = {
eval_name: f() for eval_name, f in evaluation_funcs.items()
}
# Collect nested dict values at top level.
keys = tuple(evaluation_results.keys())
for k in keys:
if isinstance(evaluation_results[k], dict):
for nested_k, nested_val in evaluation_results[k].items():
evaluation_results[nested_k] = nested_val
del evaluation_results[k]
elements_to_predict_from_messages = (
"functions",
"min_max",
"dimension",
"sanity",
"object_by_context",
"object_by_decoder_context",
"context",
"decoder_context",
)
for element in elements_to_predict_from_messages:
evaluation_results[
f"{element}_from_messages"
] = self.predict_element_by_messages(element)
logging.info(f"Evaluations:\n{json.dumps(evaluation_results, indent=1)}")
return evaluation_results
def _detect_num_clusters(self):
_, _, _, messages = self._generate_funcs_contexts_messages(1000)
dbscan = cluster.DBSCAN(eps=0.5, min_samples=5)
dbscan.fit(messages)
num_predicted_clusters = len(set(dbscan.labels_))
logging.info(f"Number of predicted clusters: {num_predicted_clusters}")
return num_predicted_clusters
@staticmethod
def _evaluate_object_prediction_accuracy(
contexts: torch.Tensor,
predicted_objects: torch.Tensor,
target_objects: torch.Tensor,
loss_type: str
) -> float:
# print(contexts.shape)
# # exit()
if len(contexts.shape) != 3:
logging.info(f"Object prediction accuracy only valid for extremity game.")
return 0.0
batch_size = contexts.shape[0]
correct = 0
# print("predicted_objects: ", predicted_objects[0] )
# print("argmax: ", torch.argmax(predicted_objects[0]) )
# exit()
for b in range(batch_size):
context = contexts[b]
if loss_type == "mse":
predicted_obj = predicted_objects[b].unsqueeze(dim=0)
mse_per_obj = utils.batch_mse(context, predicted_obj)
closest_obj_idx = torch.argmin(mse_per_obj)
closest_obj = context[closest_obj_idx]
if torch.all(closest_obj == target_objects[b]):
correct += 1
elif loss_type == "cross_entropy":
prediction_distribution = F.softmax(predicted_objects[b])
sample_prediction = torch.distributions.categorical.Categorical(prediction_distribution)
if sample_prediction.sample() == target_objects[b]:
correct += 1
else:
print("invalid loss type")
exit()
accuracy = correct / batch_size
logging.info(
f"Object prediction accuracy: {correct}/{batch_size} = {accuracy:.2f}"
)
return accuracy
def _evaluate_encoder_decoder_prediction_accuracy(self):
(
function_selectors,
encoder_contexts,
decoder_contexts,
_,
) = self._generate_funcs_contexts_messages(self.num_exemplars, random=False)
predicted_objects = self._predict(
encoder_contexts, function_selectors, decoder_contexts
)
target_objects = self._target(decoder_contexts, function_selectors)
return self._evaluate_object_prediction_accuracy(
decoder_contexts, predicted_objects, target_objects, self.loss_type
)
def _plot_messages_information(
self, visualize_targets: bool = False, visualize_latent_space: bool = False
):
with torch.no_grad():
(
func_selectors,
encoder_contexts,
decoder_contexts,
messages,
) = self._generate_funcs_contexts_messages(self.num_exemplars, random=False)
message_masks = []
message_labels = []
for func_idx in range(self.num_functions):
message_masks.append(
[
i * self.num_functions + func_idx
for i in range(self.num_exemplars)
]
)
message_labels.append(f"F{func_idx}")
title_information_row = f"M={self.message_size}, O={self.object_size}, C={self.context_size}, F={self.num_functions}"
utils.plot_raw(
messages.numpy(),
message_masks,
message_labels,
f"Messages\n{title_information_row}",
)
if visualize_targets:
targets = self._target(encoder_contexts, func_selectors)
utils.plot_raw(
targets.numpy(),
message_masks,
