forked from snesrev/zelda3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzelda_rtl.c
869 lines (763 loc) · 27.7 KB
/
zelda_rtl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
#include "zelda_rtl.h"
#include "variables.h"
#include "misc.h"
#include "nmi.h"
#include "poly.h"
#include "attract.h"
#include "snes/ppu.h"
#include "snes/snes_regs.h"
#include "snes/dma.h"
#include "spc_player.h"
#include "util.h"
#include "audio.h"
ZeldaEnv g_zenv;
uint8 g_ram[131072];
uint32 g_wanted_zelda_features;
static void Startup_InitializeMemory();
typedef struct SimpleHdma {
const uint8 *table;
const uint8 *indir_ptr;
uint8 rep_count;
uint8 mode;
uint8 ppu_addr;
uint8 indir_bank;
} SimpleHdma;
static void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc);
static void SimpleHdma_DoLine(SimpleHdma *c);
static const uint8 bAdrOffsets[8][4] = {
{0, 0, 0, 0},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1},
{0, 1, 2, 3},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1}
};
static const uint8 transferLength[8] = {
1, 2, 2, 4, 4, 4, 2, 4
};
const uint16 kUpperBitmasks[] = { 0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100, 0x80, 0x40, 0x20, 0x10, 8, 4, 2, 1 };
const uint8 kLitTorchesColorPlus[] = {31, 8, 4, 0};
const uint8 kDungeonCrystalPendantBit[13] = {0, 0, 4, 2, 0, 16, 2, 1, 64, 4, 1, 32, 8};
const int8 kGetBestActionToPerformOnTile_x[4] = { 7, 7, -3, 16 };
const int8 kGetBestActionToPerformOnTile_y[4] = { 6, 24, 12, 12 };
#define AT_WORD(x) (uint8)(x), (x)>>8
// direct
static const uint8 kAttractDmaTable0[13] = {0x20, AT_WORD(0x00ff), 0x50, AT_WORD(0xe018), 0x50, AT_WORD(0xe018), 1, AT_WORD(0x00ff), 0};
static const uint8 kAttractDmaTable1[10] = {0x48, AT_WORD(0x00ff), 0x30, AT_WORD(0xd830), 1, AT_WORD(0x00ff), 0};
static const uint8 kHdmaTableForEnding[19] = {
0x52, AT_WORD(0x600), 8, AT_WORD(0xe2), 8, AT_WORD(0x602), 5, AT_WORD(0x604), 0x10, AT_WORD(0x606), 0x81, AT_WORD(0xe2), 0,
};
static const uint8 kSpotlightIndirectHdma[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
static const uint8 kMapModeHdma0[7] = {0xf0, AT_WORD(0xdd27), 0xf0, AT_WORD(0xde07), 0};
static const uint8 kMapModeHdma1[7] = {0xf0, AT_WORD(0xdee7), 0xf0, AT_WORD(0xdfc7), 0};
static const uint8 kAttractIndirectHdmaTab[7] = {0xf0, AT_WORD(0x1b00), 0xf0, AT_WORD(0x1be0), 0};
static const uint8 kHdmaTableForPrayingScene[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
void zelda_ppu_write(uint32_t adr, uint8_t val) {
assert(adr >= INIDISP && adr <= STAT78);
ppu_write(g_zenv.ppu, (uint8)adr, val);
}
void zelda_ppu_write_word(uint32_t adr, uint16_t val) {
zelda_ppu_write(adr, val);
zelda_ppu_write(adr + 1, val >> 8);
}
static const uint8 *SimpleHdma_GetPtr(uint32 p) {
switch (p) {
case 0xCFA87: return kAttractDmaTable0;
case 0xCFA94: return kAttractDmaTable1;
case 0xebd53: return kHdmaTableForEnding;
case 0x0F2FB: return kSpotlightIndirectHdma;
case 0xabdcf: return kMapModeHdma0; // mode7
case 0xabdd6: return kMapModeHdma1; // mode7
case 0xABDDD: return kAttractIndirectHdmaTab; // mode7
case 0x2c80c: return kHdmaTableForPrayingScene;
case 0x1b00: return (uint8 *)hdma_table_dynamic;
case 0x1be0: return (uint8 *)hdma_table_dynamic + 0xe0;
