-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathito_formulae.tex
206 lines (149 loc) · 7.83 KB
/
ito_formulae.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\documentclass[11pt]{article}
\usepackage[margin=1.2in]{geometry}
\usepackage{amsmath}
\usepackage{tcolorbox}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{lastpage}
\usepackage{fancyhdr}
\usepackage{accents}
\usepackage{parskip}
\pagestyle{fancy}
\setlength{\headheight}{40pt}
%\linespread{1.3}
\begin{document}
\lhead{Mr. \textsc{H. Stobart}}
\rhead{\textsc{COMP0048 Financial Engineering}}
\cfoot{\thepage\ of \pageref{LastPage}}
\begin{tcolorbox}
\begin{center}
\large
\textsc{Itô Formulae for Stochastic Calculus}
\end{center}
\end{tcolorbox}
%\begin{center}
%\textbf{Note:} \textit{This work is intended for informative and educational purposes only.}
%\end{center}
\section*{Introduction:}
Throughout what follows, assume $W_t$ is a standard Wiener Process (otherwise known as a Brownian Motion) with the following properties:
\begin{enumerate}
\item $W_0 = 0$;
\item The process $W_t$ has independent increments. That is, for $ t_0 < t_1 \leq t_2 < t_3$, we have $W_{t_3} - W_{t_2}$ and $W_{t_1} - W_{t_0}$ are independent random variables;
\item The process has Gaussian increments. That is, for $s < t$, we have $W_t - W_s \sim \mathcal{N}(0,|t-s|)$;
\item The process $W_t$ has continuous paths.
\end{enumerate}
\vspace{0.5cm}
% ====================
% ---ITO ONE---
% ====================
\section*{1.1. Itô Formula I: Differential Form}
\begin{equation}
dF(W_t) = \frac{dF}{dW_t} dW_t + \frac{1}{2} \frac{d^2 F}{dW_t^{2}}.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $F = F(W_t)$ which depends on $W_t$ only.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Write the Taylor expansion of $F(W_t + dW_t)$ up to second order and note that $dW_t^{2} = dt$.
\vspace{1cm}
\section*{1.2. Itô Formula I: Integral Form}
\begin{equation}
\int_{0}^{t} \frac{dF}{dW_s} dW_s = F(W_t) - F(W_0) - \frac{1}{2} \int_{0}^{t} \frac{d^{2} F}{dW_s^{2}} ds.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $F = F(W_t)$ which depends on $W_t$ only and we are required to work in integral form.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Rearrange (1) and integrate between 0 and $t$, note the use of the dummy variable $s$.
\newpage
% ====================
% ---ITO TWO---
% ====================
\section*{2.1. Itô Formula II: Differential Form}
\begin{equation}
dF(t, W_t) = \left(\frac{\partial F}{\partial t} + \frac{1}{2} \frac{\partial^{2} F}{\partial W_t^{2}}\right) dt + \frac{\partial F}{\partial W_t} dW_t.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $F = F(t, W_t)$ which now depends on both $t$ and $W_t$.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Write the Taylor expansion of $F(t+dt, W_t + dW_t)$ up to first order in $t$ and second order in $W_t$, and note that $dW_t^{2} = dt$.
\vspace{1cm}
\section*{2.2. Itô Formula II: Integral Form}
\begin{equation}
\int_{0}^{t} \frac{\partial F}{\partial W_s} dW_s = F(t, W_t) - F(0, W_0) - \int_{0}^{t} \left(\frac{\partial F}{ds} + \frac{1}{2} \frac{\partial^{2} F}{\partial W_s^{2}}\right) ds.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $F = F(t, W_t)$ which now depends on both $t$ and $W_t$ and we are required to write it in integral form.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Rearrange (3) and integrate between 0 and $t$, note the use of the dummy variable $s$.
\vspace{1cm}
% ====================
% ---ITO THREE---
% ====================
\section*{3. Itô Formula III}
Suppose we now have an additional SDE given by:
\begin{equation*}
dS = \mu S dt + \sigma S dW_t.
\end{equation*}
And we wish to find $V = V(S)$, a function of $S$. Then Itô III is:
\begin{equation}
dV(S) = \left(\mu S \frac{dV}{dS} + \frac{1}{2} \sigma^2 S^2 \frac{d^{2} V}{d S^{2}}\right) dt + \sigma S \frac{dV}{dS} dW_t.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $V = V(S)$ which depends on another SDE given by $S$.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Perform a Taylor expansion of $V(S+dS)$ up to second order and then substitute in the value for $dS$ where it appears, noting that higher orders of $dt$ such as $dt^{\frac{3}{2}}$ and $dt^2$ get ignored.