message_labels,
f"Targets\n{title_information_row}",
)
if visualize_latent_space:
# Plot latent encoder space
encoder_context_flat = utils.batch_flatten(encoder_contexts)
encoder_input = torch.cat((encoder_context_flat, func_selectors), dim=1)
latent_messages_level_1 = F.relu(
self.encoder_hidden_layers[0](encoder_input)
)
latent_messages_level_2 = F.relu(
self.encoder_hidden_layers[1](latent_messages_level_1)
)
utils.plot_raw(
latent_messages_level_1.numpy(),
message_masks,
message_labels,
f"Encoder latent level 1 -- ReLu(W_e1(input))",
)
utils.plot_raw(
latent_messages_level_2.numpy(),
message_masks,
message_labels,
f"Encoder latent level 2 -- ReLu(W_e2(ReLu(W_e1(input))))",
)
# Plot latent decoder space
decoder_context_flat = utils.batch_flatten(decoder_contexts)
decoder_input = torch.cat((messages, decoder_context_flat), dim=1)
latent_decoder_level_1 = F.relu(
self.decoder_hidden_layers[0](decoder_input)
)
latent_decoder_level_2 = F.relu(
self.decoder_hidden_layers[1](latent_decoder_level_1)
)
utils.plot_raw(
latent_decoder_level_1.numpy(),
message_masks,
message_labels,
f"Decoder latent level 1 -- ReLu(W_d1(messages+context))",
)
utils.plot_raw(
latent_decoder_level_2.numpy(),
message_masks,
message_labels,
f"Decoder latent level 2 -- ReLu(W_d2(ReLu(W_d1(messages+context))))",
)
def predict_element_by_messages(self, element_to_predict: Text) -> float:
logging.info(f"Predicting {element_to_predict} from messages.")
(
func_selectors,
contexts,
_,
messages,
) = self._generate_funcs_contexts_messages(self.num_exemplars, random=False)
batch_size = func_selectors.shape[0]
train_test_ratio = 0.7
num_train_samples = math.ceil(batch_size * train_test_ratio)
ACCURACY_PREDICTIONS = ("functions", "min_max", "dimension", "sanity")
OBJECT_PREDICTIONS = ("object_by_context", "object_by_decoder_context")
if self.loss_type == "cross_entropy":
ACCURACY_PREDICTIONS += OBJECT_PREDICTIONS
if element_to_predict in ACCURACY_PREDICTIONS:
# See https://pytorch.org/docs/stable/nn.html#crossentropyloss
loss_func = torch.nn.NLLLoss()
else:
loss_func = torch.nn.MSELoss()
if element_to_predict == "functions":
elements = func_selectors
elif element_to_predict == "min_max":
if len(contexts.shape) != 3:
# Requires extremity game context.
return 0.0
elements = torch.nn.functional.one_hot(
func_selectors.argmax(dim=1) % 2, num_classes=2
)
elif element_to_predict == "dimension":
if len(contexts.shape) != 3:
# Requires extremity game context.
return 0.0
num_dimensions = contexts.shape[2]
elements = torch.nn.functional.one_hot(
func_selectors.argmax(dim=1) // 2, num_classes=num_dimensions,
)
elif element_to_predict == "sanity":
# Test prediction accuracy of random data. Should be at chance level.
elements = torch.nn.functional.one_hot(
torch.randint(0, 2, (batch_size,)), num_classes=2,
)
elif element_to_predict == "object_by_context":
elements = self.target_function(contexts, func_selectors, "target_properties")
# print("func selectors")
# print(func_selectors)
# print("contexts")
# print(contexts.shape)
# print(contexts[:10])
# print("prediction")
# print(elements.shape)
# print(elements[:10])
# exit()
elif element_to_predict == "object_by_decoder_context":
if self.shared_context:
logging.info("No decoder context, context is shared.")
return 0.0
decoder_contexts = self._generate_contexts(batch_size)
elements = self.target_function(decoder_contexts, func_selectors, "target_properties" )
elif element_to_predict == "context":
elements = utils.batch_flatten(contexts)
elif element_to_predict == "decoder_context":
if self.shared_context:
logging.info("No decoder context, context is shared.")