case 0x1bf0: return (uint8 *)hdma_table_dynamic + 0xf0;
case 0xadd27: return (uint8*)kMapMode_Zooms1;
case 0xade07: return (uint8*)kMapMode_Zooms1 + 0xe0;
case 0xadee7: return (uint8*)kMapMode_Zooms2;
case 0xadfc7: return (uint8*)kMapMode_Zooms2 + 0xe0;
case 0x600: return &g_ram[0x600];
case 0x602: return &g_ram[0x602];
case 0x604: return &g_ram[0x604];
case 0x606: return &g_ram[0x606];
case 0xe2: return &g_ram[0xe2];
default:
assert(0);
return NULL;
}
}
static void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc) {
if (!dc->hdmaActive) {
c->table = 0;
return;
}
c->table = SimpleHdma_GetPtr(dc->aAdr | dc->aBank << 16);
c->rep_count = 0;
c->mode = dc->mode | dc->indirect << 6;
c->ppu_addr = dc->bAdr;
c->indir_bank = dc->indBank;
}
static void SimpleHdma_DoLine(SimpleHdma *c) {
if (c->table == NULL)
return;
bool do_transfer = false;
if ((c->rep_count & 0x7f) == 0) {
c->rep_count = *c->table++;
if (c->rep_count == 0) {
c->table = NULL;
return;
}
if(c->mode & 0x40) {
c->indir_ptr = SimpleHdma_GetPtr(c->indir_bank << 16 | c->table[0] | c->table[1] * 256);
c->table += 2;
}
do_transfer = true;
}
if(do_transfer || c->rep_count & 0x80) {
for(int j = 0, j_end = transferLength[c->mode & 7]; j < j_end; j++) {
uint8 v = c->mode & 0x40 ? *c->indir_ptr++ : *c->table++;
zelda_ppu_write(0x2100 + c->ppu_addr + bAdrOffsets[c->mode & 7][j], v);
}
}
c->rep_count--;
}
static void ConfigurePpuSideSpace() {
// Let PPU impl know about the maximum allowed extra space on the sides and bottom
int extra_right = 0, extra_left = 0, extra_bottom = 0;
// printf("main %d, sub %d (%d, %d, %d)\n", main_module_index, submodule_index, BG2HOFS_copy2, room_bounds_x.v[2 | (quadrant_fullsize_x >> 1)], quadrant_fullsize_x >> 1);
int mod = main_module_index;
if (mod == 14)
mod = saved_module_for_menu;
if (mod == 9) {
if (main_module_index == 14 && submodule_index == 7 && overworld_map_state >= 4) {
// World map
extra_left = kPpuExtraLeftRight, extra_right = kPpuExtraLeftRight;
extra_bottom = 16;
} else {
// outdoors
extra_left = BG2HOFS_copy2 - ow_scroll_vars0.xstart;
extra_right = ow_scroll_vars0.xend - BG2HOFS_copy2;
extra_bottom = ow_scroll_vars0.yend - BG2VOFS_copy2;
}
} else if (mod == 7) {
// indoors, except when the light cone is in use
if (!(hdr_dungeon_dark_with_lantern && TS_copy != 0)) {
int qm = quadrant_fullsize_x >> 1;
extra_left = IntMax(BG2HOFS_copy2 - room_bounds_x.v[qm], 0);
extra_right = IntMax(room_bounds_x.v[qm + 2] - BG2HOFS_copy2, 0);
}
int qy = quadrant_fullsize_y >> 1;
extra_bottom = IntMax(room_bounds_y.v[qy + 2] - BG2VOFS_copy2, 0);
} else if (mod == 20 || mod == 0 || mod == 1) {
extra_left = kPpuExtraLeftRight, extra_right = kPpuExtraLeftRight;
extra_bottom = 16;
}
PpuSetExtraSideSpace(g_zenv.ppu, extra_left, extra_right, extra_bottom);
}
void ZeldaDrawPpuFrame(uint8 *pixel_buffer, size_t pitch, uint32 render_flags) {
SimpleHdma hdma_chans[2];
PpuBeginDrawing(g_zenv.ppu, pixel_buffer, pitch, render_flags);
dma_startDma(g_zenv.dma, HDMAEN_copy, true);
SimpleHdma_Init(&hdma_chans[0], &g_zenv.dma->channel[6]);
SimpleHdma_Init(&hdma_chans[1], &g_zenv.dma->channel[7]);
// Cheat: Let the PPU impl know about the hdma perspective correction so it can avoid guessing.
