This repository has been archived by the owner on Aug 30, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_MetricVAE.py
201 lines (160 loc) · 6.82 KB
/
train_MetricVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import print_function
import argparse
import torch
import torch.utils.data
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
from triplet_mnist_loader import MNIST_t
import torch.nn.functional as F
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 10)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--margin', type=float, default=0.2, metavar='M',
help='margin for triplet loss (default: 0.2)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
MNIST_t('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
MNIST_t('../data', train=False, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
h1 = self.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
if args.cuda:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = self.relu(self.fc3(z))
return self.sigmoid(self.fc4(h3))
def forward(self, x):
x = x.view(-1, 784)
h1 = self.relu(self.fc1(x))
mu = self.fc21(h1)
logvar = self.fc22(h1)
z = self.reparametrize(mu, logvar)
return self.decode(z), mu, logvar
model = VAE()
if args.cuda:
model.cuda()
reconstruction_function = nn.BCELoss()
reconstruction_function.size_average = False
def loss_function(recon_x, x, mu, logvar):
BCE = reconstruction_function(recon_x, x)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
return BCE + KLD
optimizer = optim.Adam(model.parameters(), lr=1e-3)
criterion = torch.nn.MarginRankingLoss(margin = args.margin)
def train_test(epoch, trainlabel):
losses_metric = AverageMeter()
losses_VAE = AverageMeter()
accs = AverageMeter()
emb_norms = AverageMeter()
if trainlabel == 'train':
model.train()
loader = train_loader
else:
model.eval()
loader = test_loader
for batch_idx, (data1, data2, data3) in enumerate(loader):
if args.cuda:
data1, data2, data3 = data1.cuda(), data2.cuda(), data3.cuda()
data1, data2, data3 = Variable(data1), Variable(data2), Variable(data3)
recon_batch1, mu1, logvar1 = model(data1)
recon_batch2, mu2, logvar2 = model(data2)
recon_batch3, mu3, logvar3 = model(data3)
loss_vae = loss_function(recon_batch1, data1, mu1, logvar1)
loss_vae += loss_function(recon_batch2, data2, mu2, logvar2)
loss_vae += loss_function(recon_batch3, data3, mu3, logvar3)
loss_vae = loss_vae/(3*len(data1))
dista = F.pairwise_distance(mu1, mu2, 2)
distb = F.pairwise_distance(mu1, mu3, 2)
target = torch.FloatTensor(dista.size()).fill_(1)
if args.cuda:
target = target.cuda()
target = Variable(target)
loss_triplet = criterion(dista, distb, target)
loss_embedd = mu1.norm(2) + mu2.norm(2) + mu3.norm(2)
loss = 0.01*loss_vae + loss_triplet + 0.001*loss_embedd
# measure accuracy and record loss
acc = accuracy(dista, distb)
losses_metric.update(loss_triplet.data[0], data1.size(0))
losses_VAE.update(loss_vae.data[0], data1.size(0))
accs.update(acc, data1.size(0))
emb_norms.update(loss_embedd.data[0]/3, data1.size(0))
# train
if trainlabel == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{}]\t'
'VAE Loss: {:.4f} ({:.4f}) \t'
'Metric Loss: {:.4f} ({:.4f}) \t'
'Metric Acc: {:.2f}% ({:.2f}%) \t'
'Emb_Norm: {:.2f} ({:.2f})'.format(
epoch, batch_idx * len(data1), len(train_loader.dataset),
losses_VAE.val, losses_VAE.avg,
losses_metric.val, losses_metric.avg,
100. * accs.val, 100. * accs.avg, emb_norms.val, emb_norms.avg))
if trainlabel == 'test':
print('\nTest set: Average VAE loss: {:.4f}, Average Metric loss: {:.4f}, Metric Accuracy: {:.2f}%\n'.format(
losses_VAE.avg, losses_metric.avg, 100. * accs.avg))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(dista, distb):
margin = 0
pred = (dista - distb - margin).cpu().data
return (pred > 0).sum()*1.0/dista.size()[0]
for epoch in range(1, args.epochs + 1):
train_test(epoch, 'train')
train_test(epoch, 'test')