return 0.0
elements = utils.batch_flatten(self._generate_contexts(batch_size))
else:
raise ValueError("Invalid element to predict")
train_target, test_target = (
elements[:num_train_samples],
elements[num_train_samples:],
)
train_messages, test_messages = (
messages[:num_train_samples],
messages[num_train_samples:],
)
classifier_hidden_size = 32
layers = [
torch.nn.Linear(self.message_size, classifier_hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(classifier_hidden_size, test_target.shape[-1]),
]
if element_to_predict in ACCURACY_PREDICTIONS:
layers.append(torch.nn.LogSoftmax(dim=1))
model = torch.nn.Sequential(*layers)
logging.info(f"Prediction network layers:\n{layers}")
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 1000
# TODO
# num_epochs = 10
for epoch in range(num_epochs):
y_pred = model(train_messages)
if element_to_predict in ACCURACY_PREDICTIONS:
current_train_target = train_target.argmax(dim=1)
else:
current_train_target = train_target
loss = loss_func(y_pred, current_train_target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch > 0 and epoch % 100 == 0:
logging.info(
f"Epoch {epoch + (1 if epoch == 0 else 0)}:\t{loss.item():.2e}"
)
with torch.no_grad():
test_predicted = model(test_messages)
if element_to_predict in ACCURACY_PREDICTIONS:
accuracy = metrics.accuracy_score(
test_target.argmax(dim=1).numpy(), test_predicted.argmax(dim=1).numpy()
)
result = accuracy
else:
result = loss_func(test_predicted, test_target).item()
logging.info(f"Prediction result for {element_to_predict}: {result}")
return result
def _evaluate_addition_compositionality(self):
message_losses = []
message_cluster_accuracies = []
prediction_output_losses = []
prediction_output_accuracies = []
for d1, d2 in itertools.permutations(range(self.object_size), 2):
(
function_selectors,
encoder_contexts,
decoder_contexts,
messages,
) = self._generate_funcs_contexts_messages(self.num_exemplars)
function_idxs = function_selectors.argmax(dim=1)
# print("function_idexs: ", function_idxs)
# print("size: ", len(function_idxs))
# what are those masks for? Hide information
# [min max min max .... ]
argmin_mask = function_idxs % 2 == 0 # 1 False 0 True 0 is the argmin and could cancel other values
argmax_mask = function_idxs % 2 == 1
# print("d1: ", d1) # 0
# print("d2: ", d2) # 1
d1_mask = function_idxs // 2 == d1 # 0, 1 first dim
d2_mask = function_idxs // 2 == d2 # 2, 3 second dim
# d1_mask = d2_mask
# print("d1 mask: ", d1_mask)
# print("d2 mask: ", d2_mask)
d1_argmin_messages = messages[d1_mask * argmin_mask]
d1_argmax_messages = messages[d1_mask * argmax_mask]
d2_argmin_messages = messages[d2_mask * argmin_mask]
target_messages_mask = d2_mask * argmax_mask
target_messages = messages[target_messages_mask]
target_function_idxs = function_idxs[target_messages_mask]
# print("d1_argmax_messages: ", d1_argmax_messages)
# print("d1_argmin_messages: ", d1_argmin_messages)
# print("d2_argmin_messages: ", d2_argmin_messages)
# setting:
# 100 contexts like below
# obj1 obj2
# shape(i) max min (either max or min, left setting is just assumption)
# color(j) min max (either max or min, left setting is just assumption)
# both agents see the whole context, and try identify the obj1 (2x1 vector) by the message
# message: [ ]
# message size is one
# expected output:
inferred_messages = (
d1_argmax_messages - d1_argmin_messages + d2_argmin_messages
) # "message embedding" for argmax i which is shape -> obj1
#
# # print("test_target_messages: ", test_target_messages.shape, test_target_messages)
# # print("inferred_messages: ", inferred_messages.shape, inferred_messages)
# # exit()
#
# print("test_target_messages: ", target_messages.shape, target_messages)
# print("inferred_messages: ", inferred_messages.shape, inferred_messages)
# # exit()
(
messages_loss,
message_cluster_accuracy,
prediction_loss,
prediction_accuracy,
) = self._evaluate_inferred_messages(
target_messages,
inferred_messages,
encoder_contexts[target_messages_mask],
decoder_contexts[target_messages_mask],
target_function_idxs,
)
logging.info(
f"Addition compositionality messages loss for d{d1} <-> d{d2}: {messages_loss}"
)
logging.info(
f"Addition compositionality message cluster accuracy for d{d1} <-> d{d2}: {message_cluster_accuracy}"
)
message_losses.append(messages_loss)
message_cluster_accuracies.append(message_cluster_accuracy)