if ((render_flags & kPpuRenderFlags_4x4Mode7) && g_zenv.ppu->mode == 7) {
if (hdma_chans[0].table == kMapModeHdma0)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms1[0], kMapMode_Zooms1[223]);
else if (hdma_chans[0].table == kMapModeHdma1)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms2[0], kMapMode_Zooms2[223]);
else if (hdma_chans[0].table == kAttractIndirectHdmaTab)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, hdma_table_dynamic[0], hdma_table_dynamic[223]);
else
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, 0, 0);
}
if (g_zenv.ppu->extraLeftRight != 0 || render_flags & kPpuRenderFlags_Height240)
ConfigurePpuSideSpace();
int height = render_flags & kPpuRenderFlags_Height240 ? 240 : 224;
for (int i = 0; i <= height; i++) {
if (i == 128 && irq_flag) {
zelda_ppu_write(BG3HOFS, selectfile_var8);
zelda_ppu_write(BG3HOFS, selectfile_var8 >> 8);
zelda_ppu_write(BG3VOFS, 0);
zelda_ppu_write(BG3VOFS, 0);
if (irq_flag & 0x80) {
irq_flag = 0;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
}
ppu_runLine(g_zenv.ppu, i);
SimpleHdma_DoLine(&hdma_chans[0]);
SimpleHdma_DoLine(&hdma_chans[1]);
}
}
void HdmaSetup(uint32 addr6, uint32 addr7, uint8 transfer_unit, uint8 reg6, uint8 reg7, uint8 indirect_bank) {
Dma *dma = g_zenv.dma;
if (addr6) {
dma_write(dma, DMAP6, transfer_unit);
dma_write(dma, BBAD6, reg6);
dma_write(dma, A1T6L, addr6);
dma_write(dma, A1T6H, addr6 >> 8);
dma_write(dma, A1B6, addr6 >> 16);
dma_write(dma, DAS60, indirect_bank);
}
dma_write(dma, DMAP7, transfer_unit);
dma_write(dma, BBAD7, reg7);
dma_write(dma, A1T7L, addr7);
dma_write(dma, A1T7H, addr7 >> 8);
dma_write(dma, A1B7, addr7 >> 16);
dma_write(dma, DAS70, indirect_bank);
}
static void ZeldaInitializationCode() {
zelda_snes_dummy_write(NMITIMEN, 0);
zelda_snes_dummy_write(HDMAEN, 0);
zelda_snes_dummy_write(MDMAEN, 0);
Sound_LoadIntroSongBank();
Startup_InitializeMemory();
animated_tile_data_src = 0xa680;
dma_source_addr_9 = 0xb280;
dma_source_addr_14 = 0xb280 + 0x60;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
static void ClearOamBuffer() { // 80841e
for (int i = 0; i < 128; i++)
oam_buf[i].y = 0xf0;
}
static void ZeldaRunGameLoop() {
frame_counter++;
ClearOamBuffer();
Module_MainRouting();
NMI_PrepareSprites();
nmi_boolean = 0;
}
void ZeldaInitialize() {
g_zenv.dma = dma_init(NULL);
g_zenv.ppu = ppu_init(NULL);
g_zenv.ram = g_ram;
g_zenv.sram = (uint8*)calloc(8192, 1);
g_zenv.vram = g_zenv.ppu->vram;
g_zenv.player = SpcPlayer_Create();
SpcPlayer_Initialize(g_zenv.player);
dma_reset(g_zenv.dma);
ppu_reset(g_zenv.ppu);
}
static void ZeldaRunPolyLoop() {
if (intro_did_run_step && !nmi_flag_update_polyhedral) {
Poly_RunFrame();
intro_did_run_step = 0;
nmi_flag_update_polyhedral = 0xff;
}
}
void ZeldaRunFrameInternal(uint16 input, int run_what) {
if (animated_tile_data_src == 0)
ZeldaInitializationCode();
if (run_what & 2)
ZeldaRunPolyLoop();
if (run_what & 1)
ZeldaRunGameLoop();
Interrupt_NMI(input);
}
static int IncrementCrystalCountdown(uint8 *a, int v) {
int t = *a + v;
*a = t;
return t >> 8;
}
int frame_ctr_dbg;
static uint8 *g_emu_memory_ptr;
static ZeldaRunFrameFunc *g_emu_runframe;
static ZeldaSyncAllFunc *g_emu_syncall;
void ZeldaSetupEmuCallbacks(uint8 *emu_ram, ZeldaRunFrameFunc *func, ZeldaSyncAllFunc *sync_all) {
g_emu_memory_ptr = emu_ram;
g_emu_runframe = func;
g_emu_syncall = sync_all;
}
static void EmuSynchronizeWholeState() {
if (g_emu_syncall)
g_emu_syncall();
}
// |ptr| must be a pointer into g_ram, will synchronize the RAM memory with the
// emulator.
