-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathPSO.cpp
290 lines (260 loc) · 7.33 KB
/
PSO.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include "PSO.h"
// 构造函数
PSOOptimizer::PSOOptimizer(PSOPara* pso_para, ComputeFitness fitness_fun)
{
particle_num_ = pso_para->particle_num_;
max_iter_num_ = pso_para->max_iter_num_;
dim_ = pso_para->dim_;
curr_iter_ = 0;
dt_ = new double[dim_];
wstart_ = new double[dim_];
wend_ = new double[dim_];
C1_ = new double[dim_];
C2_ = new double[dim_];
for (int i = 0; i < dim_; i++)
{
dt_[i] = pso_para->dt_[i];
wstart_[i] = pso_para->wstart_[i];
wend_[i] = pso_para->wend_[i];
C1_[i] = pso_para->C1_[i];
C2_[i] = pso_para->C2_[i];
}
if (pso_para->upper_bound_ && pso_para->lower_bound_)
{
upper_bound_ = new double[dim_];
lower_bound_ = new double[dim_];
range_interval_ = new double[dim_];
for (int i = 0; i < dim_; i++)
{
upper_bound_[i] = pso_para->upper_bound_[i];
lower_bound_[i] = pso_para->lower_bound_[i];
//range_interval_[i] = pso_para.range_interval_[i];
range_interval_[i] = upper_bound_[i] - lower_bound_[i];
}
}
particles_ = new Particle[particle_num_];
w_ = new double[dim_];
all_best_position_ = new double[dim_];
results_dim_ = pso_para->results_dim_;
if (results_dim_)
{
results_ = new double[results_dim_];
}
fitness_fun_ = fitness_fun;
}
PSOOptimizer::~PSOOptimizer()
{
if (particles_) { delete[]particles_; }
if (upper_bound_) { delete[]upper_bound_; }
if (lower_bound_) { delete[]lower_bound_; }
if (range_interval_) { delete[]range_interval_; }
if (dt_) { delete[]dt_; }
if (wstart_) { delete[]wstart_; }
if (wend_) { delete[]wend_; }
if (w_) { delete[]w_; }
if (C1_) { delete[]C1_; }
if (C2_) { delete[]C2_; }
if (all_best_position_) { delete[]all_best_position_; }
if (results_) { delete[]results_; }
}
// 初始化所有粒子
void PSOOptimizer::InitialAllParticles()
{
// 初始化第一个粒子参数并设置最优值
InitialParticle(0);
all_best_fitness_ = particles_[0].best_fitness_;
for (int j = 0; j < dim_; j++)
{
all_best_position_[j] = particles_[0].best_position_[j];
}
// 初始化其他粒子,并更新最优值
for (int i = 1; i < particle_num_; i++)
{
InitialParticle(i);
#ifdef MAXIMIZE_FITNESS
if (particles_[i].best_fitness_ > all_best_fitness_)
#else
if (particles_[i].best_fitness_ < all_best_fitness_)
#endif
{
all_best_fitness_ = particles_[i].best_fitness_;
for (int j = 0; j < dim_; j++)
{
all_best_position_[j] = particles_[i].best_position_[j];
}
// 如果需要保存出一些结果
if (particles_[i].results_dim_ && results_dim_ == particles_[i].results_dim_)
{
for (int k = 0; k < results_dim_; k++)
{
results_[k] = particles_[i].results_[k];
}
}
else if (results_dim_)
{
std::cout << "WARNING: the dimension of your saved results for every particle\nis not match with the dimension you specified for PSO optimizer ant no result is saved!" << std::endl;
}
}
}
}
// 获取双精度随机数
double PSOOptimizer::GetDoubleRand(int N)
{
double temp = rand() % (N + 1) / (double)(N + 1);
return temp;
}
double PSOOptimizer::GetFitness(Particle & particle)
{
return fitness_fun_(particle);
}
void PSOOptimizer::UpdateAllParticles()
{
GetInertialWeight();
for (int i = 0; i < particle_num_; i++)
{
UpdateParticle(i);
#ifdef MAXIMIZE_FITNESS
if (particles_[i].best_fitness_ > all_best_fitness_)
#else
if (particles_[i].best_fitness_ < all_best_fitness_)
#endif
{
all_best_fitness_ = particles_[i].best_fitness_;
for (int j = 0; j < dim_; j++)
{
all_best_position_[j] = particles_[i].best_position_[j];
}
// 如果需要保存出一些参数
if (particles_[i].results_dim_ && results_dim_ == particles_[i].results_dim_)
{
for (int k = 0; k < results_dim_; k++)
