-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
309 lines (251 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os, argparse, time, datetime
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.utils.model_zoo as model_zoo
from torchvision import transforms
import torch.backends.cudnn as cudnn
from torchsummary import summary
import datasets_plus
from model import Gaze3inputs
from utils import gazeto3d, select_device, angular
def parse_args():
parser = argparse.ArgumentParser(description='Gaze estimation using the Gazenet based CNN network.')
parser.add_argument(
'--gpu', dest='gpu_id', help='GPU device id to use [0]', default='0', type=str
)
parser.add_argument(
'--arch', dest='arch', help='GC use the backbone network.', default='ResNet50', type=str
)
parser.add_argument(
'--num_epochs', dest='num_epochs', help='Maximun number of training epochs.', default=50, type=int
)
parser.add_argument(
'--batch_size', dest='batch_size', help='Batch size.', default=16, type=int
)
parser.add_argument(
'--lr', dest='lr', help='Base learning rate.', default=0.00001, type=float
)
parser.add_argument(
'--alpha', dest='alpha', help='Regression loss coefficient.', default=1, type=float
)
parser.add_argument(
'--dataset', dest='dataset', help='Use dataset', default="gaze360", type=str
)
parser.add_argument(
'--image_dir', dest='image_dir', help='Directory path for gaze360 images.', default='datasets/Gaze360/Image', type=str
)
parser.add_argument(
'--label_dir', dest='label_dir', help='Directory path for gaze360 labels.', default='datasets/Gaze360/Label', type=str
)
parser.add_argument(
'--snapshot', dest='snapshot', help='Path of pretrained models.', default='', type=str
)
parser.add_argument(
'--output', dest='output', help='Path of output models.', default='output/snapshots/', type=str
)
parser.add_argument(
'--valpath', dest='valpath', help='Path of validation results.', default='validation/gaze360/', type=str
)
args = parser.parse_args()
return args
#Specify layers to be learned and layers not to be learned
def get_ignored_params(model):
b = [model.conv1, model.bn1]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
if 'bn' in module_name:
module.eval()
for name, param in module.named_parameters():
yield param
def get_non_ignored_params(model):
b = [model.layer1, model.layer2, model.layer3, model.layer4]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
if 'bn' in module_name:
module.eval()
for name, param in module.named_parameters():
yield param
def get_fc_params(model):
b = [model.pitch_fc, model.yaw_fc]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
if 'bn' in module_name:
module.eval()
for name, param in module.named_parameters():
yield param
def load_filtered_state_dict(model, snapshot):
model_dict = model.state_dict()
snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
model_dict.update(snapshot)
model.load_state_dict(model_dict)
def getArch_weights(arch, bins):
if arch == 'ResNet18':
model = Gaze3inputs(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 3, bins)
pre_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
elif arch == 'ResNet34':
model = Gaze3inputs(torchvision.models.resnet.BasicBlock, [3, 4, 6, 3], 3, bins)
pre_url = 'https://download.pytorch.org/models/resnet34-333f7ec4.pth'
elif arch == 'ResNet101':
model = Gaze3inputs(torchvision.models.resnet.Botteleneck, [3, 4, 23, 3], 3, bins)
pre_url = 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'
elif arch == 'ResNet152':
model = Gaze3inputs(torchvision.models.resnet.Botteleneck, [3, 8, 36, 3], 3, bins)
pre_url = 'https://download.pytorch.org/models/resnet152-b121ed2d.pth'
else:
model = Gaze3inputs(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3, bins)
pre_url = 'https://download.pytorch.org/models/resnet50-19c8e357.pth'
return model, pre_url
if __name__=='__main__':
args = parse_args()
cudnn.enabled = True
num_epochs = args.num_epochs
batch_size = args.batch_size
gpu = select_device(args.gpu_id, batch_size=args.batch_size)
dataset = args.dataset
alpha = args.alpha
valpath = args.valpath
output = args.output
transformation_face = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transformation_eye = transforms.Compose([
transforms.Resize((36, 60)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
if dataset=="gaze360":
model, pre_url = getArch_weights(args.arch, 180)
if args.snapshot == '':
face = model.face_res
eye = model.eye_res
load_filtered_state_dict(face, model_zoo.load_url(pre_url))
load_filtered_state_dict(eye, model_zoo.load_url(pre_url))
else:
saved_state_dict = torch.load(args.snapshot)
model.load_state_dict(saved_state_dict)
model.cuda(gpu)
print('Loading data.')