# Test perception quality
predicted_output_by_inferred_messages = self._predict_by_message(
inferred_messages, decoder_contexts[target_messages_mask]
)
target_output = self._target(
decoder_contexts[target_messages_mask],
function_selectors[target_messages_mask],
)
if self.loss_type == "mse":
prediction_loss = torch.nn.MSELoss()(
predicted_output_by_inferred_messages, target_output
).item()
else:
prediction_loss = torch.nn.CrossEntropyLoss()(
predicted_output_by_inferred_messages, target_output
).item()
# prediction_loss = torch.nn.MSELoss()(
# predicted_output_by_inferred_messages, target_output
# ).item()
prediction_accuracy = self._evaluate_object_prediction_accuracy(
decoder_contexts[target_messages_mask],
predicted_output_by_inferred_messages,
target_output,
self.loss_type
)
logging.info(
f"Addition compositionality output loss for d{d1} <-> d{d2}: {prediction_loss}"
)
logging.info(
f"Addition compositionality output accuracy for d{d1} <-> d{d2}: {prediction_accuracy}"
)
prediction_output_losses.append(prediction_loss)
prediction_output_accuracies.append(prediction_accuracy)
messages_mean_loss = np.mean(message_losses)
message_clusters_mean_acc = np.mean(message_cluster_accuracies)
prediction_mean_loss = np.mean(prediction_output_losses)
prediction_mean_acc = np.mean(prediction_output_accuracies)
logging.info(
f"Addition compositionality mean messages loss: {messages_mean_loss}"
)
logging.info(
f"Addition compositionality mean message cluster accuracy: {message_clusters_mean_acc}"
)
logging.info(
f"Addition compositionality mean prediction loss: {prediction_mean_loss}"
)
logging.info(
f"Addition compositionality mean prediction accuracy: {prediction_mean_acc}"
)
return {
"addition_compositionality_mean_message_loss": messages_mean_loss,
"addition_compositionality_mean_message_cluster_accuracy": message_clusters_mean_acc,
"addition_compositionality_mean_prediction_loss": prediction_mean_loss,
"addition_compositionality_mean_prediction_accuracy": prediction_mean_acc,
}
def _evaluate_analogy_compositionality_network(self):
message_losses = []
message_cluster_accuracies = []
production_output_losses = []
production_output_accuracies = []
for p in range(self.object_size):
(
test_loss,
cluster_accuracy,
prediction_loss,
prediction_accuracy,
) = self._run_analogy_compositionality_network(taken_out_param=p)
message_losses.append(test_loss)
message_cluster_accuracies.append(cluster_accuracy)
production_output_losses.append(prediction_loss)
production_output_accuracies.append(prediction_accuracy)
mean_message_loss = np.mean(message_losses)
mean_message_acc = np.mean(message_cluster_accuracies)
mean_prediction_loss = np.mean(production_output_losses)
mean_prediction_acc = np.mean(production_output_accuracies)
logging.info(f"Mean analogy network message loss: {mean_message_loss}")
logging.info(f"Mean analogy network message accuracy: {mean_message_acc}")
logging.info(f"Mean analogy network prediction loss: {mean_prediction_loss}")
logging.info(f"Mean analogy network prediction accuracy: {mean_prediction_acc}")
return {
f"analogy_compositionality_net_message_mean_loss": mean_message_loss,
f"analogy_compositionality_net_message_cluster_mean_accuracy": mean_message_acc,
f"analogy_compositionality_net_prediction_mean_loss": mean_prediction_loss,
f"analogy_compositionality_net_prediction_mean_accuracy": mean_prediction_acc,
}
def _run_analogy_compositionality_network(
self, taken_out_param: int, visualize: bool = False
):
train_input_messages = []
train_target_messages = []
test_input_messages = []
test_target_messages = []
test_function_idxs = []
test_encoder_contexts = []
test_decoder_contexts = []
for d1, d2 in itertools.permutations(range(self.object_size), 2):
(
function_selectors,
encoder_contexts,
decoder_contexts,
messages,
) = self._generate_funcs_contexts_messages(self.num_exemplars)
function_idxs = function_selectors.argmax(dim=1)
argmin_mask = function_idxs % 2 == 0
argmax_mask = function_idxs % 2 == 1
d1_mask = function_idxs // 2 == d1
d2_mask = function_idxs // 2 == d2
d1_argmin_messages = messages[d1_mask * argmin_mask]
d1_argmax_messages = messages[d1_mask * argmax_mask]
d2_argmin_messages = messages[d2_mask * argmin_mask]
target_messages_mask = d2_mask * argmax_mask
d2_argmax_messages = messages[target_messages_mask]