static void EmuSyncMemoryRegion(void *ptr, size_t n) {
uint8 *data = (uint8 *)ptr;
assert(data >= g_ram && data < g_ram + 0x20000);
if (g_emu_memory_ptr)
memcpy(g_emu_memory_ptr + (data - g_ram), data, n);
}
static void Startup_InitializeMemory() { // 8087c0
memset(g_ram + 0x0, 0, 0x2000);
main_palette_buffer[0] = 0;
srm_var1 = 0;
uint8 *sram = g_zenv.sram;
if (WORD(sram[0x3e5]) != 0x55aa)
WORD(sram[0x3e5]) = 0;
if (WORD(sram[0x8e5]) != 0x55aa)
WORD(sram[0x8e5]) = 0;
if (WORD(sram[0xde5]) != 0x55aa)
WORD(sram[0xde5]) = 0;
INIDISP_copy = 0x80;
flag_update_cgram_in_nmi++;
}
void ByteArray_AppendVl(ByteArray *arr, uint32 v) {
for (; v >= 255; v -= 255)
ByteArray_AppendByte(arr, 255);
ByteArray_AppendByte(arr, v);
}
void saveFunc(void *ctx_in, void *data, size_t data_size) {
ByteArray_AppendData((ByteArray *)ctx_in, data, data_size);
}
typedef struct LoadFuncState {
uint8 *p, *pend;
} LoadFuncState;
void loadFunc(void *ctx, void *data, size_t data_size) {
LoadFuncState *st = (LoadFuncState *)ctx;
assert(st->pend - st->p >= data_size);
memcpy(data, st->p, data_size);
st->p += data_size;
}
static void InternalSaveLoad(SaveLoadFunc *func, void *ctx) {
uint8 junk[58] = { 0 };
func(ctx, junk, 27);
func(ctx, g_zenv.player->ram, 0x10000); // apu ram
func(ctx, junk, 40); // junk
dsp_saveload(g_zenv.player->dsp, func, ctx); // 3024 bytes of dsp
func(ctx, junk, 15); // spc junk
dma_saveload(g_zenv.dma, func, ctx); // 192 bytes of dma state
ppu_saveload(g_zenv.ppu, func, ctx); // 66619 + 512 + 174
func(ctx, g_zenv.sram, 0x2000); // 8192 bytes of sram
func(ctx, junk, 58); // snes junk
func(ctx, g_zenv.ram, 0x20000); // 0x20000 bytes of ram
func(ctx, junk, 4); // snes junk
}
void ZeldaReset(bool preserve_sram) {
frame_ctr_dbg = 0;
dma_reset(g_zenv.dma);
ppu_reset(g_zenv.ppu);
memset(g_zenv.ram, 0, 0x20000);
if (!preserve_sram)
memset(g_zenv.sram, 0, 0x2000);
ZeldaApuLock();
ZeldaRestoreMusicAfterLoad_Locked(true);
ZeldaApuUnlock();
EmuSynchronizeWholeState();
}
static void LoadSnesState(SaveLoadFunc *func, void *ctx) {
// Do the actual loading
ZeldaApuLock();
InternalSaveLoad(func, ctx);
memcpy(g_zenv.ram + 0x1DBA0, g_zenv.ram + 0x1b00, 224 * 2); // hdma table was moved
ZeldaRestoreMusicAfterLoad_Locked(false);
ZeldaApuUnlock();
EmuSynchronizeWholeState();
}
static void SaveSnesState(SaveLoadFunc *func, void *ctx) {
memcpy(g_zenv.ram + 0x1b00, g_zenv.ram + 0x1DBA0, 224 * 2); // hdma table was moved
ZeldaApuLock();
ZeldaSaveMusicStateToRam_Locked();
InternalSaveLoad(func, ctx);
ZeldaApuUnlock();
}
typedef struct StateRecorder {
uint16 last_inputs;
uint32 frames_since_last;
uint32 total_frames;
// For replay
uint32 replay_pos, replay_pos_last_complete;
uint32 replay_frame_counter;
uint32 replay_next_cmd_at;