label_path = args.label_dir
#traindata dataloader
train_label = os.path.join(label_path, "train.label")
train_dataset = datasets_plus.Gaze360(train_label, args.image_dir, transformation_face, transformation_eye, 180, 2)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=int(batch_size),
shuffle=True,
num_workers=8,
pin_memory=True
)
#validation dataloader
val_label = os.path.join(label_path, "val.label")
val_dataset = datasets_plus.Gaze360(val_label, args.image_dir, transformation_face, transformation_eye, 180, 2, train=False)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=int(batch_size),
shuffle=False,
num_workers=8,
pin_memory=True
)
torch.backends.cudnn.benchmark = True
today = datetime.datetime.fromtimestamp(time.time())
summary_name = '{}_{}'.format('GN-gaze360', str(today.strftime('%Y-%-m*%-d_%-H*%-M*%-S')))
output = os.path.join(output, summary_name)
if not os.path.exists(output):
os.makedirs(output)
valpath = os.path.join(valpath, summary_name)
if not os.path.exists(valpath):
os.makedirs(valpath)
criterion = nn.CrossEntropyLoss().cuda(gpu)
reg_criterion = nn.MSELoss().cuda(gpu)
softmax = nn.Softmax(dim=1).cuda(gpu)
optimizer_gaze = torch.optim.Adam([
{'params' : get_ignored_params(face), 'lr' : 0},
{'params' : get_ignored_params(eye), 'lr' : 0},
{'params' : get_non_ignored_params(face), 'lr' : args.lr},
{'params' : get_non_ignored_params(eye), 'lr' : args.lr},
{'params' : get_fc_params(model), 'lr' : args.lr}
], lr = args.lr)
idx_tensor = [idx for idx in range(180)]
idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
print('Ready to train and validation network.')
configuration = f"\ntrain_validation configuration, gpu_id={args.gpu_id}, batch_size={batch_size}, model_arch={args.arch}\n"
epoch_list = []
avg_MAE = []
with open(os.path.join(valpath, dataset+".log"), 'w') as outfile:
outfile.write(configuration)
for epoch in range(num_epochs):
sum_loss_pitch = sum_loss_yaw = iter_gaze = 0
#train
model.train()
for i, (face, left, right, labels, cont_labels, name) in enumerate(train_loader):
#input image
face = Variable(face).cuda(gpu)
left = Variable(left).cuda(gpu)
right = Variable(right).cuda(gpu)
label_pitch = Variable(labels[:, 0]).cuda(gpu)
label_yaw = Variable(labels[:, 1]).cuda(gpu)
label_pitch_cont = Variable(cont_labels[:, 0]).cuda(gpu)
label_yaw_cont = Variable(cont_labels[:, 1]).cuda(gpu)
pitch, yaw = model(face, left, right)
#Cross Entropy Loss
loss_pitch = criterion(pitch, label_pitch)
loss_yaw = criterion(yaw, label_yaw)
pre_pitch = softmax(pitch)
pre_yaw = softmax(yaw)
pre_pitch = torch.sum(pre_pitch * idx_tensor, 1) * 2 - 180
pre_yaw = torch.sum(pre_yaw * idx_tensor, 1) * 2 - 180
#MSE Loss
loss_cont_pitch = reg_criterion(pre_pitch, label_pitch_cont)
loss_cont_yaw = reg_criterion(pre_yaw, label_yaw_cont)
#Total Loss
loss_pitch += alpha * loss_cont_pitch
loss_yaw += alpha * loss_cont_yaw
sum_loss_pitch += loss_pitch
sum_loss_yaw += loss_yaw
loss_seq = [loss_pitch, loss_yaw]
grad_seq = [torch.tensor(1.0).cuda(gpu) for _ in range(len(loss_seq))]
optimizer_gaze.zero_grad(set_to_none=True)
torch.autograd.backward(loss_seq, grad_seq)
optimizer_gaze.step()
iter_gaze += 1
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Iter [%d/%d], Losses : Gaze Pitch %.4f, Gaze Yaw %.4f' %
(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, sum_loss_pitch/iter_gaze, sum_loss_yaw/iter_gaze)
)
#validation
total = 0
avg_error = 0.0
model.eval()
with torch.no_grad():
for j, (face, left, right, labels, cont_labels, name) in enumerate(val_loader):
face = Variable(face).cuda(gpu)
left = Variable(left).cuda(gpu)
right = Variable(right).cuda(gpu)
total += cont_labels.size(0)
label_pitch = cont_labels[:, 0].float() * np.pi / 180
label_yaw = cont_labels[:, 1].float() * np.pi / 180
pitch, yaw = model(face, left, right)
pre_pitch = softmax(pitch)
pre_yaw = softmax(yaw)
pre_pitch = torch.sum(pre_pitch * idx_tensor, 1).cpu() * 2 - 180
pre_yaw = torch.sum(pre_yaw * idx_tensor, 1).cpu() * 2 - 180
pitch_predicted = pre_pitch * np.pi / 180
yaw_predicted = pre_yaw * np.pi / 180
for p, y, pl, yl in zip(pitch_predicted, yaw_predicted, label_pitch, label_yaw):
avg_error += angular(gazeto3d([p, y]), gazeto3d([pl, yl]))
x = epoch + 1
epoch_list.append(x)
avg_MAE.append(avg_error/total)
loger = f"---VAL--- Epoch [{x}/{num_epochs}], MAE : {avg_error/total}\n"
print(loger)
outfile.write(loger)
if epoch % 1 == 0 and epoch < num_epochs:
if torch.save(model.state_dict(), output +'/'+'_epoch_'+str(epoch+1)+'.pkl') == None:
print('Taking snapshot... success')