# Train to predict [argmax_d2] from [d1_argmin_messages, d1_argmax_messages, d2_argmin_messages].
if taken_out_param == d2:
inputs = test_input_messages
targets = test_target_messages
test_function_idxs.append(function_idxs[target_messages_mask])
test_encoder_contexts.append(encoder_contexts[target_messages_mask])
test_decoder_contexts.append(decoder_contexts[target_messages_mask])
else:
inputs = train_input_messages
targets = train_target_messages
inputs.append(
torch.cat(
[d1_argmin_messages, d1_argmax_messages, d2_argmin_messages], dim=1
)
)
targets.append(d2_argmax_messages)
train_input_messages = torch.cat(train_input_messages)
train_target_messages = torch.cat(train_target_messages)
test_input_messages = torch.cat(test_input_messages)
test_target_messages = torch.cat(test_target_messages)
test_encoder_contexts = torch.cat(test_encoder_contexts)
test_decoder_contexts = torch.cat(test_decoder_contexts)
test_function_idxs = torch.cat(test_function_idxs)
hidden_size = 64
num_epochs = 1000
# TODO
# num_epochs = 10
mini_batch_size = 64
layers = [
torch.nn.Linear(self.message_size * 3, hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(hidden_size, hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(hidden_size, self.message_size),
]
model = torch.nn.Sequential(*layers)
loss_func = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for inputs_batch, targets_batch in zip(
train_input_messages.split(mini_batch_size),
train_target_messages.split(mini_batch_size),
):
pred = model(inputs_batch)
optimizer.zero_grad()
loss = loss_func(pred, targets_batch)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
logging.info(f"Epoch {epoch}:\t{loss.item():.2e}")
with torch.no_grad():
inferred_messages = model(test_input_messages)
# Visualize network predictions vs targets
if visualize:
num_test_messages = inferred_messages.shape[0]
mask1 = np.array([True] * num_test_messages + [False] * num_test_messages)
mask2 = mask1 ^ True
utils.plot_raw(
data=torch.cat([test_target_messages, inferred_messages], dim=0),
masks=[mask1, mask2],
labels=["Target messages", "Inferred messages"],
title="Analogy network predictions vs. targets",
)
(
messages_loss,
message_cluster_accuracy,
prediction_loss,
prediction_accuracy,
) = self._evaluate_inferred_messages(
test_target_messages,
inferred_messages,
test_encoder_contexts,
test_decoder_contexts,
test_function_idxs,
)
logging.info(
f"Analogy compositionality messages loss for taken-out param {taken_out_param}: {messages_loss}"
)
logging.info(
f"Analogy compositionality network accuracy for taken-out param {taken_out_param}: {message_cluster_accuracy}"
)
logging.info(
f"Analogy compositionality output loss for taken-out {taken_out_param}: {prediction_loss}"
)
logging.info(
f"Analogy compositionality output accuracy for taken-out {taken_out_param}: {prediction_accuracy}"
)
return (
messages_loss,
message_cluster_accuracy,
prediction_loss,
prediction_accuracy,
)
def _evaluate_inferred_messages(
self,
target_messages: torch.Tensor,
inferred_messages: torch.Tensor,
encoder_contexts: torch.Tensor,
decoder_contexts: torch.Tensor,
target_function_idxs: torch.Tensor,
):
# Evaluate production
loss_func = torch.nn.MSELoss()
messages_loss = loss_func(inferred_messages, target_messages).item()