uint8 replay_cmd;
bool replay_mode;
ByteArray log;
ByteArray base_snapshot;
} StateRecorder;
static StateRecorder state_recorder;
void StateRecorder_Init(StateRecorder *sr) {
memset(sr, 0, sizeof(*sr));
}
void StateRecorder_RecordCmd(StateRecorder *sr, uint8 cmd) {
int frames = sr->frames_since_last;
sr->frames_since_last = 0;
int x = (cmd < 0xc0) ? 0xf : 0x1;
ByteArray_AppendByte(&sr->log, cmd | (frames < x ? frames : x));
if (frames >= x)
ByteArray_AppendVl(&sr->log, frames - x);
}
void StateRecorder_Record(StateRecorder *sr, uint16 inputs) {
uint16 diff = inputs ^ sr->last_inputs;
if (diff != 0) {
sr->last_inputs = inputs;
// printf("0x%.4x %d: ", diff, sr->frames_since_last);
// size_t lb = sr->log.size;
for (int i = 0; i < 12; i++) {
if ((diff >> i) & 1)
StateRecorder_RecordCmd(sr, i << 4);
}
// while (lb < sr->log.size)
// printf("%.2x ", sr->log.data[lb++]);
// printf("\n");
}
sr->frames_since_last++;
sr->total_frames++;
}
void StateRecorder_RecordPatchByte(StateRecorder *sr, uint32 addr, const uint8 *value, int num) {
assert(addr < 0x20000);
// printf("%d: PatchByte(0x%x, 0x%x. %d): ", sr->frames_since_last, addr, *value, num);
// size_t lb = sr->log.size;
int lq = (num - 1) <= 3 ? (num - 1) : 3;
StateRecorder_RecordCmd(sr, 0xc0 | (addr & 0x10000 ? 2 : 0) | lq << 2);
if (lq == 3)
ByteArray_AppendVl(&sr->log, num - 1 - 3);
ByteArray_AppendByte(&sr->log, addr >> 8);
ByteArray_AppendByte(&sr->log, addr);
for (int i = 0; i < num; i++)
ByteArray_AppendByte(&sr->log, value[i]);
// while (lb < sr->log.size)
// printf("%.2x ", sr->log.data[lb++]);
// printf("\n");
}
void ReadFromFile(FILE *f, void *data, size_t n) {
if (fread(data, 1, n, f) != n)
Die("fread failed\n");
}
void StateRecorder_Load(StateRecorder *sr, FILE *f, bool replay_mode) {
// todo: fix robustness on invalid data.
uint32 hdr[8] = { 0 };
ReadFromFile(f, hdr, sizeof(hdr));
assert(hdr[0] == 1);
sr->total_frames = hdr[1];
ByteArray_Resize(&sr->log, hdr[2]);
ReadFromFile(f, sr->log.data, sr->log.size);
sr->last_inputs = hdr[3];
sr->frames_since_last = hdr[4];
ByteArray_Resize(&sr->base_snapshot, (hdr[5] & 1) ? hdr[6] : 0);
ReadFromFile(f, sr->base_snapshot.data, sr->base_snapshot.size);
sr->replay_next_cmd_at = 0;
sr->replay_mode = replay_mode;
if (replay_mode) {
sr->frames_since_last = 0;
sr->last_inputs = 0;
sr->replay_pos = sr->replay_pos_last_complete = 0;
sr->replay_frame_counter = 0;
// Load snapshot from |base_snapshot_|, or reset if empty.
if (sr->base_snapshot.size) {
LoadFuncState state = { sr->base_snapshot.data, sr->base_snapshot.data + sr->base_snapshot.size };
LoadSnesState(&loadFunc, &state);
assert(state.p == state.pend);
} else {
ZeldaReset(false);
}
} else {
// Resume replay from the saved position?