{
results_[k] = particles_[i].results_[k];
}
}
else if (results_dim_)
{
std::cout << "WARNING: the dimension of your saved results for every particle\nis not match with the dimension you specified for PSO optimizer ant no result is saved!" << std::endl;
}
}
}
curr_iter_++;
}
void PSOOptimizer::UpdateParticle(int i)
{
// 计算当前迭代的权重
for (int j = 0; j < dim_; j++)
{
// 保存上一次迭代结果的position和velocity
//double last_velocity = particles_[i].velocity_[j];
double last_position = particles_[i].position_[j];
particles_[i].velocity_[j] = w_[j] * particles_[i].velocity_[j] +
C1_[j] * GetDoubleRand() * (particles_[i].best_position_[j] - particles_[i].position_[j]) +
C2_[j] * GetDoubleRand() * (all_best_position_[j] - particles_[i].position_[j]);
particles_[i].position_[j] += dt_[j] * particles_[i].velocity_[j];
// 如果搜索区间有上下限限制
if (upper_bound_ && lower_bound_)
{
if (particles_[i].position_[j] > upper_bound_[j])
{
double thre = GetDoubleRand(99);
if (last_position == upper_bound_[j])
{
particles_[i].position_[j] = GetDoubleRand() * range_interval_[j] + lower_bound_[j];
}
else if (thre < 0.5)
{
particles_[i].position_[j] = upper_bound_[j] - (upper_bound_[j] - last_position) * GetDoubleRand();
}
else
{
particles_[i].position_[j] = upper_bound_[j];
}
}
if (particles_[i].position_[j] < lower_bound_[j])
{
double thre = GetDoubleRand(99);
if (last_position == lower_bound_[j])
{
particles_[i].position_[j] = GetDoubleRand() * range_interval_[j] + lower_bound_[j];
}
else if (thre < 0.5)
{
particles_[i].position_[j] = lower_bound_[j] + (last_position - lower_bound_[j]) * GetDoubleRand();
}
else
{
particles_[i].position_[j] = lower_bound_[j];
}
}
}
}
particles_[i].fitness_ = GetFitness(particles_[i]);
#ifdef MAXIMIZE_FITNESS
if (particles_[i].fitness_ > particles_[i].best_fitness_)
#else
if (particles_[i].fitness_ < particles_[i].best_fitness_)
#endif
{
particles_[i].best_fitness_ = particles_[i].fitness_;
for (int j = 0; j < dim_; j++)
{
particles_[i].best_position_[j] = particles_[i].position_[j];
}
}
}
void PSOOptimizer::GetInertialWeight()
{
double temp = curr_iter_ / (double)max_iter_num_;
temp *= temp;
for (int i = 0; i < dim_; i++)
{
w_[i] = wstart_[i] - (wstart_[i] - wend_[i]) * temp;
}
}
void PSOOptimizer::InitialParticle(int i)
{
// 为每个粒子动态分配内存
particles_[i].position_ = new double[dim_];
particles_[i].velocity_ = new double[dim_];
particles_[i].best_position_ = new double[dim_];
//if (results_dim_)
//{
// particles_[i].results_ = new double[results_dim_];
//}
// 初始化position/veloctiy值
for (int j = 0; j < dim_; j++)
{
// if defines lower bound and upper bound
if (range_interval_)
{
particles_[i].position_[j] = GetDoubleRand() * range_interval_[j] + lower_bound_[j];
particles_[i].velocity_[j] = GetDoubleRand() * range_interval_[j] / 300;
//std::cout << particles_[i].position_[j] << std::endl;
}
else
{
particles_[i].position_[j] = GetDoubleRand() * 2;
particles_[i].velocity_[j] = GetDoubleRand() * 0.5;
}
}
// 设置初始化最优适应度值
particles_[i].fitness_ = GetFitness(particles_[i]);
for (int j = 0; j < dim_; j++)
{
particles_[i].best_position_[j] = particles_[i].position_[j];
}
particles_[i].best_fitness_ = particles_[i].fitness_;
}
// 此函数未用到
Particle::Particle(int dim, double * position, double * velocity, double * best_position, double best_fitness)
{
dim_ = dim;
//position_ = new double[dim];
//velocity_ = new double[dim];
//best_position_ = new double[dim];
position_ = position;
velocity_ = velocity;
best_position_ = best_position;
best_fitness_ = best_fitness;
}