\newpage
% ====================
% ---ITO FOUR---
% ====================
\section*{4. Itô Formula IV}
Suppose we have $dS$ as before and we wish to find $V = V(t,S)$, a function of both $t$ and $S$ now. Then Itô IV is:
\begin{equation}
dV(t,S) = \left( \frac{\partial V}{\partial t} + \mu S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^{2} V}{\partial S^{2}}\right) dt + \sigma S \frac{\partial V}{\partial S} dW_t.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $V = V(t, S)$ which depends on $t$ and another SDE given by $S$.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Perform a Taylor expansion of $V(t+dt, S+dS)$ up to first order in $t$ and second order in $S$. Then substitute in the value for $dS$ where it appears, noting that higher orders of $dt$ such as $dt^{\frac{3}{2}}$ and $dt^2$ get ignored.
\vspace{1cm}
% ====================
% ---ITO FIVE---
% ====================
\section*{5. Itô Formula V: General Itô}
Suppose we have some $G_t$ that satisfies the SDE given by:
\begin{equation*}
dG_t = A(t, G_t) dt + B(t, G_t) dW_t.
\end{equation*}
Now let $F = F(t, G_t)$ depend on both $t$ and $G_t$. Then Itô V, otherwise known as the general Itô formula, is:
\begin{equation}
dF(t,G_t) = \left( \frac{\partial F}{\partial t} + A(t,G_t) \frac{\partial F}{\partial G_t} + \frac{1}{2} B^2(t,G_t) \frac{\partial^{2} F}{\partial G_t^{2}}\right) dt + B(t,G_t) \frac{\partial F}{\partial G_t} dW_t.
\end{equation}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $F = F(t, G_t)$ which depends on $t$ and another SDE given by $G_t$.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Perform a Taylor expansion of $F(t+dt, G_t+dG_t)$ up to first order in $t$ and second order in $G_t$. Then substitute in the value for $dG_t$ where it appears, noting that higher orders of $dt$ such as $dt^{\frac{3}{2}}$ and $dt^2$ get ignored. Also note, this is simply the more general form of Itô IV given above.
\newpage
% ====================
% ---ITO SIX---
% ====================
\section*{6. Itô Formula VI: Higher Dimensional Itô}
Suppose we now have a multi-factor model, depending on two SDE's given by:
\begin{equation*}
dS_1 = \mu_1 S_1 dt + \sigma_1 S_1 dW_t,
\end{equation*}
and
\begin{equation*}
dS_2 = \mu_2 S_2 dt + \sigma_2 S_2 dW_t.
\end{equation*}
Suppose the following correlation also exists:
\begin{equation*}
\mathbb{E} [dW_t^{(1)} dW_t^{(2)}] = \rho dt.
\end{equation*}
Then Itô VI is:
\begin{multline}
dV(t,S_1,S_2) = \\ \left( \frac{\partial V}{\partial t} + \mu_1 S_1 \frac{\partial V}{\partial S_1} + \mu_2 S_2 \frac{\partial V}{\partial S_2} + \frac{1}{2} \sigma_1^{2} S_1^{2} \frac{\partial^{2} V}{\partial S_1^{2}} + \frac{1}{2} \sigma_2^{2} S_2^{2} \frac{\partial^{2} V}{\partial S_2^{2}} + \rho \sigma_1 \sigma_2 S_1 S_2 \frac{\partial^2 V}{\partial S_1 \partial S_2}\right) dt + \\ \sigma_1 S_1 \frac{\partial V}{\partial S_1} dW_t^{(1)} + \sigma_2 S_2 \frac{\partial V}{\partial S_2} dW_t^{(2)}.
\end{multline}
\textbf{Q: When do I use it?} \\
\textbf{A:} When we have $V = V(t, S_1, S_2)$ which depends on $t$ and two more SDE's given by $S_1$ and $S_2$ to form a multi-factor model.
\textbf{Q: How do I derive this?} \\
\textbf{A:} Perform a Taylor expansion of $V(t+dt, S_1+dS_1, S_2 + dS_2)$ up to first order in $t$ and second order in $S_1$ and $S_2$, remembering to include the mixed partial term of the product of the two SDE's. Then substitute in the value for $dS_1$ and $dS_2$ where they appears, noting that higher orders of $dt$ such as $dt^{\frac{3}{2}}$ and $dt^2$ get ignored. And of course, don't get screwed by the algebra...
\end{document}