sr->replay_pos = sr->replay_pos_last_complete = hdr[5] >> 1;
sr->replay_frame_counter = hdr[7];
sr->replay_mode = (sr->replay_frame_counter != 0);
ByteArray arr = { 0 };
ByteArray_Resize(&arr, hdr[6]);
ReadFromFile(f, arr.data, arr.size);
LoadFuncState state = { arr.data, arr.data + arr.size };
LoadSnesState(&loadFunc, &state);
ByteArray_Destroy(&arr);
assert(state.p == state.pend);
}
}
void StateRecorder_Save(StateRecorder *sr, FILE *f) {
uint32 hdr[8] = { 0 };
ByteArray arr = { 0 };
SaveSnesState(&saveFunc, &arr);
assert(sr->base_snapshot.size == 0 || sr->base_snapshot.size == arr.size);
hdr[0] = 1;
hdr[1] = sr->total_frames;
hdr[2] = (uint32)sr->log.size;
hdr[3] = sr->last_inputs;
hdr[4] = sr->frames_since_last;
hdr[5] = sr->base_snapshot.size ? 1 : 0;
hdr[6] = (uint32)arr.size;
// If saving while in replay mode, also need to persist
// sr->replay_pos_last_complete and sr->replay_frame_counter
// so the replaying can be resumed.
if (sr->replay_mode) {
hdr[5] |= sr->replay_pos_last_complete << 1;
hdr[7] = sr->replay_frame_counter;
}
fwrite(hdr, 1, sizeof(hdr), f);
fwrite(sr->log.data, 1, hdr[2], f);
fwrite(sr->base_snapshot.data, 1, sr->base_snapshot.size, f);
fwrite(arr.data, 1, arr.size, f);
ByteArray_Destroy(&arr);
}
void StateRecorder_ClearKeyLog(StateRecorder *sr) {
printf("Clearing key log!\n");
sr->base_snapshot.size = 0;
SaveSnesState(&saveFunc, &sr->base_snapshot);
ByteArray old_log = sr->log;
int old_frames_since_last = sr->frames_since_last;
memset(&sr->log, 0, sizeof(sr->log));
// If there are currently any active inputs, record them initially at timestamp 0.
sr->frames_since_last = 0;
if (sr->last_inputs) {
for (int i = 0; i < 12; i++) {
if ((sr->last_inputs >> i) & 1)
StateRecorder_RecordCmd(sr, i << 4);
}
}
if (sr->replay_mode) {
// When clearing the key log while in replay mode, we want to keep
// replaying but discarding all key history up until this point.
if (sr->replay_next_cmd_at != 0xffffffff) {
sr->replay_next_cmd_at -= old_frames_since_last;
sr->frames_since_last = sr->replay_next_cmd_at;
sr->replay_pos_last_complete = (uint32)sr->log.size;
StateRecorder_RecordCmd(sr, sr->replay_cmd);
int old_replay_pos = sr->replay_pos;
sr->replay_pos = (uint32)sr->log.size;
ByteArray_AppendData(&sr->log, old_log.data + old_replay_pos, old_log.size - old_replay_pos);
}
sr->total_frames -= sr->replay_frame_counter;
sr->replay_frame_counter = 0;
} else {
sr->total_frames = 0;
}
ByteArray_Destroy(&old_log);
sr->frames_since_last = 0;
}
uint16 StateRecorder_ReadNextReplayState(StateRecorder *sr) {
assert(sr->replay_mode);
while (sr->frames_since_last >= sr->replay_next_cmd_at) {
int replay_pos = sr->replay_pos;
if (replay_pos != sr->replay_pos_last_complete) {
// Apply next command
sr->frames_since_last = 0;
if (sr->replay_cmd < 0xc0) {
sr->last_inputs ^= 1 << (sr->replay_cmd >> 4);
} else if (sr->replay_cmd < 0xd0) {
int nb = 1 + ((sr->replay_cmd >> 2) & 3);
uint8 t;
if (nb == 4) do {
nb += t = sr->log.data[replay_pos++];
} while (t == 255);
uint32 addr = ((sr->replay_cmd >> 1) & 1) << 16;
addr |= sr->log.data[replay_pos++] << 8;
addr |= sr->log.data[replay_pos++];
do {
g_ram[addr & 0x1ffff] = sr->log.data[replay_pos++];
EmuSyncMemoryRegion(&g_ram[addr & 0x1ffff], 1);
} while (addr++, --nb);
} else {
assert(0);
}
}
sr->replay_pos_last_complete = replay_pos;
if (replay_pos >= sr->log.size) {
sr->replay_pos = replay_pos;
sr->replay_next_cmd_at = 0xffffffff;
break;
}
// Read the next one
uint8 cmd = sr->log.data[replay_pos++], t;
int mask = (cmd < 0xc0) ? 0xf : 0x1;
int frames = cmd & mask;
if (frames == mask) do {
frames += t = sr->log.data[replay_pos++];
} while (t == 255);
sr->replay_next_cmd_at = frames;
sr->replay_cmd = cmd;
sr->replay_pos = replay_pos;
}
sr->frames_since_last++;
// Turn off replay mode after we reached the final frame position
if (++sr->replay_frame_counter >= sr->total_frames) {
sr->replay_mode = false;
}
return sr->last_inputs;
}
void StateRecorder_StopReplay(StateRecorder *sr) {
if (!sr->replay_mode)
return;
sr->replay_mode = false;
sr->total_frames = sr->replay_frame_counter;
sr->log.size = sr->replay_pos_last_complete;
}
#ifdef _DEBUG
// This can be used to read inputs from a text file for easier debugging
int InputStateReadFromFile() {
static FILE *f;
static uint32 next_ts, next_keys, cur_keys;
char buf[64];
char keys[64];
while (state_recorder.total_frames == next_ts) {
cur_keys = next_keys;
if (!f)
f = fopen("boss_bug.txt", "r");
if (fgets(buf, sizeof(buf), f)) {
if (sscanf(buf, "%d: %s", &next_ts, keys) == 1) keys[0] = 0;
int i = 0;
for (const char *s = keys; *s; s++) {
static const char kKeys[] = "AXsSUDLRBY";
const char *t = strchr(kKeys, *s);
assert(t);
i |= 1 << (t - kKeys);
}
next_keys = i;
} else {
next_ts = 0xffffffff;
}
}
return cur_keys;
}
#endif
bool ZeldaRunFrame(int inputs) {
// Avoid up/down and left/right from being pressed at the same time
if ((inputs & 0x30) == 0x30) inputs ^= 0x30;
if ((inputs & 0xc0) == 0xc0) inputs ^= 0xc0;
frame_ctr_dbg++;
bool is_replay = state_recorder.replay_mode;
// Either copy state or apply state
if (is_replay) {
inputs = StateRecorder_ReadNextReplayState(&state_recorder);
} else {
// input_state = InputStateReadFromFile();
StateRecorder_Record(&state_recorder, inputs);
// This is whether APUI00 is true or false, this is used by the ancilla code.
uint8 apui00 = ZeldaIsMusicPlaying();
if (apui00 != g_ram[kRam_APUI00]) {
g_ram[kRam_APUI00] = apui00;
EmuSyncMemoryRegion(&g_ram[kRam_APUI00], 1);
StateRecorder_RecordPatchByte(&state_recorder, 0x648, &apui00, 1);
}
if (animated_tile_data_src != 0) {
// Whenever we're no longer replaying, we'll remember what bugs were fixed,
// but only if game is initialized.
if (g_ram[kRam_BugsFixed] < kBugFix_Latest) {
g_ram[kRam_BugsFixed] = kBugFix_Latest;
EmuSyncMemoryRegion(&g_ram[kRam_BugsFixed], 1);
StateRecorder_RecordPatchByte(&state_recorder, kRam_BugsFixed, &g_ram[kRam_BugsFixed], 1);
}
if (enhanced_features0 != g_wanted_zelda_features) {
enhanced_features0 = g_wanted_zelda_features;
EmuSyncMemoryRegion(&enhanced_features0, sizeof(enhanced_features0));
StateRecorder_RecordPatchByte(&state_recorder, kRam_Features0, (uint8 *)&enhanced_features0, 4);
}
}
}
int run_what;
if (g_ram[kRam_BugsFixed] < kBugFix_PolyRenderer) {
// A previous version of this code alternated the game loop with
// the poly renderer.
run_what = (is_nmi_thread_active && thread_other_stack != 0x1f31) ? 2 : 1;
} else {
// The snes seems to let poly rendering run for a little
// while each fram until it eventually completes a frame.
// Simulate this by rendering the poly every n:th frame.
run_what = (is_nmi_thread_active && IncrementCrystalCountdown(&g_ram[kRam_CrystalRotateCounter], virq_trigger)) ? 3 : 1;
EmuSyncMemoryRegion(&g_ram[kRam_CrystalRotateCounter], 1);
}
if (g_emu_runframe == NULL || enhanced_features0 != 0) {
// can't compare against real impl when running with extra features.
ZeldaRunFrameInternal(inputs, run_what);
} else {
g_emu_runframe(inputs, run_what);
}
ZeldaPushApuState();
return is_replay;
}
static const char *const kReferenceSaves[] = {
"Chapter 1 - Zelda's Rescue.sav",
"Chapter 2 - After Eastern Palace.sav",
"Chapter 3 - After Desert Palace.sav",
"Chapter 4 - After Tower of Hera.sav",
"Chapter 5 - After Hyrule Castle Tower.sav",
"Chapter 6 - After Dark Palace.sav",
"Chapter 7 - After Swamp Palace.sav",
"Chapter 8 - After Skull Woods.sav",
"Chapter 9 - After Gargoyle's Domain.sav",
"Chapter 10 - After Ice Palace.sav",
"Chapter 11 - After Misery Mire.sav",
"Chapter 12 - After Turtle Rock.sav",
"Chapter 13 - After Ganon's Tower.sav",
};
void SaveLoadSlot(int cmd, int which) {
char name[128];
if (which & 256) {
if (cmd == kSaveLoad_Save)
return;
sprintf(name, "saves/ref/%s", kReferenceSaves[which - 256]);
} else {
sprintf(name, "saves/save%d.sav", which);
}
FILE *f = fopen(name, cmd != kSaveLoad_Save ? "rb" : "wb");
if (f) {
printf("*** %s slot %d\n",
cmd == kSaveLoad_Save ? "Saving" : cmd == kSaveLoad_Load ? "Loading" : "Replaying", which);
if (cmd != kSaveLoad_Save)
StateRecorder_Load(&state_recorder, f, cmd == kSaveLoad_Replay);
else
StateRecorder_Save(&state_recorder, f);
fclose(f);
}
}
typedef struct StateRecoderMultiPatch {
uint32 count;
uint32 addr;
uint8 vals[256];
} StateRecoderMultiPatch;
void StateRecoderMultiPatch_Init(StateRecoderMultiPatch *mp) {
mp->count = mp->addr = 0;
}
void StateRecoderMultiPatch_Commit(StateRecoderMultiPatch *mp) {
if (mp->count)
StateRecorder_RecordPatchByte(&state_recorder, mp->addr, mp->vals, mp->count);
}
void StateRecoderMultiPatch_Patch(StateRecoderMultiPatch *mp, uint32 addr, uint8 value) {
if (mp->count >= 256 || addr != mp->addr + mp->count) {
StateRecoderMultiPatch_Commit(mp);
mp->addr = addr;
mp->count = 0;
}
mp->vals[mp->count++] = value;
g_ram[addr] = value;
EmuSyncMemoryRegion(&g_ram[addr], 1);
}
void PatchCommand(char c) {
StateRecoderMultiPatch mp;
StateRecoderMultiPatch_Init(&mp);
if (c == 'w') {
StateRecoderMultiPatch_Patch(&mp, 0xf372, 80); // health filler
StateRecoderMultiPatch_Patch(&mp, 0xf373, 80); // magic filler
// b.Patch(0x1FE01, 25);
} else if (c == 'W') {
StateRecoderMultiPatch_Patch(&mp, 0xf375, 10); // link_bomb_filler
StateRecoderMultiPatch_Patch(&mp, 0xf376, 10); // link_arrow_filler
uint16 rupees = link_rupees_goal + 100;
StateRecoderMultiPatch_Patch(&mp, 0xf360, rupees); // link_rupees_goal
StateRecoderMultiPatch_Patch(&mp, 0xf361, rupees >> 8); // link_rupees_goal
} else if (c == 'k') {
StateRecorder_ClearKeyLog(&state_recorder);
} else if (c == 'o') {
StateRecoderMultiPatch_Patch(&mp, 0xf36f, 1);
} else if (c == 'l') {
StateRecorder_StopReplay(&state_recorder);
} else if (c == 'E') {
StateRecoderMultiPatch_Patch(&mp, 0x37f, g_ram[0x37f] ^ 1);
}
StateRecoderMultiPatch_Commit(&mp);
}
void ZeldaReadSram() {
FILE *f = fopen("saves/sram.dat", "rb");
if (f) {
if (fread(g_zenv.sram, 1, 8192, f) != 8192)
fprintf(stderr, "Error reading saves/sram.dat\n");
fclose(f);
EmuSynchronizeWholeState();
}
}
void ZeldaWriteSram() {
rename("saves/sram.dat", "saves/sram.bak");
FILE *f = fopen("saves/sram.dat", "wb");
if (f) {
fwrite(g_zenv.sram, 1, 8192, f);
fclose(f);
} else {
fprintf(stderr, "Unable to write saves/sram.dat\n");
}
}